
© 2010 VMware Inc. All rights reserved

VMware Performance for Gurus

Richard McDougall

Principal Engineer, VMware, Inc

rmc@vmware.com @richardmcdougll

Usenix Tutorial, December, 2010

2

Abstract

!  This class teaches the fundamentals of performance and observability for
vSphere virtualization technology.

!  The objective of the class is to learn how to be a practitioner of
performance diagnosis and capacity planning with vSphere.

! We use a combination of introductory vSphere internals and performance
analysis techniques to expose what’s going on under the covers, learn
how to interpret metrics, and how to triage performance problems.

! We’ll learn how to interpret load measurements, to perform accurate
capacity planning.

3

Credits

!  Thank you to the many contributors of slides and drawings, including:

•  Ravi Soundararajan – VC and esxtop
•  Andrei Dorofeev – Scheduling
•  Patrick Tullmann – Architecture
•  Bing Tsai – Storage
•  Howie Xu - Networking
•  Scott Drummonds – Performance
•  Devaki Kulkarni - Tuning
•  Jeff Buell – Tuning
•  Irfan Ahmad – Storage & IO
•  Krishna Raj Raja – Performance
•  Kit Colbert – Memory
•  Ole Agesen – Monitor Overview
•  Sreekanth Setty - Networking
•  Ajay Gulati - Storage
•  Wei Zhang - Networking
•  Amar Padmanabhan – Networking

4

Agenda/Topics

! Introduction

! Performance Monitoring

! CPU

! Memory

! I/O and Storage

! Networking

! Applications

5

INTRODUCTION TO

VIRTUALIZATION

AND

VMWARE VI/ESX

6

Traditional Architecture

Operating system performs various roles
•  Application Runtime Libraries
• Resource Management (CPU, Memory etc)
• Hardware + Driver management

" Performance & Scalability of the OS
was paramount

" Performance Observability tools are a
feature of the OS

7

The Virtualized World
The OS takes on the role of a Library, Virtualization layer grows
Application

Run-time Libraries and Services

Application-Level Service Management

Application-decomposition of performance

Infrastructure OS (Virtualization Layer)
Scheduling
Resource Management
Device Drivers
I/O Stack
File System
Volume Management
Network QoS
Firewall
Power Management
Fault Management
Performance Observability of System Resources

Run-time or Deployment OS
Local Scheduling and Memory Management
Local File System

8

vShere Platform

Physical

Hypervisor

Distributed
Management

Distributed
Virtualization DRS HA DR

Process
Automation/Control

Delegated Administration

Test/Dev Pre-Production Desktop

Developers
QA

Application
Owners

Desktop
Managers

Storage Virtualization

High Performance
Scalable Consolidation

Virtual, Portable
DB Instances

Resource Management
Availability, DR

Rapid, Templated
DB Provisioning

DBAs get their
Own per-DB Sandbox

9

Hypervisor Architectures

Very Small Hypervisor
General purpose OS in parent partition for I/O and

management
All I/O driver traffic going thru parent OS
Extra Latency, Less control of I/O

Xen/Viridian

Drivers Drivers

Virtual
Machine

Virtual
Machine Dom0 (Linux)

or
Parent VM
(Windows)
Drivers

Dom0 or Parent Partition Model

Drivers Drivers

Virtual
Machine

Virtual
Machine General

Purpose OS

Drivers
Drivers Drivers

Virtual
Machine

Virtual
Machine

Drivers Drivers

Virtual
Machine

Virtual
Machine

Drivers

Virtual
Machine

Drivers

Virtual
Machine

Drivers
Vmware ESX

ESX Server
"   Small Hypervisor < 24 mb
"   Specialized Virtualization Kernel
"   Direct driver model
"   Management VMs

" Remote CLI, CIM, VI API

10

VMware ESX Architecture

VMkernel

Guest

Physical
Hardware

Monitor (BT, HW, PV)

Guest

Memory
Allocator

NIC Drivers

Virtual Switch

I/O Drivers

File System

Monitor

Scheduler

Virtual NIC Virtual SCSI

TCP/IP

File
System

CPU is controlled by scheduler
and virtualized by monitor

Monitor supports:
! BT (Binary Translation)
! HW (Hardware assist)
! PV (Paravirtualization)

Memory is allocated by the
VMkernel and virtualized by the
monitor

Network and I/O devices are
emulated and proxied though
native device drivers

11

Inside the Monitor: Classical Instruction Virtualization
Trap-and-emulate

!  Nonvirtualized (“native”) system
• OS runs in privileged mode
• OS “owns” the hardware

•  Application code has less privilege

!  Virtualized
•  VMM most privileged (for isolation)

• Classical “ring compression” or “de-privileging”
•  Run guest OS kernel in Ring 1
•  Privileged instructions trap; emulated by VMM

•  But: does not work for x86 (lack of traps)

Ring 3

Ring 0 OS

Apps

Ring 3

Ring 0

Guest OS

Apps

VMM

Ring 1

12

Classical VM performance

!  Native speed except for traps
• Overhead = trap frequency * average trap cost

!  Trap sources:
•  Privileged instructions

•  Page table updates (to support memory virtualization)
• Memory-mapped devices

!  Back-of-the-envelope numbers:
•  Trap cost is high on deeply pipelined CPUs: ~1000 cycles

•  Trap frequency is high for “tough” workloads: 50 kHz or greater
•  Bottom line: substantial overhead

13

Binary Translation of Guest Code

!  Translate guest kernel code
!  Replace privileged instrs with safe “equivalent” instruction sequences
!  No need for traps
!  BT is an extremely powerful technology
•  Permits any unmodified x86 OS to run in a VM
• Can virtualize any instruction set

14

BT Mechanics

!  Each translator invocation
• Consume one input basic block (guest code)
•  Produce one output basic block

!  Store output in translation cache
•  Future reuse
•  Amortize translation costs
• Guest-transparent: no patching “in place”

translator

input
basic block

Guest

translated
basic block

Translation cache

15

Combining BT and Direct Execution

Direct Execution
(user mode guest code)

Binary Translation
(kernel mode guest code)

VMM

Faults, syscalls
interrupts

IRET, sysret

16

Performance of a BT-based VMM

!  Costs
• Running the translator
•  Path lengthening: output is sometimes longer than input

•  System call overheads: DE/BT transition

!  Benefits
•  Avoid costly traps

• Most instructions need no change (“identical” translation)

•  Adaptation: adjust translation in response to guest behavior
• Online profile-guided optimization

• User-mode code runs at full speed (“direct execution”)

17

Speeding Up Virtualization

Privileged instruction
virtualization

Binary Translation, Paravirt. CPU
Hardware Virtualization Assist

Memory virtualization Binary translation Paravirt. Memory
Hardware Guest Page Tables

Device and I/O
virtualization

Paravirtualized Devices
Stateless offload, Direct Mapped I/O

Technologies for optimizing performance

18

VMkernel

Guest

Physical
Hardware

There are different types of
Monitors for different
Workloads and CPU types

VMware ESX provides a
dynamic framework to allow
the best Monitor for the
workload

Let’s look at some of the
charactersitics of the
different monitors

Binary
Translation

Memory
Allocator

NIC Drivers

Virtual Switch

I/O Drivers

File System Scheduler

Virtual NIC Virtual SCSI

Guest

Para-
Virtualization

Guest

Hardware
Assist

Multi-mode Monitors

19

Guest

VMkernel

Physical
Hardware

More recent CPUs have features to
reduce some of the overhead at the
monitor level

1st Gen: Intel VT and AMD-V

•  doesn’t remove all virtualization

overheads: scheduling, memory
management and I/O are still virtualized
with a software layer

2nd Gen: AMD Barcelona RVI
and Intel EPT

•  Helps with memory virtualization

overheads
•  Most workloads run with less than 10%

overhead
•  EPT provides performance gains of up to

30% for MMU intensive benchmarks
(Kernel Compile, Citrix etc)

•  EPT provides performance gains of up to
500% for MMU intensive micro-
benchmarks

•  Far fewer “outlier” workloads

Monitor

Memory
Allocator

NIC Drivers

Virtual Switch

I/O Drivers

File System Scheduler

Virtual NIC Virtual SCSI

Virtualization Hardware Assist

20

vSphere 4 Monitor Enhancements

!  8-VCPU virtual Machines
•  Impressive scalability from 1-8 vCPUs

! Monitor type chosen based on Guest OS and CPU model
• UI option to override the default

!  Support for upcoming processors with hardware memory virtualization
• Rapid Virtualization Indexing from AMD already supported
•  Extended Page Table from Intel

•  Improvements to software memory virtualization

!  Better Large Page Support (Unique to VMware ESX)
•  (Includes enhancements in VMkernel)

21

Intel VT-x / AMD-V: 1st Generation HW Support

!  Key feature: root vs. guest CPU mode

•  VMM executes in root mode

• Guest (OS, apps) execute in guest mode

!  VMM and Guest run as
“co-routines”

•  VM enter

• Guest runs

•  A while later: VM exit

•  VMM runs

•  ...

R
oot m

ode
 G

uest m
ode

Ring 3

Ring 0

VM
exit

VM
enter

Guest OS

Apps

VMM

22

How VMM Controls Guest Execution

!  Hardware-defined structure
•  Intel: VMCS (virtual machine control structure)
•  AMD: VMCB (virtual machine control block)

!  VMCB/VMCS contains
• Guest state
• Control bits that define conditions for exit

•  Exit on IN, OUT, CPUID, ...
•  Exit on write to control register CR3
•  Exit on page fault, pending interrupt, ...

•  VMM uses control bits to “confine” and observe guest

VMM

physical CPU

Guest
VMCB

23

Performance of a VT-x/AMD-V Based VMM

!  VMM only intervenes to handle exits
!  Same performance equation as classical trap-and-emulate:
•  overhead = exit frequency * average exit cost

!  VMCB/VMCS can avoid simple exits (e.g., enable/disable interrupts), but
many exits remain
•  Page table updates

• Context switches
•  In/out

•  Interrupts

24

Qualitative Comparison of BT and VT-x/AMD-V

!  BT loses on:
•  system calls
•  translator overheads

•  path lengthening
•  indirect control flow

!  BT wins on:
•  page table updates (adaptation)

• memory-mapped I/O (adapt.)
•  IN/OUT instructions

•  no traps for priv. instructions

!  VT-x/AMD-V loses on:
•  exits (costlier than “callouts”)
•  no adaptation (cannot elim. exits)

•  page table updates
• memory-mapped I/O

•  IN/OUT instructions

!  VT-x/AMD-V wins on:
•  system calls
•  almost all code runs “directly”

25

Qualitative Comparison of BT and VT-x/AMD-V

!  BT loses on:
•  system calls
•  translator overheads

•  path lengthening
•  indirect control flow

!  BT wins on:
•  page table updates (adaptation)

• memory-mapped I/O (adapt.)
•  IN/OUT instructions

•  no traps for priv. instructions

!  VT-x/AMD-V loses on:
•  exits (costlier than “callouts”)
•  no adaptation (cannot elim. exits)

•  page table updates
• memory-mapped I/O

•  IN/OUT instructions

!  VT-x/AMD-V wins on:
•  system calls
•  almost all code runs “directly”

26

Qualitative Comparison of BT and VT-x/AMD-V

!  BT loses on:
•  system calls
•  translator overheads

•  path lengthening
•  indirect control flow

!  BT wins on:
•  page table updates (adaptation)

• memory-mapped I/O (adapt.)
•  IN/OUT instructions

•  no traps for priv. instructions

!  VT-x/AMD-V loses on:
•  exits (costlier than “callouts”)
•  no adaptation (cannot elim. exits)

•  page table updates
• memory-mapped I/O

•  IN/OUT instructions

!  VT-x/AMD-V wins on:
•  system calls
•  almost all code runs “directly”

27

VMexit Latencies are getting lower…

0

200

400

600

800

1000

1200

1400

1600

Prescott Cedar Mill Merom Penryn Nehalem (Estimated)

Intel Architecture VMexit Latencies

Latency (cycles)

!  VMexit performance is critical to hardware assist-based virtualization

!  In additional to generational performance improvements, Intel is improving VMexit
latencies

28

Virtual Memory in a Native OS

!  Applications see contiguous virtual address space, not physical memory
!  OS defines VA -> PA mapping
•  Usually at 4 KB granularity: a page at a time
•  Mappings are stored in page tables

Process 1 Process 2

Virtual
Memory

VA

Physical
Memory

PA

0 4GB 0 4GB

29

Virtual Memory (ctd)

!  Applications see contiguous virtual address space, not physical memory
!  OS defines VA -> PA mapping
•  Usually at 4 KB granularity
•  Mappings are stored in page tables

!  HW memory management unit (MMU)
•  Page table walker
•  TLB (translation look-aside buffer)

Process 1 Process 2

Virtual
Memory

VA

Physical
Memory

PA

0 4GB 0 4GB

TLB fill
hardware

VA PA
TLB

%cr3

VA→PA mapping

. . .

30

Virtualizing Virtual Memory

!  To run multiple VMs on a single system, another level of memory virtualization
must be done
• Guest OS still controls virtual to physical mapping: VA -> PA
• Guest OS has no direct access to machine memory (to enforce isolation)

!  VMM maps guest physical memory to actual machine memory: PA -> MA

Virtual
Memory

Physical
Memory

VA

PA

VM 1 VM 2

Process 1 Process 2 Process 1 Process 2

Machine
Memory

MA

31

Virtualizing Virtual Memory
Shadow Page Tables

!  VMM builds “shadow page tables” to accelerate the mappings
•  Shadow directly maps VA -> MA
•  Can avoid doing two levels of translation on every access
•  TLB caches VA->MA mapping
•  Leverage hardware walker for TLB fills (walking shadows)
•  When guest changes VA -> PA, the VMM updates shadow page tables

Virtual
Memory

Physical
Memory

VA

PA

VM 1 VM 2

Process 1 Process 2 Process 1 Process 2

Machine
Memory

MA

32

3-way Performance Trade-off in Shadow Page Tables

!  1. Trace costs
•  VMM must intercept Guest writes to primary page tables
•  Propagate change into shadow page table (or invalidate)

!  2. Page fault costs
•  VMM must intercept page faults
•  Validate shadow page table entry (hidden page fault), or

forward fault to Guest (true page fault)

!  3. Context switch costs
•  VMM must intercept CR3 writes
•  Activate new set of shadow page tables

!  Finding good trade-off is crucial for performance
!  VMware has 9 years of experience here

33

Shadow Page Tables and Scaling to Wide vSMP !  VMware currently supports up to 4-way vSMP
!  Problems lurk in scaling to higher numbers of vCPUs
•  Per-vcpu shadow page tables

• High memory overhead
•  Process migration costs (cold shadows/lack of shadows)
• Remote trace events costlier than local events

•  vcpu-shared shadow page tables
• Higher synchronization costs in VMM

!  Can already see this in extreme cases
•  forkwait is slower on vSMP than a uniprocessor VM

34

2nd Generation Hardware Assist
Nested/Extended Page Tables

VA MA
TLB

TLB fill
hardware

guest
VMM

Guest PT ptr

Nested PT ptr

VA→PA mapping

PA→MA mapping

. . .

35

Analysis of NPT

! MMU composes VA->PA and PA->MA mappings on the fly at TLB fill time
!  Benefits
•  Significant reduction in “exit frequency”

•  No trace faults (primary page table modifications as fast as native)
•  Page faults require no exits
•  Context switches require no exits

• No shadow page table memory overhead
•  Better scalability to wider vSMP

•  Aligns with multi-core: performance through parallelism

!  Costs
• More expensive TLB misses: O(n2) cost for page table walk,

where n is the depth of the page table tree

36

Analysis of NPT

! MMU composes VA->PA and PA->MA mappings on the fly at TLB fill time
!  Benefits
•  Significant reduction in “exit frequency”

•  No trace faults (primary page table modifications as fast as native)
•  Page faults require no exits
•  Context switches require no exits

• No shadow page table memory overhead
•  Better scalability to wider vSMP

•  Aligns with multi-core: performance through parallelism

!  Costs
• More expensive TLB misses: O(n2) cost for page table walk,

where n is the depth of the page table tree

37

Improving NPT Performance
Large pages

!  2 MB today, 1 GB in the future
•  In part guest’s responsibility: “inner” page tables

•  For most guests/workloads this requires explicit setup
•  In part VMM’s responsibility: “outer” page tables

•  ESX will take care of it

!  1st benefit: faster page walks (fewer levels to traverse)
!  2nd benefit: fewer page walks (increased TLB capacity)

TLB

MMU

38

Hardware-assisted Memory Virtualization

0%

10%

20%

30%

40%

50%

60%

Apache Compile SQL Server Citrix XenApp

Efficiency Improvement

Efficiency Improvement

39

vSphere Monitor Defaults

40

Performance Help from the Hypervisor

!  Take advantage of new Hardware
• Utilize multi-core systems easily without changing the app or OS
•  Leverage 64-bit memory hardware sizes with existing 32-bit VMs
•  Take advantage of newer high performance I/O + networking asynchronously from

guest-OS changes/revs.

! More flexible Storage
• More options for distributed, reliable boot
•  Leverage low-cost, high performance NFS, iSCSI I/O for boot or data without changing

the guest OS

!  Distributed Resource Management
• Manage Linux, Solaris, Windows with one set of metrics and tools
• Manage horizontal apps with cluster-aware resource management

41

VMkernel

Physical
Hardware

Memory
Allocator

NIC Drivers

Virtual Switch

I/O Drivers

File System Scheduler

Virtual NIC Virtual SCSI

Guest

Paravirtualization extends the
guest to allow direct interaction
with the underlying hypervisor

Paravirtualization reduces the
monitor cost including memory
and System call operations.

Gains from paravirtualization
are workload specific

Hardware virtualization
mitigates the need for some of
the paravirtualization calls

VMware approach:
VMI and paravirt-ops

Monitor Monitor

TCP/IP
File

System

CPU and Memory Paravirtualization

42

VMkernel

Physical
Hardware

Memory
Allocator

NIC Drivers

Virtual Switch

I/O Drivers

File System Scheduler

Virtual SCSI

Guest

Device Paravirtualization places
A high performance virtualization-
Aware device driver into the guest

Paravirtualized drivers are more
CPU efficient (less CPU over-
head for virtualization)

Paravirtualized drivers can
also take advantage of HW
features, like partial offload
(checksum, large-segment)

VMware ESX uses para-
virtualized network drivers

Monitor

TCP/IP
File

System

pvdevice

pvdriver

Device Paravirtualization

43

Storage – Fully virtualized via VMFS and Raw Paths

! VMFS
! Leverage templates and quick
provisioning
! Fewer LUNs means you don’t have to
watch Heap
! Scales better with Consolidated Backup
! Preferred Method

! RAW

! RAW provides direct access to
a LUN from within the VM

! Allows portability between physical and
virtual

! RAW means more LUNs
•  More provisioning time

! Advanced features still work

Guest OS

database1.vmdk database2.vmdk

Guest OS

Guest OS
/dev/hda /dev/hda

/dev/hda

FC or iSCSI
LUN

FC LUN

VMFS

44

VMkernel

Physical
Hardware

Memory
Allocator

NIC Drivers

Virtual Switch

I/O Drivers

File System Scheduler

Virtual NIC Virtual SCSI

Guest

Network stack and drivers
ere implemented in ESX
layer (not in the guest)

VMware’s strategy is to
optimize the network stack
in the ESX layer, and keep
the guest 100% agnostic of
the underlying hardware

This enables full-virtualization
capabilities (vmotion etc)

ESX Stack is heavily
Performance optimized

ESX Focus: stateless offload;
including LSO (large segment
Offload), Checksum offload,
10Gbe perf, Multi-ring NICs

Monitor

TCP/IP
File

System

Optimized Network Performance

45

VMkernel

Physical
Hardware

Memory
Allocator

NIC Drivers

Virtual Switch Scheduler

Virtual NIC

Guest

iSCSI and NFS are growing
To be popular, due to their
low port/switch/fabric costs

Virtualization provides the
ideal mechanism to
transparently adopt iSCSI/NFS

Guests don’t need iSCSI/NFS
Drivers: they continue to see
SCSI

VMware ESX 3 provides high
Performance NFS and iSCSI
Stacks

Futher emphasis on 1Gbe/
10Gbe performance

Monitor

iSCSI
Or

NFS

Virtual SCSI

TCP/IP
File

System

Guest-Transparent NFS and iSCSI
iSCSI and NFS Virtualization in VMware ESX

46

INTRODUCTION TO

PERFORMANCE

MONITORING

47

Traditional Architecture

Operating system performs various roles
•  Application Runtime Libraries
• Resource Management (CPU, Memory etc)
• Hardware + Driver management

" Performance & Scalability of the OS
was paramount

" Performance Observability tools are a
feature of the OS

48

Performance in a Virtualized World
The OS takes on the role of a Library, Virtualization layer grows

Application

Run-time Libraries and Services

Application-Level Service Management

Application-decomposition of performance

Infrastructure OS (Virtualization Layer)
Scheduling
Resource Management
Device Drivers
I/O Stack
File System
Volume Management
Network QoS
Firewall
Power Management
Fault Management
Performance Observability of System Resources

Run-time or Deployment OS
Local Scheduling and Memory Management
Local File System

49

Performance Management Trends

Partitioning Distributed Resource
Management

Service-Oriented/
Service-Level Driven

Web App

DB

ESX 1.x vSphere PaaS,
Appspeed

50

Performance Measurement

!  Three basic performance measurement metrics:
•  Throughput: Transactions per/Sec, Instructions Retired per sec, MB/sec, IOPS, etc,

…
•  Latency: How long does it take

•  e.g., Response time
• Utilization: How much resource is consumed to perform a unit of work

!  Latency and throughput are often inter-related, latency becomes
important for smaller jobs

51

Throughput, Queues and Latency

Arriving
Customers
(arrivals per minute)

Queue
(how many people in
queue) Checkout

Utilization = percentage
of time busy serving
customers

Customers
Serviced
(throughput is
customers
service per
minute)

queue time service time

response time

52

Mathematical Representation, terms

server

input output

Arriving
Customers

Queue

Checkout

queue time service time

response time

Utilization = busy-time at server / time elapsed

53

Throughput,Utilization and Response time are connected

The Buzen and Denning Method

54

Relationship between Utilization and Response Time

55

Summary of Queuing and Measurements

!  Utilization is a measure of the resources, not quality of service
• We can measure utilization (e.g. CPU), but don’t assume good response time
• Measuring service time and queuing (Latency) is much more important

!  Throughput shows how much work is completed only
• Quality of service (response time) may be compromised if there is queuing or slow

service times.

! Make sure your key measurement indicators represent what constitutes
good performance for your users
• Measure end-user latency of users

• Measure throughput and latency of a system

!  Common mistakes
• Measure something which has little to do with end-user happiness/performance

• Measure utilization only
• Measure throughput of an overloaded system with a simple benchmark, resulting in

artificially high results since response times are bad

56

Potential Impacts to Performance

!  Virtual Machine Contributors Latency:
• CPU Overhead can contribute to latency
•  Scheduling latency (VM runnable, but waiting…)

• Waiting for a global memory paging operation
• Disk Reads/Writes taking longer

!  Virtual machine impacts to Throughput:
•  Longer latency, but only if the application is thread-limited

•  Sub-systems not scaling (e.g. I/O)

!  Virtual machine Utilization:
•  Longer latency, but only if the application is thread-limited

57

Comparing Native to Virtualized Performance

!  Pick the key measure
• Not always Utilization
• User response-time and throughput might be more important

!  It’s sometimes possible to get better virtual performance
• Higher throughput: Can use multiple-VMs to scale up higher than native
• Memory sharing can reduce total memory footprint

!  Pick the right benchmark
•  The best one is your real application

•  Avoid micro-benchmarks: they often emphasize the wrong metric
•  especially in virtualized environments

58

Performance Tricks and Catches

!  Can trade-off utilization for latency
• Offloading to other CPUs can improve latency of running job at the cost of more

utilization

•  A good thing in light of multi-core

!  Latency and Throughput may be skewed by time
•  If the time measurement is inaccurate, so will be the latency or throughput

measurements

•  Ensure that latency and throughput are measured from a stable time source

59

Time keeping in Native World

! OS time keeping
• OS programs the timer hardware to deliver timer interrupts at specified frequency
•  Time tracked by counting timer interrupts

•  Interrupts are masked in critical section of the OS code
•  Time loss is inevitable however rate of progress of time is nearly constant

!  Hardware time keeping
•  TSC: Processor maintains Time Stamp Counter. Applications can query TSC (RDTSC

instruction) for high precision time
•  Not accurate when processor frequency varies (e.g. Intel’s Speedstep)

60

Time keeping in Virtualized World

! OS time keeping

•  Time progresses in the guest with the delivery of virtual timer interrupts

•  Under CPU over commitment timer interrupts may not be delivered to the guest at the
requested rate

•  Lost ticks are compensated with fast delivery of timer interrupts

•  Rate of progress of time is not constant (Time sync does not address this issue)

! Hardware time keeping

•  TSC: Guest OSes see pseudo-TSC that is based on physical CPU TSC

•  TSC’s may not be synchronized between physical CPUs

•  RDTSC is unreliable if the VM migrates between physical CPUs or across host
(Vmotion)

61

Native-VM Comparison Pitfalls (1 of 3)

! Guest reports clock speed of the
underlying physical processor
• Resource pool settings may limit the CPU

clock cycles
• Guest may not get to use the CPU all the

time under contention with other virtual
machines

! Guest reports total memory allocated
by the user
•  This doesn’t have to correspond to the

actual memory currently allocated by the
hypervisor

62

Native-VM Comparison Pitfalls (2 of 3)

!  Processor Utilization accounting
•  Single threaded application can ping pong

between CPUs
• CPU utilization reported in

task manager is normalized per CPU
• Windows does not account idle loop spinning

!  Available Memory
•  Available memory inside the

guest may come from swap
on the host

63

Native-VM Comparison Pitfalls (3 of 3)

!  Hardware setup and configuration differences
•  Processor: Architecture, cache, clock speed

•  Performance difference between different architecture is quite substantial
•  L2, L3 cache size impacts performance of some workload
•  Clock speed becomes relevant only when the architecture is the same

• Disk : Local dedicated disk versus shared SAN
•  Incorrect SAN configuration could impact performance

•  File system: Local file system versus Distributed VMFS
•  Distributed file systems (VMFS) have locking overhead for metadata updates

• Network: NIC adapter class, driver, speed/duplex

" Slower hardware can outperform powerful hardware when the latter shares resources
with more than one OS/Application

64

Virtualized World Implications

! Guest OS metrics
•  Performance metrics in the guest could be skewed when the rate of progress of time is skewed

•  Guest OS resource availability can give incorrect picture

!  Resource availability
• Resources are shared, hypervisors control the allocation
•  Virtual machines may not get all the hardware resources

!  Performance Profiling
•  Hardware performance counters are not virtualized
•  Applications cannot use hardware performance counters for performance profiling in the guest

!  Virtualization moves performance measurement and management to the
hypervisor layer

65

Approaching Performance Issues

• Make sure it is an apples-to-apples comparison
• Check guest tools & guest processes

• Check host configurations & host processes
• Check VirtualCenter client for resource issues

• Check esxtop for obvious resource issues

•  Examine log files for errors
•  If no suspects, run microbenchmarks (e.g., Iometer, netperf) to narrow scope

• Once you have suspects, check relevant configurations
•  If all else fails…discuss on the Performance Forum

66

Tools for Performance Analysis

!  VirtualCenter client (VI client):
•  Per-host and per-cluster stats
• Graphical Interface

• Historical and Real-time data

!  esxtop: per-host statistics
• Command-line tool found in the console-OS

!  SDK
•  Allows you to collect only the statistics they want

!  All tools use same mechanism to retrieve data (special vmkernel calls)

67

VMkernel

Physical
Hardware

Memory
Allocator

NIC Drivers

Virtual Switch

I/O Drivers

File System Scheduler

Virtual NIC Virtual SCSI

Important Terminology

vCPU

pCPU

HBA

Physical Disk

vNIC

Virtual Disk
Guest

Monitor

Service
Console

Monitor

TCP/IP
File

System

pNIC

VMHBA cCPU

68

VI Client

Real-time vs. Historical

Rollup Stats type

Object

Counter type

Chart Type

69

VI Client

!  Real-time vs. archived statistics (past hour vs. past day)
!  Rollup: representing different stats intervals
!  Stats Type: rate vs. number
! Objects (e.g., vCPU0, vCPU1, all CPUs)
!  Counters (e.g., which stats to collect for a given device)
!  Stacked vs. Line charts

70

Real-time vs. Historical stats

!  VirtualCenter stores statistics at different granularities

Time Interval Data frequency Number of samples

Past Hour (real-time) 20s 180

Past Day 5 minutes 288
Past Week 15 minutes 672
Past Month 1 hour 720
Past Year 1 day 365

71

Stats Infrastructure in vSphere

1. Collect
20s and
5-min
host and
VM stats

4. Rollups

vCenter Server
(vpxd, tomcat)

DB

ESX

ESX

ESX

2. Send 5-min stats
to vCenter

3. Send
5-min
stats to DB

72

Rollups

DB

1.  Past-Day (5-minutes) " Past-Week
2.  Past-Week (30-minutes) " Past-Month
3.  Past-Month (2-hours) " Past-Year
4.  (Past-Year = 1 data point per day)

DB only archives historical data
•  Real-time (i.e., Past hour) NOT archived at DB
•  Past-day, Past-week, etc. " Stats Interval
•  Stats Levels ONLY APPLY TO HISTORICAL DATA

73

vCenter Server
(vpxd, tomcat)

DB

ESX

ESX

ESX

Client

Anatomy of a Stats Query: Past-Hour (“RealTime”) Stats

1. Query

3. Response

No calls to DB
Note: Same code path for past-day stats within last 30 minutes

2. Get stats
from host

74

Anatomy of a Stats Query: Archived Stats

No calls to ESX host (caveats apply)
Stats Level = Store this stat in the DB

vCenter Server
(vpxd, tomcat)

DB

ESX

ESX

ESX

Client

1. Query

3. Response

2. Get stats

75

Stats type

!  Statistics type: rate vs. delta vs. absolute

Statistics type Description Example

Rate Value over the
current interval

CPU Usage (MHz)

Delta Change from
previous interval

CPU Ready time

Absolute Absolute value
(independent of
interval)

Memory Active

76

Objects and Counters

! Objects: instances or aggregations of devices
•  Examples: VCPU0, VCPU1, vmhba1:1:2, aggregate over all NICs

!  Counters: which stats to collect
•  Examples:

•  CPU: used time, ready time, usage (%)
•  NIC: network packets received
•  Memory: memory swapped

77

Stacked vs. Line charts

!  Line
•  Each instance shown separately

!  Stacked
• Graphs are stacked on top of each other
• Only applies to certain kinds of charts, e.g.:

•  Breakdown of Host CPU MHz by Virtual Machine
•  Breakdown of Virtual Machine CPU by VCPU

78

esxtop

! What is esxtop ?
•  Performance troubleshooting tool for ESX host

•  Displays performance statistics in rows and column format

Entities -running
worlds in this
case

Fields

79

esxtop FAQ

! Where to get it?
•  Comes pre-installed with ESX service console

•  Remote version of esxtop (resxtop) ships with the Remote Command Line interface (RCLI)
package

! What are its intended use cases?
•  Get a quick overview of the system
•  Spot performance bottlenecks

! What it is not meant for ?
•  Not meant for long term performance monitoring, data mining, reporting, alerting etc. Use VI

client or the SDK for those use cases

80

esxtop FAQ

! What is the difference between esxtop and resxtop

esxtop VMKernel

Service Console

resxtop Network hostd VMKernel

Linux client machine

ESXi / ESX

ESX

81

Introduction to esxtop

!  Performance statistics
•  Some are static and don’t change during runtime, for example MEMSZ (memsize), VM Name

etc

•  Some are computed dynamically, for example CPU load average, memory over-commitment
load average etc

•  Some are calculated from the delta between two successive snapshots. Refresh interval (-d)
determines the time between successive snapshots
•  for example %CPU used = (CPU used time at snapshot 2 - CPU used time at snapshot 1) /

time elapsed between snapshots

82

esxtop modes

!  Interactive mode (default)
•  Shows data in the screen and accepts keystrokes

•  Requires TERM=xterm

!  Batch mode (-b)
•  Dumps data to stdout in CSV format
•  Dumps default fields or fields stored in the configuration file

!  Replay mode (-R)
•  Replays data from vm-support performance snapshot

83

esxtop interactive mode

! Global commands
•  space - update display

•  s - set refresh interval (default 5 secs)
•  f - select fields (context sensitive)
•  W - save configuration file (~/.esxtop3rc)
•  V - view VM only
•  oO - Change the order of displayed fields (context sensitive)
•  ? - help (context sensitive)
•  ^L - redraw screen
•  q - quit

84

esxtop screens

! Screens
•  c: cpu (default)

•  m: memory
•  n: network
•  d: disk adapter
•  u: disk device (added in ESX 3.5)
•  v: disk VM (added in ESX 3.5)
•  i: Interrupts (new in ESX 4.0)
•  p: power management (new in ESX 4.1)

VMkernel

CPU
Scheduler

Memory
Scheduler

Virtual
Switch vSCSI

c, i, p m d, u, v n

VM VM VM VM

85

Using screen

fields hidden from the view…

Time Uptime running worlds

• Worlds = VMKernel processes
• ID = world identifier
• GID = world group identifier
• NWLD = number of worlds

86

Using screen - expanding groups

• In rolled up view stats are cumulative of all the worlds in the group
• Expanded view gives breakdown per world
• VM group consists of mks, vcpu, vmx worlds. SMP VMs have additional vcpu
and vmm worlds
• vmm0, vmm1 = Virtual machine monitors for vCPU0 and vCPU1 respectively

press ‘e’ key

87

esxtop replay mode

!  To record esxtop data
•  vm-support -S -d <duration>

!  To replay
•  tar xvzf vm-support-dump.tgz
•  cd vm-support-*/
•  esxtop -R ./ (esxtop version should match)

88

esxtop replay mode

Current time

89

esxtop batch mode

!  Batch mode (-b)
•  Produces windows perfmon compatible CSV file
• CSV file compatibility requires fixed number of columns on every row - statistics of

VMs/worlds instances that appear after starting the batch mode are not collected
because of this reason

• Only counters that are specified in the configuration file are collected, (-a) option
collects all counters
• Counters are named slightly differently

90

esxtop batch mode

!  To use batch mode
•  esxtop -b > esxtop_output.csv

!  To select fields
•  Run esxtop in interactive mode
•  Select the fields
•  Save configuration file (‘w’ key)

!  To dump all fields
•  esxtop -b -a > esxtop_output.csv

91

esxtop batch mode – importing data into perfmon

92

esxtop batch mode – viewing data in perfmon

93

esxtop batch mode – trimming data

Trimming data

Saving data after trim

94

esxplot

!  http://labs.vmware.com/flings/esxplot

95

SDK

!  Use the VIM API to access statistics relevant to a particular user

!  Can only access statistics that are exported by the VIM API (and thus are
accessible via esxtop/VI client)

96

Conclusions

!  Always Analyze with a Latency approach
• Response time of user
• Queuing for resources in the guest
• Queuing for resources in vSphere
• Queing for resources outside of the host (SAN, NAS etc)

!  These tools are useful in different contexts
•  Real-time data: esxtop
•  Historical data: VirtualCenter
•  Coarse-grained resource/cluster usage: VirtualCenter
•  Fine-grained resource usage: esxtop

97

CPU

98

VMkernel

Guest

Physical
CPUs

o Schedule virtual CPUs on
physical CPUs

o Virtual time based proportional-
share CPU scheduler

o Flexible and accurate rate-based
controls over CPU time
allocations

o NUMA/processor/cache topology
aware

o Provide graceful degradation in
over-commitment situations

o High scalability with low
scheduling latencies

o Fine-grain built-in accounting for
workload observability

o Support for VSMP virtual
machines

Monitor

Scheduler

Guest

Monitor Monitor

Guest

CPUs and Scheduling

99

Resource Controls

!  Reservation

• Minimum service level guarantee (in MHz)

•  Even when system is overcommitted

• Needs to pass admission control

!  Shares

• CPU entitlement is directly proportional to VM's
shares and depends on the total number of
shares issued

•  Abstract number, only ratio matters

!  Limit

•  Absolute upper bound on CPU entitlement (in MHz)

•  Even when system is not overcommitted

Limit

Reservation

0 Mhz

Total Mhz

Shares
apply
here

100

Resource Control Example

Add 2nd VM
with same

number
of shares

Set 3rd VM’s limit to
25% of total capacity

► ►

▼

Set 1st VM’s
reservation to
50% of total
capacity

◄ ◄
FAILED

ADMISSION
CONTROL 50%

50%
33.3%

37.5%

100%

Add 4th VM
with reservation
set to 75% of
total capacity

Add 3rd VM
with same

number
of shares

101

Resource Pools

! Motivation
•  Allocate aggregate resources for sets of VMs
•  Isolation between pools, sharing within pools

•  Flexible hierarchical organization
•  Access control and delegation

! What is a resource pool?
•  Abstract object with permissions

• Reservation, limit, and shares
•  Parent pool, child pools and VMs

• Can be used on a stand-alone
host or in a cluster (group of hosts)

Pool A

VM1 VM3 VM4

Admin

Pool B L: not set
R: 600Mhz
S: 60 shares

L: 2000Mhz
R: not set
S: 40 shares

VM2

60% 40%

102

Balanced
Cluster

Example migration scenario 4_4_0_0 with DRS

2

1

4

3

6

5

8

7

1

3 4 5 61 2

PROC

2

PROC

1

POWER
SUPPLY

2
POWER
SUPPLY

OVER
TEMP

INTER
LOCK

1 2

POWER CAP

FANS

DIMMS

ONLINE
SPARE

MIRROR

1A

2D

3G

4B

5E

6H

7C

8F

9i 1A

2D

3G

4B

5E

6H

7C

8F

9i

PLAYER

HP
ProLiant
DL380G6

2

1

4

3

6

5

8

7

1

3 4 5 61 2

PROC

2

PROC

1

POWER
SUPPLY

2
POWER
SUPPLY

OVER
TEMP

INTER
LOCK

1 2

POWER CAP

FANS

DIMMS

ONLINE
SPARE

MIRROR

1A

2D

3G

4B

5E

6H

7C

8F

9i 1A

2D

3G

4B

5E

6H

7C

8F

9i

PLAYER

HP
ProLiant
DL380G6

2

1

4

3

6

5

8

7

1

3 4 5 61 2

PROC

2

PROC

1

POWER
SUPPLY

2
POWER
SUPPLY

OVER
TEMP

INTER
LOCK

1 2

POWER CAP

FANS

DIMMS

ONLINE
SPARE

MIRROR

1A

2D

3G

4B

5E

6H

7C

8F

9i 1A

2D

3G

4B

5E

6H

7C

8F

9i

PLAYER

HP
ProLiant
DL380G6

2

1

4

3

6

5

8

7

1

3 4 5 61 2

PROC

2

PROC

1

POWER
SUPPLY

2
POWER
SUPPLY

OVER
TEMP

INTER
LOCK

1 2

POWER CAP

FANS

DIMMS

ONLINE
SPARE

MIRROR

1A

2D

3G

4B

5E

6H

7C

8F

9i 1A

2D

3G

4B

5E

6H

7C

8F

9i

PLAYER

HP
ProLiant
DL380G6

Heavy Load

Lighter Load

vCenter

Imbalanced
Cluster

103

DRS Scalability – Transactions per minute
(Higher the better)

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

T
ra

n
sa

ct
io

n
 p

er
 m

in
u

te

2_2_2_2 3_2_2_1 3_3_1_1 3_3_2_0 4_2_1_1 4_2_2_0 4_3_1_0 4_4_0_0 5_3_0_0

Run Scenario

Transactions per minute - DRS vs. No DRS No DRS DRS
Already balanced
So, fewer gains

Higher gains (> 40%)
with more imbalance

104

DRS Scalability – Application Response Time
(Lower the better)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

T
ra

n
sa

ct
io

n
 R

es
p

o
n

se
 ti

m
e

(m
s)

2_2_2_2 3_2_2_1 3_3_1_1 3_3_2_0 4_2_1_1 4_2_2_0 4_3_1_0 4_4_0_0 5_3_0_0

Run Scenario

Transaction Response Time - DRS vs. No DRS No DRS DRS

105

ESX CPU Scheduling States

! World states (simplified view):
•  ready = ready-to-run but no physical CPU free
•  run = currently active and running

• wait = blocked on I/O

! Multi-CPU Virtual Machines => gang scheduling
• Co-run (latency to get vCPUs running)

• Co-stop (time in “stopped” state)

106

Ready Time (1 of 2)

!  VM state
•  running (%used)
• waiting (%twait)

•  ready to run (%ready)

! When does a VM go to “ready to run” state
• Guest wants to run or need to be woken up (to deliver an interrupt)

• CPU unavailable for scheduling the VM

Run

Ready Wait

107

Ready Time (2 of 2)

!  Factors affecting CPU availability
•  CPU overcommitment

•  Even Idle VMs have to be scheduled periodically to deliver timer interrupts

•  NUMA constraints
•  NUMA node locality gives better performance

•  Burstiness – Inter-related workloads
•  Tip: Use host anti affinity rules to place inter related workloads on different hosts

•  Co-scheduling constraints

•  CPU affinity restrictions

Fact: Ready time could exist even when CPU usage is low

108

Different Metrics for Different Reasons

!  Problem Indication
• Response Times, Latency contributors
• Queuing

!  Headroom Calculation
• Measure Utilization, predict headroom

!  Capacity Prediction
•  If I have n users today, how much resource is needed in the future?

!  Service Level Prediction
•  Predict the effect of response time changes

• Resource or Load changes

109

Myths and Fallacies

!  High CPU utilization is an indicator of a problem
• Not always: Single threaded compute intensive jobs operate quite happily at 100%

!  Less than 100% CPU means service is good (false)
• Not always: Bursty transaction oriented workloads follow littles-law curve, which limits

effective utilization to a lower number

110

Consider these two workloads

0

1

2

3

4

5

Period 1 Period 2 Period 3 Period 4
0

1

2

3

4

5

Period 1 Period 2 Period 3 Period 4

Utilization is 25%
Average Response time is high

Utilization is 25%
Average Response time is low

111

The Buzen and Denning Method

112

Simple model of the Scheduler

113

CPU and Queuing Metrics

!  How much CPU is too much?
•  It’s workload dependent.
•  The only reliable metrics is to calculate how much time a workload waits in a queue for

CPU
•  This must be a measure of guest-level threads (not VMkernel)

! Which is better – a faster CPU or more CPUs?
•  Typical question in the physical world

• Question for us: will additional vCPUs help?

114

Relationship between Utilization and Response Time

115

Tools for diagnosing CPU performance: VI Client

!  Basic stuff
•  CPU usage (percent)

•  CPU ready time (but ready time by itself can be misleading)

!  Advanced stuff
•  CPU wait time: time spent blocked on IO
•  CPU extra time: time given to virtual machine over reservation
•  CPU guaranteed: min CPU for virtual machine

!  Cluster-level statistics
•  Percent of entitled resources delivered
•  Utilization percent

•  Effective CPU resources: MHz for cluster

116

CPU capacity

! How do we know we are maxed out?
•  If VMs are waiting for CPU time, maybe we need more CPUs.
•  To measure this, look at CPU ready time.

! What exactly am I looking for?
•  For each host, collect ready time for each VM
•  Compute %ready time for each VM (ready time/sampling interval)
•  If average %ready time > 50%, probe further

! Possible options
•  DRS could help optimize resources
•  Change share allocations to de-prioritize less important VMs
•  More CPUs may be the solution

117

CPU capacity

Ready time < used time

Used time

Ready time ~ used time

Some caveats on ready time
!  Used time ~ ready time: may

signal contention. However,
might not be overcommitted
due to workload variability

!  In this example, we have
periods of activity and idle
periods: CPU isn’t
overcommitted all the time

(screenshot from VI Client)

118

VI Client CPU screenshot

Note CPU milliseconds and percent are on the same chart but use different axes

119

Cluster-level information in the VI Client

!  Utilization %
describes available
capacity on hosts
(here: CPU usage
low, memory usage
medium)

"   % Entitled resources
delivered: best if all
90-100+.

120

CPU performance analysis: esxtop

!  PCPU(%): CPU utilization
!  Per-group stats breakdown
• %USED: Utilization
• %RDY: Ready Time
• %TWAIT: Wait and idling time

!  Co-Scheduling stats (multi-CPU Virtual Machines)
• %CRUN: Co-run state
• %CSTOP: Co-stop state

!  Nmem: each member can consume 100% (expand to see breakdown)
!  Affinity
!  HTSharing

121

esxtop CPU screen (c)

PCPU = Physical CPU

CCPU = Console CPU (CPU 0)

Press ‘f’ key to choose fields

122

New metrics in CPU screen

%LAT_C : %time the VM was not scheduled due to CPU resource issue

%LAT_M : %time the VM was not scheduled due to memory resource issue

%DMD : Moving CPU utilization average in the last one minute

EMIN : Minimum CPU resources in MHZ that the VM is guaranteed to get
when there is CPU contention

123

Troubleshooting CPU related problems

!  CPU constrained

SMP VM

High CPU
utilization

Both the
virtual CPUs
CPU
constrained

124

Troubleshooting CPU related problems

!  CPU limit

Max
Limited

CPU Limit AMAX = -1 : Unlimited

125

Troubleshooting CPU related problems

!  CPU contention

4 CPUs, all at
100%

3 SMP VMs
VMs don’t get
to run all the
time

%ready
accumulates

126

Further ready time examination

High Ready Time
High MLMTD: there is a limit on this VM…

"High ready time not always because of overcommitment
"When you see high ready time, double-check if limit is set

127

Troubleshooting CPU related problems

!  SMP VM running UP HAL/Kernel

vCPU 1 not used by
the VM

It is also possible that you are running a single
threaded application in a SMP VM

128

!  High CPU activity in the Service Console

Troubleshooting CPU related problems

Some process in the
service console is
hogging CPU

Not much activity in
the service console

VMKernel is doing
some activity on
behalf of the console
OS - cloning in this
case

129

VI Client and Ready Time

Ready time < used time

Used time

Ready time
~ used time

"   Used time ~ ready time: may
signal contention. However,
might not be overcommitted due
to workload variability
"   In this example, we have
periods of activity and idle
periods: CPU isn’t
overcommitted all the time

130

CPU Performance

!  vSphere supports eight virtual processors per VM
• Use UP VMs for single-threaded applications

•  Use UP HAL or UP kernel

•  For SMP VMs, configure only as many VCPUs as needed

• Unused VCPUs in SMP VMs:
•  Impose unnecessary scheduling constraints on ESX Server
•  Waste system resources (idle looping, process migrations, etc.)

131

CPU Performance

!  For threads/processes that migrate often between VCPUs
•  Pin the guest thread/process to a particular VCPU
•  Pinning guest VCPUs to PCPUs rarely needed

! Guest OS timer interrupt rate
• Most Windows, Linux 2.4: 100 Hz
• Most Linux 2.6: 1000 Hz
• Recent Linux: 250 Hz
• Upgrade to newer distro, or rebuild kernel with lower rate

132

Performance Tips

!  Idling VMs
• Consider overhead of delivering guest timer interrupts
•  Lowering guest periodic timer interrupt rate should help

!  VM CPU Affinity
• Constrains the scheduler: can cause imbalances
• Reservations may not be met – use on your own risk

! Multi-core processors with shared caches
•  Performance characteristics heavily depend on the workload

• Constructive/destructive cache interference

133

Performance Tips

!  SMP VMs
• Use as few virtual CPUs as possible
• Consider timer interrupt overhead of idling CPUs

• Co-scheduling overhead increases with more VCPUs
• Use SMP kernels in SMP VMs

•  Pinning guest threads to VCPUs may help to reduce migrations for some workloads

!  Interactive Workloads (VDI, etc)
•  Assign more shares, increase reservations to achieve faster response times

134

vSphere Scheduler and HT

!  Intel Hyper-threading provides the
appearance of two logical cores
for each physical core
•  They are somewhat faster than one

core but not as fast as two

!  Threads sharing cores less CPU
than threads with their own cores

!  Threads accessing common
memory will benefit from running
on the same socket

!  So, 5+ vCPU VMs must choose
between more CPU and faster
memory

The default: more CPU

v v

v v

v v

v v

v

Physical core

Running vCPU

135

Optimizing the Scheduler for Large VMs

! On some virtual machines,
memory latency is more important
than CPU

!  If VM has more vCPUs than there
are cores in a single socket, it will
run faster if forced to a single
socket

!  Done with Advanced Settings:
NUMA.preferHT

preferHT

v
v

v
v

v
v

v
v

v

Hyper-threaded physical core

Running vCPU

136

MEMORY

137

Virtual Memory

!  Creates uniform memory address space
• Operating system maps application virtual addresses to

physical addresses
• Gives operating system memory management abilities

transparent to application

“virtual” memory

“physical” memory

“machine” memory

guest

hypervisor
Hypervisor adds extra level of indirection

" Maps guest’s physical addresses to machine
addresses

" Gives hypervisor memory management abilities
transparent to guest

138

Virtual Memory

guest

hypervisor

“machine”
memory

“physical”
memory

“virtual”
memory

“virtual” memory

“physical” memory

“machine” memory

guest

hypervisor

Application

Operating
System

Hypervisor

App

OS

Hypervisor

139

Application Memory Management

•  Starts with no memory
•  Allocates memory through syscall to operating

system
• Often frees memory voluntarily through syscall

•  Explicit memory allocation interface with
operating system

Hypervi
sor

OS

App

140

Operating System Memory Management

•  Assumes it owns all physical memory
• No memory allocation interface with

hardware
•  Does not explicitly allocate or free physical

memory

• Defines semantics of “allocated” and “free”
memory
•  Maintains “free” list and “allocated” lists of

physical memory
•  Memory is “free” or “allocated” depending on

which list it resides

Hypervi
sor

OS

App

141

Hypervisor Memory Management

•  Very similar to operating system memory
management
•  Assumes it owns all machine memory
•  No memory allocation interface with hardware
•  Maintains lists of “free” and “allocated” memory

Hypervis
or

OS

App

142

VM Memory Allocation

•  VM starts with no physical memory
allocated to it

•  Physical memory allocated on demand
• Guest OS will not explicitly allocate
• Allocate on first VM access to

memory (read or write)

Hyperv
isor

OS

App

143

VM Memory Reclamation

• Guest physical memory not “freed” in typical sense
•  Guest OS moves memory to its “free” list
•  Data in “freed” memory may

not have been modified

Hypervi
sor

OS

App

"   Hypervisor isn’t aware when
guest frees memory
" Freed memory state unchanged
" No access to guest’s “free” list

" Unsure when to reclaim “freed”
guest memory

Guest
 free list

144

VM Memory Reclamation Cont’d

! Guest OS (inside the VM)
•  Allocates and frees…
•  And allocates and frees…

•  And allocates and frees…

Hyperv
isor

App

Guest
 free list "   VM

" Allocates…

" And allocates…

" And allocates…

"   Hypervisor needs some way of
reclaiming memory!

Inside
the VM

OS

VM

145

Memory Resource Management

!  ESX must balance memory usage
•  Page sharing to reduce memory footprint of Virtual Machines
•  Ballooning to relieve memory pressure in a graceful way

• Host swapping to relieve memory pressure when ballooning insufficient
• Compression to relieve memory pressure without host-level swapping

!  ESX allows overcommitment of memory
•  Sum of configured memory sizes of virtual machines can be greater than physical

memory if working sets fit

! Memory also has limits, shares, and reservations

!  Host swapping can cause performance degradation

146

New in vSphere 4.1 – Memory Compression

!  Compress memory as a last resort before swapping
!  Kicks in after ballooning has failed to maintain free memory
!  Reclaims part of the performance lost when ESX is forced to induce

swapping

1.00 0.99
0.95

0.80

0.70

1.00 0.99
0.94

0.66

0.42

0

0.6

1.2

1.8

2.4

3

3.6

0.00

0.20

0.40

0.60

0.80

1.00

1.20

96 80 70 60 50

Sw
ap

 R
ea

d
(M

B
/s

ec
)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Host Memory Size (GB)

Swap Read with Memory Compression Swap Read w/o Memory Compression

Throughput with Memory Compression Throughput w/o Memory Compression

K

147

VM1

Ballooning, Compression, and Swapping (1)

!  Ballooning: Memctl driver grabs pages and gives to ESX
•  Guest OS choose pages to give to memctl (avoids “hot” pages if possible): either free pages or

pages to swap
•  Unused pages are given directly to memctl
•  Pages to be swapped are first written to swap partition within guest OS and then given to

memctl

Swap partition w/in
Guest OS

ESX

VM2

memctl

1. Balloon

2. Reclaim

3. Redistribute

F

148

Swap
Partition (w/in
guest)

Ballooning, Swapping, and Compression (2)

!  Swapping: ESX reclaims pages forcibly
•  Guest doesn’t pick pages…ESX may inadvertently pick “hot” pages ("possible VM

performance implications)
•  Pages written to VM swap file

VM1

ESX

VM2

VSWP
(external to guest)

1. Force Swap
2. Reclaim
3. Redistribute

149

ESX

Compression
Cache

Ballooning, Swapping and Compression (3)

!  Compression: ESX reclaims pages, writes to in-memory cache
•  Guest doesn’t pick pages…ESX may inadvertently pick “hot” pages ("possible VM

performance implications)
•  Pages written in-memory cache " faster than host-level swapping

Swap
Partition (w/in
guest)

VM1

VM2

1. Write to Compression Cache
2. Give pages to VM2

150

Ballooning, Swapping, and Compression (4)

!  Bottom line:
•  Ballooning may occur even when no memory pressure just to keep memory

proportions under control

•  Ballooning is preferable to compression and vastly preferable to swapping
•  Guest can surrender unused/free pages

•  With host swapping, ESX cannot tell which pages are unused or free and may accidentally
pick “hot” pages

•  Even if balloon driver has to swap to satisfy the balloon request, guest chooses what to swap
•  Can avoid swapping “hot” pages within guest

•  Compression: reading from compression cache is faster than reading from disk

151

Transparent Page Sharing

!  Simple idea: why maintain many
copies of the same thing?
•  If 4 Windows VMs running, there are 4

copies of Windows code

• Only one copy needed

!  Share memory between VMs when
possible
•  Background hypervisor thread identifies

identical sets of memory

•  Points all VMs at one set of memory,
frees the others

•  VMs unaware of change

VM 1 VM 2 VM 3

Hypervi
sor

VM 1 VM 2 VM 3

Hypervi
sor

152

Page Sharing in XP

XP Pro SP2: 4x1GB

0

500
1000

1500
2000

2500
3000

3500
4000

4500

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Time (min)

M
em

o
ry

 (
M

B
)

Non-Zero
Zero
Backing
Private

Memory footprint of four idle VMs quickly decreased to 300MB
due to aggressive page sharing.

153

Page Sharing in Vista

Vista32: 4x1GB

0

500
1000

1500
2000

2500
3000

3500
4000

4500

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Time (min)

M
em

o
ry

 (
M

B
)

Non-Zero
Zero
Backing
Private

Memory footprint of four idle VMs quickly decreased to 800MB.
(Vista has larger memory footprint.)

154

Memory capacity

! How do we identify host memory contention?
•  Host-level swapping (e.g., robbing VM A to satify VM B).

•  Active memory for all VMs > physical memory on host
This could mean possible memory over-commitment

! What do I do?
•  Check swapin (cumulative), swapout (cumulative) and swapused (“instantaneous”) for the

host. Ballooning (vmmemctl) is also useful.
•  If swapin and swapout are increasing, it means that there is possible memory over-

commitment
•  Another possibility: sum up active memory for each VM. See if it exceeds host physical

memory.

155

Memory Terminology

memory size
total amount of memory

presented to guest

allocated memory
memory assigned to

applications

unallocated memory
memory not assigned

active memory
allocated memory recently

accessed or used by
applications

inactive memory
allocated memory not

recently accessed or used

Guest memory usage measures this

Host memory usage
measures this, sorta…

156

Differences Between Memory Statistics

! Biggest difference is physical memory vs. machine memory
•  Accounting very different between the two layers!

Hyperv
isor

OS

App

Physical memory statistics
" Active, Balloon, Granted, Shared,

Swapped, Usage

Machine memory statistics
" Consumed, Overhead, Shared

Common

157

Memory Shared vs. Shared Common

! Memory Shared
•  Amount of physical memory whose mapped machine memory has multiple pieces of

physical memory mapped to it

•  6 pieces of memory (VM 1 & 2) VM 1 VM 2

Hyperv
isor

Memory Shared Common
" Amount of machine memory with

multiple pieces of physical memory
mapped to it

" 3 pieces of memory

158

Memory Granted vs. Consumed

! Memory Granted
•  Amount of physical memory mapped to machine memory
•  9 pieces of memory (VM 1 & 2)

VM 1 VM 2

Hyperv
isor

Memory Consumed
" Amount of machine memory that has

physical memory mapped to it

" 6 pieces of memory

Difference due to page sharing!

159

Memory Active vs. Host Memory

! Memory Active/Consumed/Shared
•  All measure physical memory

VM 1 VM 2

Hyperv
isor

Host Memory
" Total machine memory on host

Be careful to not mismatch physical and machine statistics!
" Guest physical memory can/will be greater than machine memory due to

memory overcommitment and page sharing

160

guest physical memory

host physical memory

VM

granted

consumed overhead

active swapped

shared

vmmemctl
(ballooned)

<unallocated>
(no stat)

Host

sysUsage consumed

reserved

unreserved

Service
console
(no stat)

clusterServices.effectivemem (aggregated over all hosts in cluster)

shared common

<unallocated or
used by other
VMs> (no stat)

<unallocated or used by other
VMs> (no stat)

shared savings (no stat)

VM memsize

Memory Metric Diagram *

active
write

host physical memory * Figure not to scale!

zipped

zipped - zipSaved

161

Using Host and Guest Memory Usage

!  Useful for quickly analyzing VM’s status
• Coarse-grained information
•  Important for prompting further investigation

!  Requires understanding of memory management concepts
• Many aspects of host/guest memory interaction not obvious

162

VI Client: VM list summary

Host CPU: avg. CPU utilization for Virtual Machine
Host Memory: consumed memory for Virtual Machine

Guest Memory: active memory for guest

163

Host and Guest Memory Usage

164

VI Client

! Main page shows “consumed” memory (formerly “active” memory)
!  Performance charts show important statistics for virtual machines
• Consumed memory
• Granted memory
•  Ballooned memory
•  Shared memory
•  Swapped memory

•  Swap in
•  Swap out

165

VI Client: Memory example for Virtual Machine

Balloon & target
Swap in

Swap out

Swap usage

Active memory

Consumed & granted

Increase in swap activity

No swap activity

166

esxtop memory screen (m)

Possible states:
High,
Soft, hard and
low

Physical Memory (PMEM)

VMKMEM COS
PCI Hole

VMKMEM - Memory managed by VMKernel
COSMEM - Memory used by Service Console

167

esxtop memory screen (m)

SZTGT = Size target
SWTGT = Swap target
SWCUR = Currently swapped
MEMCTL = Balloon driver
SWR/S = Swap read /sec
SWW/S = Swap write /sec

SZTGT : determined by reservation, limit and memory shares
SWCUR = 0 : no swapping in the past
SWTGT = 0 : no swapping pressure
SWR/S, SWR/W = 0 : No swapping activity currently

Swapping activity in
Service Console

VMKernel Swapping
activity

168

Compression stats (new for 4.1)

COWH : Copy on Write Pages hints – amount of memory in MB that are potentially
shareable
CACHESZ: Compression Cache size
CACHEUSD: Compression Cache currently used
ZIP/s, UNZIP/s: Memory compression/decompression rate

169

Troubleshooting memory related problems (using 4.1 latencies)

%LAT_C : %time the VM was not scheduled due to CPU resource issue

%LAT_M : %time the VM was not scheduled due to memory resource issue

%DMD : Moving CPU utilization average in the last one minute

EMIN : Minimum CPU resources in MHZ that the VM is guaranteed to get
when there is CPU contention

170

Troubleshooting memory related problems

!  Swapping

MCTL: N - Balloon driver
not active, tools probably
not installed

Memory
Hog VMs

Swapped in
the past but
not actively
swapping now

Swap target is more
for the VM without the
balloon driver

VM with
Balloon driver
swaps less

171

Additional Diagnostic Screens for ESXTOP

!  CPU Screen
•  PCPU USED(%) – the CPU utilization per physical core or SMT

•  PCPU UTIL(%) – the CPU utilization per physical core or SMT thread

•  CORE UTIL(%) - GRANT (MB): Amount of guest physical memory mapped to a resource pool or
virtual machine. Only used when hyperthreading is enabled.

•  SWPWT (%) - Percentage of time the Resource Pool/World was waiting for the ESX VMKernel
swapping memory. The %SWPWT (swap wait) time is included in the %WAIT time.

!  Memory Screen
•  GRANT (MB) - Amount of guest physical memory mapped to a resource pool or virtual machine.

The consumed host machine memory can be computed as "GRANT - SHRDSVD".

!  Interrupt Screen (new)
•  Interrupt statistics for physical devices

172

Memory Performance

!  Increasing a VM’s memory on a NUMA machine
• Will eventually force some memory to be allocated from a remote node, which will

decrease performance

•  Try to size the VM so both CPU and memory fit on one node

Node 0 Node 1

173

Memory Performance

!  NUMA scheduling and memory placement policies in ESX 3 manages all
VMs transparently
• No need to manually balance virtual machines between nodes
• NUMA optimizations available when node interleaving is disabled

! Manual override controls available
• Memory placement: 'use memory from nodes'
•  Processor utilization: 'run on processors'
• Not generally recommended

!  For best performance of VMs on NUMA systems
•  # of VCPUs + 1 <= # of cores per node
•  VM memory <= memory of one node

174

Memory Performance

!  Page tables
•  ESX cannot use guest page tables

•  ESX Server maintains shadow page tables
•  Translate memory addresses from virtual to machine
•  Per process, per VCPU

•  VMM maintains physical (per VM) to machine maps

• No overhead from “ordinary” memory references

! Overhead
•  Page table initialization and updates

• Guest OS context switching

VA

PA

MA

175

Large Pages

!  Increases TLB memory coverage
•  Removes TLB misses, improves efficiency

!  Improves performance of
applications that are sensitive to
TLB miss costs

!  Configure OS and application to
leverage large pages
•  LP will not be enabled by default

0%

2%

4%

6%

8%

10%

12%

Performance Gains

Gain (%)

176

Large Pages and ESX Version

!  ESX 3.5: Large pages enabled manually for guest operations only
!  ESX 4.0:
• With EPT/RVI: all memory backed by large pages
• Without EPT/RVI: manually enabled, liked ESX 3.5

Host Small Pages Host Large Pages

Guest Small Pages Baseline Performance Efficient kernel
operations, improved
TLB for guest operations

Guest Large Pages Improved page table
performance

Improved page table,
improved TLB

177

Memory Performance

!  ESX memory space overhead
•  Service Console: 272 MB
•  VMkernel: 100 MB+
•  Per-VM memory space overhead increases with:

•  Number of VCPUs
•  Size of guest memory
•  32 or 64 bit guest OS

!  ESX memory space reclamation
•  Page sharing
•  Ballooning

178

Memory Performance

!  Avoid high active host memory over-commitment
•  Total memory demand = active working sets of all VMs
 + memory overhead

 – page sharing
• No ESX swapping: total memory demand < physical memory

!  Right-size guest memory
• Define adequate guest memory to avoid guest swapping
•  Per-VM memory space overhead grows with guest memory

179

Memory Space Overhead

!  Additional memory required to run a guest
•  Increases with guest memory size
•  Increases with the virtual CPU count
•  Increases with the number of running processes inside the guest

Guest

Guest memory

Fixed memory overhead used during
admission control

Touched memory

Variable overhead, grows with active
processes in the guest

min

max

Swap reservation

Overhead memory

180

Memory Space Overhead: Reservation

!  Memory Reservation
•  Reservation guarantees that memory is not swapped

•  Overhead memory is non-swappable and therefore it is reserved
•  Unused guest reservation cannot be used for another reservation
•  Larger guest memory reservation could restrict overhead memory growth

•  Performance could be impacted when overhead memory is restricted

Swap reservation

Guest reservation

Overhead reservation

Guest memory

Guest

min

max

Overhead memory

unused

unused

181

Reducing Memory Virtualization Overhead

! Basic idea

•  Smaller is faster (but do not undersize the VM) #

! Recommendations

•  Right size VM

•  avoids overhead of accessing HIGHMEM (>786M) and PAE pages (>4G) in 32-bit VMs

•  Smaller memory overhead provides room for variable memory overhead growth

•  UP VM

•  Memory virtualization overhead is generally lesser

•  Smaller memory space overhead

•  Tune Guest OS/applications

•  Prevent/reduce application soft/hard page faults

•  Pre-allocate memory for applications if possible

182

I/O AND STORAGE

183

Introduction

VMkernel

Guest

Physical
Hardware

iSCSI and NFS are growing
To be popular, due to their
low port/switch/fabric costs

Virtualization provides the
ideal mechanism to
transparently adopt iSCSI/NFS

Guests don’t need iSCSI/NFS
Drivers: they continue to see
SCSI

VMware ESX 3 provides high
Performance NFS and iSCSI
Stacks

Futher emphasis on 1Gbe/
10Gbe performance

Monitor

Memory
Allocator

NIC Drivers

Virtual Switch iSCSI
Or

NFS

Scheduler

Virtual NIC Virtual SCSI

TCP/IP

File
System

184

VMkernel

Physical
CPUs

On-loads I/O processing to
additional cores

Guest VM issues I/O and
continues to run immediately

VMware ESX asynchronously
issues I/Os and notifies the
VM upon completion

VMware ESX can process
Multiple I/Os in parallel on
separate cpus

Significantly Improves IOPs and
CPU efficiency

Scheduler

Monitor

Guest

I/O Drivers

File System

pvscsi

File
System

pvscsi

Application

vCPUs

OS Sched

Asynchronous I/O (4.0)

185

Physical
Hardware

Device Paravirtualization (4.0)

Guest

VMkernel

Device Paravirtualization places
A high performance virtualization-
Aware device driver into the guest

Paravirtualized drivers are more
CPU efficient (less CPU over-
head for virtualization)

Paravirtualized drivers can
also take advantage of HW
features, like partial offload
(checksum, large-segment)

VMware ESX uses para-
virtualized network drivers

vSphere 4 now provides pvscsi

Monitor

Memory
Allocator

NIC Drivers

Virtual Switch

I/O Drivers

File System Scheduler

vmxnet

pvscsi

TCP/IP

File
System

vmxnet

pvscsi

186

Storage – Fully virtualized via VMFS and Raw Paths

! VMFS
! Easier provisioning
! Snapshots, clones possible
! Leverage templates and quick
provisioning
! Scales better with Consolidated Backup
! Preferred Method

! RAW

! RAW provides direct access to
a LUN from within the VM

! Allows portability between physical and
virtual

! RAW means more LUNs
•  More provisioning time

! Advanced features still work

Guest OS

vm1.vmdk vm2.vmdk

Guest OS

Guest OS
/dev/hda /dev/hda

/dev/hda

FC or iSCSI
LUN

FC LUN

VMFS

187

Physical
Disk

Microsoft Office

Guest Filesystem

outlook.exe

VM#1#(Alice)#

Microsoft Office

Guest Filesystem

outlook.exe

VM#2#(Bob)#

How VMFS Works

VMFS

FC or iSCSI
LUN

VMFS
Files

/vms/vm1 /vms/vm2

188

Physical
Disk

Common OS
Base Disk

Linked
Clone

Specialized Blocks
(Redo Logs)

Microsoft Office

Guest Filesystem

outlook.exe

VM#1#(Alice)#

Microsoft Office

Guest Filesystem

outlook.exe

VM#2#(Bob)#

VMFS Clones and Snapshots

189

I/O Performance

!  Disk performance is dependent on many factors:
•  Filesystem performance

•  Disk subsystem configuration (SAN, NAS, iSCSI, local disk)
•  Disk caching
•  Disk formats (thick, sparse, thin)

!  ESX is tuned for Virtual Machine I/O
!  VMFS clustered filesystem => keeping consistency imposes some

overheads

190

Disk Fundamentals

!  Disk performance is impacted by Bandwidth and I/O demands
!  Sequential accesses to disk are bandwidth limited
•  ~70MBytes/sec for a SATA disk
•  ~150Mbytes/sec for a 15k RPM FC disk

!  Random Accesses to disk are dominated by seek/rotate
•  10k RPM Disks: 150 IOPS max, ~80 IOPS Nominal
•  15k RPM Disks: 250 IOPS max, ~120 IOPS Nominal

!  Typically hidden behind an array
•  ESX sees LUN latency

•  Exception is local-disk

191

Disk Arrays

!  Lowest level resource is disk
•  150 IOPS, 70-150MByte/sec

!  Disks are aggregated into LUNS
•  Increase performance and availability

!  LUNS can be (should be) cached
• Read caches or write caches
• Write caches hide wait-for-write

!  Disk arrays share FC Connections
•  Typically 200 or 400MBytes/sec

Read
Cache

Write
Cache

FC Switch

VMware ESX

HBA1 HBA2 HBA3 HBA4

LUN LUN

192

It’s important to understand caches when observing I/O

/dev/hda

Controller
Cache

Database Cache

Guest OS
Cache

" Caches attempt to eliminate I/Os
" The best I/O is the one you don’t

do

" Caches are at multiple layers:
" Application

" Guest-OS

" Disk-array
" Q: What’s the impact on the number

of disks if we improve cache hit rates
from 90% to 95%?

" 10 in 100 => 5 in 100…
" #of disks reduced by 2x!

193

Observing I/O Performance: Important I/O Terminology

HBA

Physical Disk

Virtual Disk

VMkernel

Guest

Physical
Hardware

Monitor

Service
Console

Memory
Allocator

NIC Drivers

Virtual Switch

I/O Drivers

VMFS

Monitor

Scheduler

vNIC (e1000..) SCSI (LSI etc)

TCP/IP

File
System

VMHBA

194

VMkernel

Guest

I/O Drivers

VMFS

Virtual SCSI

File
System

Application

K

D

G

Windows
Device Queue

R = Perfmon
Physical Disk
“Disk Secs/transfer”

R

A

K = ESX Kernel

G = Guest Latency

A = Application Latency

D = Device Latency

S S = Windows
Physical Disk Service Time

Disk Latencies Explained

Drivers

195

Let’s look at the vSphere client…

Rule of thumb:
latency > 20ms is
Bad.
Here:
1,100ms
REALLY BAD!!!

196

A Word About Units in vSphere

Operation throughput: commands per refresh interval (not IOPS)
Bandwidth in KBps (not MBps)

Real-time chart: refresh 20s. 16349 IOPS = 323745 commands/20s

255.46 MBps = 258971 KBps

197

Latency seems high

After enabling cache,
latency is much better

(screenshot of esxtop)

Disk Latencies

198

esxtop disk adapter screen (d)

Host bus adapters (HBAs) -
includes SCSI, iSCSI, RAID, and
FC-HBA adapters

Latency stats from the
Device, Kernel and the Guest

DAVG/cmd - Average latency (ms) from the Device (LUN)

KAVG/cmd - Average latency (ms) in the VMKernel

GAVG/cmd - Average latency (ms) in the Guest

199

esxtop disk device screen (u)

LUNs in C:T:L format

C:T:L - Controller: Target: Lun

200

esxtop disk VM screen (v)

running VMs

201

Disk screen (d)

!  SCSI Reservation stats (new in 4.1)

RESV/s : SCSI reservations per second
CONS/s: SCSI reservation conflicts per second

202

LUN screen (u)

CLONE_RD, CLONE_WR: Number of Clone read/write requests
CLONE_F: Number of Failed clone operations
MBC_RD/s, MBC_WR/s – Clone read/write MBs/sec
ATS – Number of ATS commands
ATSF – Number of failed ATS commands
ZERO – Number of Zero requests
ZEROF – Number of failed zero requests
MBZERO/s – Megabytes Zeroed per second

  VAAI (vStorage API for Array Integration) Stats (new in 4.1)

203

VM disk screen

  VM disk screen now reports stats using vScsistats (new in 4.1)

ESX 3.x and 4.x provides this stats by grouping I/Os based on the world ids

204

I/O Latency from NFS Volumes

•  vSphere 4.1 enables latency information for NFS based storage

K

205

vScsiStats

!  Disk I/O characterization of applications is the first step in tuning disk
subsystems; key questions:
•  I/O block size
•  Spatial locality
•  I/O interarrival period
•  Active queue depth
•  Latency
•  Read/Write Ratios

!  Our technique allows transparent and online collection of essential
workload characteristics
•  Applicable to arbitrary, unmodified operating systems running in virtual machines

206

Made up Example

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10Latency of an operation (microseconds)

F
req

u
en

cy

"   Histograms of observed data values can be much more
informative than single numbers like mean, median, and
standard deviations from the mean
" E.g., multimodal behaviors are easily identified by plotting a histogram, but

obfuscated by a mean
"   Histograms can actually be calculated efficiently online
"   Why take one number if you can have a distribution?

Mean is 5.3!

Workload Characterization Technique

207

Workload Characterization Technique

!  The ESX disk I/O workload
characterization is on a per-virtual disk
basis
•  Allows us to separate out each different type

of workload into its own container and observe
trends

!  Histograms only collected if enabled; no
overhead otherwise

!  Technique:
•  For each virtual machine I/O request in ESX,

we insert some values into histograms
•  E.g., size of I/O request → 4KB

0
2
4
6

10
24

20
48

40
96

81
92

0
2
4
6

10
24

20
48

40
96

81
92

Data
collected

per-virtual
disk

208

Workload Characterization Technique
Full List of Histograms

!  Read/Write Distributions are available for
our histograms

• Overall Read/Write ratio?

•  Are Writes smaller or larger than Reads in this
workload?

•  Are Reads more sequential than Writes?

• Which type of I/O is incurring more latency?

!  In reality, the problem is not knowing
which question to ask

• Collect data, see what you find

!  I/O Size

•  All, Reads, Writes

!  Seek Distance

•  All, Reads, Writes

!  Seek Distance Shortest
Among Last 16

! Outstanding IOs

•  All, Reads, Writes

!  I/O Interarrival Times

•  All, Reads, Writes

!  Latency

•  All, Reads, Write

209

Workload Characterization Technique
Histograms Buckets

!  To make the histograms practical, bin sizes are on rather irregular scales
•  E.g., the I/O length histogram bin ranges like this:

•  …, 2048, 4095, 4096, 8191, 8192, … rather odd: some buckets are big and others are as small
as just 1

•  Certain block sizes are really special since the underlying storage subsystems may optimize for
them; single those out from the start (else lose that precise information)

•  E.g., important to know if the I/O was
16KB or some other size in the
interval (8KB,16KB)

I/O Length Histogram

0
500
1000
1500
2000
2500
3000
3500

51
2

10
24

20
48

40
95

40
96

81
91

81
92

16
38
3

16
38
4

32
76
8

49
15
2

65
53
5

65
53
6

81
92
0

13
10
72

26
21
44

52
42
88

>5
24
28
8

Length (bytes)

Frequency

210

Filebench OLTP (Solaris)

!  Filebench is a model-based workload generator for file systems
developed by Sun Microsystems
•  Input to this program is a model file that specifies processes, threads in a workflow

!  Filebench OLTP “personality” is a model to emulate an Oracle database
server generating I/Os under an online transaction processing workload
• Other personalities include fileserver, webserver, etc.

!  Used two different filesystems (UFS and ZFS)
•  To study what effect a filesystem can have on I/O characteristics
• Ran filebench on Solaris 5.11 (build 55)

211

I/O Length
Filebench OLTP

I/O Length Histogram

0
500
1000
1500
2000
2500
3000
3500

51
2

10
24

20
48

40
95

40
96

81
91

81
92

16
38
3

16
38
4

32
76
8

49
15
2

65
53
5

65
53
6

81
92
0

13
10
72

26
21
44

52
42
88

>5
24
28
8

Length (bytes)

Frequency

I/O Length Histogram

0
200
400
600
800
1000
1200
1400
1600

51
2

10
24

20
48

40
95

40
96

81
91

81
92

16
38
3

16
38
4

32
76
8

49
15
2

65
53
5

65
53
6

81
92
0

13
10
72

26
21
44

52
42
88

>5
24
28
8

Length (bytes)

Frequency

UFS

ZFS

"   4K and 8K I/O
transformed into
128K by ZFS?

212

Seek Distance
Filebench OLTP

Seek Distance Histogram

0

200

400

600

800

1000

1200

1400

-5
0
0
0
0
0

-5
0
0
0
0

-5
0
0
0

-5
0
0

-6
4

-1
6 -6 -2 0 2 6

1
6

6
4

5
0
0

5
0
0
0

5
0
0
0
0

5
0
0
0
0
0

Distance (sectors)

F
re

q
u

e
n

c
y

Seek Distance Histogram

0

50

100

150

200

250

300

-5
00
00
0

-5
00
00

-5
00
0

-5
00 -6
4

-1
6 -6 -2 0 2 6 16 64 50
0

50
00

50
00
0

50
00
00

Distance (sectors)

F
req

u
en

cy

UFS

ZFS

"   Seek distance: a
measure of
sequentiality
versus randomness
in a workload

"   Somehow a random
workload is
transformed into a
sequential one by
ZFS!

"   More details
needed ...

213

Seek Distance
Filebench OLTP—More Detailed

UFS

ZFS

Seek Distance Histogram (Writes)

0

200

400

600

800

1000

1200

-5
00
00
0

-5
00
00

-5
00
0

-5
00 -6
4

-1
6 -6 -2 0 2 6 16 64 50
0

50
00

50
00
0

50
00
00

Distance (sectors)

Frequency

Seek Distance Histogram (Writes)

0

50

100

150

200

250

300

-5
00
00
0

-5
00
00

-5
00
0

-5
00 -6
4

-1
6 -6 -2 0 2 6 16 64 50
0

50
00

50
00
0

50
00
00

Distance (sectors)

Frequency

Seek Distance Histogram (Reads)

0

50

100

150

200

250

300

-5
00
00
0

-5
00
00

-5
00
0

-5
00 -6
4

-1
6 -6 -2 0 2 6 16 64 50
0

50
00

50
00
0

50
00
00

Distance (sectors)

Frequency

Seek Distance Histogram (Reads)

0

100

200

300

400

500

600

-5
00
00
0

-5
00
00

-5
00
0

-5
00 -6
4

-1
6 -6 -2 0 2 6 16 64 50
0

50
00

50
00
0

50
00
00

Distance (sectors)

Frequency

Split out reads & writes

"   Transformation from Random to Sequential: primarily for Writes
"   Reads: Seek distance is reduced (look at histogram shape & scales)

214

Filebench OLTP
Summary

!  So, what have we learnt about Filebench OLTP?
•  I/O is primarily 4K but 8K isn’t uncommon (~30%)
•  Access pattern is mostly random

•  Reads are entirely random
•  Writes do have a forward-leaning pattern

•  ZFS is able to transform random Writes into sequential:
•  Aggressive I/O scheduling
•  Copy-on-write (COW) technique (blocks on disk not modified in place)
•  Changes to blocks from app writes are written to alternate locations
•  Stream otherwise random data writes to a sequential pattern on disk

!  Performed this detailed analysis in just a few minutes

215

vscsiStats

Virtual scsi disk
handle ids - unique
across virtual
machines

World group
leader id

Virtual Machine
Name

vscsiStats -l

216

vscsiStats – latency histogram

vscsiStats -p latency -w 118739 -i 8205

Latency in
microseconds

I/O distribution
count

217

vscsiStats – iolength histogram

vscsiStats -p iolength -w 118739 -i 8205

I/O block size

Distribution
Count

218

Storage Recommendations

!  The fundamental relationship
between consumption and supply
has not changed
•  Spindle count and RAID configuration

still rule

•  But host demand is an aggregate of
VMs

! What is the impact of virtual disk
consolidation
•  Full isolation

•  Shared VMFS

VMFS

K

219

Differences in VMs

!  VMware deployments
•  Large set of physical machines consolidated
•  Diverse set of applications

!  Workload characteristics
•  Different IO patterns to the same volume, or
•  IO from one app split to different volumes
•  Provisioning operations along with applications (Create VM,

Power On VM)

!  Hypervisor and the storage subsystem
•  Clustered file system locking
•  CPU and virtual device emulation can impact storage

performance

!  System setup can affect performance
•  Partition alignment affects performance.
•  Raw Device Mapping or File system
•  New Hardware Assist technology
•  CPU and memory affinity settings

220

Disk Fundamentals

!  Databases are mostly random I/O access patterns
!  Accesses to disk are dominated by seek/rotate
•  10k RPM Disks: 150 IOPS max, ~80 IOPS Nominal
•  15k RPM Disks: 250 IOPS max, ~120 IOPS Nominal

!  Database Storage Performance is controlled by two primary factors
•  Size and configuration of cache(s)
• Number of physical disks at the

 back-end

221

Disk Performance

!  Higher sequential
performance (bandwidth)
on the outer tracks

222

Disk Arrays

!  Lowest level resource is disk
•  150 IOPS, 70-150MByte/sec

!  Disks are aggregated into LUNS
•  Increase performance and availability

!  LUNS can be (should be) cached
• Read caches or write caches
• Write caches hide wait-for-write

!  Disk arrays share FC Connections
•  Typically 200 or 400MBytes/sec

Read
Cache

Write
Cache

FC Switch

VMware ESX

HBA1 HBA2 HBA3 HBA4

LUN LUN

223

LUN Sizing and Its Impact On Load

!  In example on the right, ESX B can
generate twice as much IO as ESX A

!  Improved aggregate throughput of
multiple LUNs is the primary reason
for thinking RDM is faster

!  Implications for the array
• Greater number of smaller LUNs

increases burst intensity
•  Many HBA/LUN pairs could be used

simultaneously

•  Smaller number of LUNs stabilizes
demand
•  Fewer HBA/LUN pairs will be used

concurrently
ESX A

1
2
…
32

VM a VM b

VMFS

ESX B

1
2
…
32

VM c VM d

1
2
…
32

S

224

Storage – VMFS or RDM

! VMFS
! Easier provisioning
! Snapshots, clones possible
! Leverage templates and quick
provisioning
! Scales better with Consolidated Backup
! Preferred Method

! RAW

! RAW provides direct access to
a LUN from within the VM

! Allows portability between physical and
virtual

! RAW means more LUNs
•  More provisioning time

! Advanced features still work

Guest OS

vm1.vmdk vm2.vmdk

Guest OS

Guest OS
/dev/hda /dev/hda

/dev/hda

FC or iSCSI
LUN

FC LUN

VMFS

225

VMFS vs. RDM Performance

226

Creating VM: Disk Type?

As needed

Thin Disk

Creation Time

When to allocate disk space?

Zeroed?
No

Thick Disk

Yes

When?

Creation Time First Use

Eager Zeroed Thick Zeroed Thick

227

Creating VM: Disk Type?

!  Speed Vs Space
•  Thin disk is space efficient but higher per IO overhead
•  Thick disk has lower per IO overhead but consumes space

•  Zeroed thick disk pays extra write cost at the first write
•  Eager zeroes thick disk or thick disk gives best performance

• Use vmkfstool to create or convert

!  RDM Vs VMFS
•  Physical RDM disables VMotion
•  VMFS performance is close to the RDM

228

VMDK Lazy Zeroing

!  Default VMDK allocation policy
“lazy zeroes” 1M VMFS blocks on
first write

! Writes on an untouched VMDK incur
a penalty

!  Difference usually not seen in
production
•  But common with benchmarks

!  Zero offload capability in VAAI
improves zeroing in supported
arrays

0

20

40

60

80

100

120

140

160

180

200

1 host 2 hosts 4 hosts 8 hosts 16
hosts

Th
ro

ug
hp

ut
 (M

B
ps

)

Effect of Zeroing on Storage
Performance

"Post-zeroing" "Zeroing"

K

229

Thin Provisioning Performance

!  vSphere introduced thin
provisioned VMDKs

!  In theory, LUN locking during
VMDK growth might hurt
performance

!  In reality, zeroing more impactful
than locking

!  ATS and zero-offloading in VAAI
enabled arrays will speed up
“first-writes”

0

20

40

60

80

100

120

140

160

180

200

1 host 2 hosts 4 hosts 8 hosts 16
hosts

Th
ro

ug
hp

ut
 (M

B
ps

)

Thin Versus
Thick Scalability

Thick post-zeroing Thin post-zeroing

Thick zeroing Thin zeroing

K

230

Physical
Hardware

Device Paravirtualization (4.0)

Guest

VMkernel

Device Paravirtualization places
A high performance virtualization-
Aware device driver into the guest

Paravirtualized drivers are more
CPU efficient (less CPU over-
head for virtualization)

Paravirtualized drivers can
also take advantage of HW
features, like partial offload
(checksum, large-segment)

VMware ESX uses para-
virtualized network drivers

vSphere 4 now provides pvscsi

Monitor

Memory
Allocator

NIC Drivers

Virtual Switch

I/O Drivers

File System Scheduler

vmxnet

pvscsi

TCP/IP

File
System

vmxnet

pvscsi

231

PVSCSI Architecture

!  PVSCSI looks like a PCI-E device to the guest OS
!  Uses MSI or MSI-X interrupt delivery (instead of legacy INTx) to reduce the

cost of interrupt virtualization
!  Boot capable
!  New Windows/Linux SCSI HBA drivers
! Windows driver uses the Storport driver model
!  Exports itself as a Serial Attached SCSI adapter

232

Enabling the PVSCSI Driver

233

PVSCSI Efficiency

0

0.2

0.4

0.6

0.8

1

1.2

S/W iSCSI Fibre Channel
Protocol

PVSCSI Efficiency Improvements for 4K Block IOs

LSI Logic pvscsi

234

Benchmarks for I/O

! Microbenchmarks
•  Iometer
•  Aiostress

•  Filebench
• Orion

•  Sqliosim

•  Jetstress

Macrobenchmarks
" TPC-C/E

" MS Exchange

" Oracle
" SQLserver

" Etc…

235

Storage Contention Problems

!  In vSphere 4, an isolated VM can
dominate a shared LUN
•  IO shares determine access to LUN

relative to other VMs on the same host

•  A VM can get uncontested access to the
device queue negatively affecting VMs
that share the LUN but are running on
other ESX hosts
• Regardless of shares, VMs on the same

host contend for one queue

!  Existing storage resource
management controls only affects
VMs on a single host

de
vi

ce
 q

ue
ue

 d
ep

th

12

0

12

0

VM A
1500
Shares

VM B
500
Shares

VM C
500
Shares

 50 %

25 %

75%

100 %

12% 38%

de
vi

ce
 q

ue
ue

 d
ep

th

Storage Array Queue

ESX Server ESX Server

Without Storage IO Control
Actual Disk Resources utilized by each VM
are not in the correct ratio

S

236

Storage Contention Solution: Storage IO Control

!  SIOC calculates data store latency
to identify storage contention
•  Latency is normalized, averaged across

virtual machines

•  IO size and IOPS included

!  SIOC enforces fairness when data
store latency crosses threshold
• Default of 30 ms

•  Sustained for four seconds

•  Fairness enforced by limiting VMs access
to queue slots

!  Can have small detrimental effect
on throughput at LUN de

vi
ce

 q
ue

ue
 d

ep
th

24

0

6

0

VM A
1500
Shares

VM B
500
Shares

VM C
500
Shares

25 %

75%

Storage Array Queue

ESX Server ESX Server

100 %

60% 20% 20%

With Storage IO Control
Actual disk resources utilized by each VM
are in the correct ratio even across ESX Hosts

S

237

Notes and Caveats on SIOC

!  SIOC is not a storage panacea
•  Important VMs can be protected
•  Poorly performing storage remains poorly performing, and the infrastructure suffers!

!  SIOC trades throughput for latency
•  The feature is enabled when latency crosses a certain threshold, implying a storage

bottleneck

•  Throughput is throttled for less performance critical VMs to provide fast access to high
priority VMs

!  SIOC may make some of your happy application owners unhappy
•  Your current configuration may allow storage hogs to lock their neighbors out of the

array
• When you enable SIOC, these “bad neighbors” will be throttled

S

238

NETWORKING

239

VMkernel

Guest

Physical
Hardware

Virtual NIC Device
• Full Virt: e1000g
• Paravirt: vmxnet2,
•  vSphere adds vmxnet3

Monitor

Memory
Allocator

NIC Drivers

Virtual Switch Scheduler

Virtual NIC

TCP/IP

TCP/IP Stack
• For vMotion,iSCSI and NFS
• New v2 Stack for vSphere

iSCSI/NFS

Virtual SCSI

File
System

TCP/IP

VMware ESX Networking Architecture

240

VM Network I/O Virtualization

! Guest OS sees a virtual NIC
•  AMD Lance, Intel e1000, or VMware vmxnet

•  Virtual devices acting just like physical one (except vmxnet)

•  Each virtual NIC has a unique MAC address

• Up to 4 virtual NICs per VM

!  Virtual NIC enhancements
• No physical crystal limiting transmit/receive

• Disallow promiscuous mode

• Disallow MAC address changes by the OS
• Disallow forged source MAC transmits

VM

241

VMkernel

VM

Physical
Hardware

ESX Server Networking I/O

Service
Console

VMkernel
Networking

VM

vSwitches

Virtual NICs

Physical NICs

Uplinks

242

Hardware

ESXi Server

VMKernel

vNetwork Distributed
Switch

VSwitch

Troubleshooting Networking

!  Troubleshoot one
component at a time
•  Physical NICs
•  vNetwork Distributed Switch
•  Virtual NICs
•  Physical Network

!  Tools for troubleshooting
•  vSphere Client (aka VI)
• Command Line Utilities

•  vSphere CLI

•  Third party tools
•  Ping and traceroute
•  Traffic sniffers and Protocol

Analyzers
•  Wireshark

•  Logs

243

Sniffing For Trouble

!  Sniff for packets at different
layers for isolation
•  Physical Switch Port Level (SPAN)
•  VM Level (Promiscuous mode)

!  Look for
•  Lost Packets
•  Large number of packet

retransmissions
•  Anomalies reported by protocol

analyzers like Wireshark etc.

!  Look for patterns
•  Are packets of a certain type causing

problems?
•  Are packets of a certain size causing

problems?
Physical Switch

Mirrored Port

Hardware

ESX Server

VMKernel

VSwitch

Capture packet
traces inside the

VM

244

Getting Information about the vnic i/o

Output of esxtop/resxtop

Output of esxcfg-info

Search for the port
ID of the vNIC in the
esxcfg-info output

Look for Rx/Tx
information for the

vNIC you are
interested in

Cumulative Traffic
Information

Real time traffic
information

245

Check the physical NIC

!  Check that the right uplinks are connected
• Use vSphere client or esxcfg-vswitch –l

!  Check the Rx/Tx counters of the physical nic using esxcfg-info or resxtop
!  Check connected physical port
• Use Network Hint or CDP

Information about Uplink Port (vmnic4)

246

VI Client Networking Statistics

! Mostly high-level statistics
•  Bandwidth

•  KBps transmitted, received
•  Network usage (KBps): sum of TX, RX over all NICs

• Operations/s
•  Network packets received during sampling interval (real-time: 20s)
•  Network packets transmitted during sampling interval

!  Per-adapter and aggregated statistics

247

Esxtop Networking Statistics

!  Bandwidth
• Receive (MbRX/s), Transmit (MbRX/s)

!  Operations/s
• Receive (PKTRX/s), Transmit (PKTTX/s)

!  Configuration info
• Duplex (FDUPLX), speed (SPEED)

!  Errors
•  Packets dropped during transmit (%DRPTX), receive (%DRPRX)

248

esxtop network screen (n)

PKTTX/s - Packets transmitted /sec
PKTRX/s - Packets received /sec
MbTx/s - Transmit Throughput in Mbits/sec
MbRx/s - Receive throughput in Mbits/sec

Port ID: every entity is attached to a port on the virtual switch
DNAME - switch where the port belongs to

Physical NIC
Service
console NIC

Virtual NICs

249

Multicast/Broadcast stats

PKTTXMUL/s – Multicast packets transmitted per second
PKTRXMUL/s – Multicast packets received per second

PKTTXBRD/s – Broadcast packets transmitted per second
PKTRXBRD/s – Broadcast packets received per second

  Multicast/Broadcast stats are new for 4.1

250

Platform Optimization: Network

!  Use a network adapter that supports:
•  Checksum offload, TCP segmentation offload (TSO),

Jumbo frames (JF)

•  Enable JF when hardware is available (default is off!)

•  Capability to handle high memory DMA (64-bit DMA addresses)

•  Capability to handle multiple scatter/gather elements per Tx frame

!  Check configuration
•  Ensure host NICs are running with highest supported speed

and full-duplex

•  NIC teaming distributes networking load across multiple NICs

•  Better throughput and allows passive failover

!  Use separate NICs to avoid traffic contention
•  For Console OS (host management traffic), VMKernel

(vmotion, iSCSI, NFS traffic), and VMs

251

Jumbo Frames

!  Before transmitting, IP layer fragments data into MTU (Maximum
Transmission Unit) sized packets
•  Ethernet MTU is 1500 bytes
• Receive side reassembles the data

!  Jumbo Frames
•  Ethernet frame with bigger MTU

•  Typical MTU is 9000 bytes

• Reduces number of packets transmitted
• Reduces the CPU utilization on transmit and receive side

252

Jumbo Frames

!  Linux
•  ifconfig eth0 mtu 9000

! Windows
• Device Manager -> Network

adapters -> VMware PCI Ethernet
Adapter -> Properties -> Advanced
-> MTU to 9000

Switches/
Routers

NIC Driver

Client

TCP/IP Stack

Guest (VM)

vNIC

Virtual Switch

TCP/IP Stack

ESX

253

Jumbo Frames

!  esxcfg-vswitch -m 9000 vSwitch1

Switches/
Routers

NIC Driver

Client

TCP/IP Stack

Guest (VM)

vNIC

Virtual Switch

TCP/IP Stack

ESX
Refer switch/router
configuration guide

254

Jumbo Frames

Switches/
Routers

NIC Driver

Client

TCP/IP Stack

Guest (VM)

vNIC

Virtual Switch

TCP/IP Stack

ESX

Linux
!  ifconfig eth0 mtu 9000

Windows
!  Device Manager -> Network

adapters -> VMware PCI
Ethernet Adapter -> Properties
-> Advanced -> MTU to 9000

255

MTU Size

!  Verify it is not a jumbo frame related issue
•  Verify that the vnic MTU is the same as the vswitch MTU
• Run ping –s <packet size> from the guest

256

Network Traffic Management – Emergence of 10 GigE

FT vMotion NFS

vSwitch

TCP/IP

iSCSI

1GigE NICs

FT vMotion NFS

vSwitch

TCP/IP

iSCSI

10 GigE NICs

1GigE 10 GigE

•  Traffic typically converged to two 10 GigE
NICs

•  Some traffic flows could dominate others
through oversubscription

Traffic Types compete.
Who gets what share of

the NIC?

•  Dedicated NICs for different traffic types
e.g. vMotion, IP storage

•  Bandwidth assured by dedicated NICs

K

257

Network IO control – Protect your important bandwidth

! Without Network IO Control
•  VM traffic can be impacted by less

performance-critical traffic such as
vMotion

! With Network IO Control
•  VM traffic is protected and can

maintain application SLAs

•  vMotion is designated lower priority
and can take longer

* Y-Axis shows number of User Sessions that meet SPECweb2005
latency requirements

K

258

Network I/O Control Architecture

Mgmt NFS iSCSI

vMotion FT

 Shaper

Shares enforcement per
uplink

Limit enforcement per
team

vNetwork Distributed Portgroup

Scheduler

•  Note: NetIOC is only supported with vNetwork Distributed Switch (vDS)
•  Team: Group of NICs used for load balancing and fault tolerance

 Teaming Policy

Load balanced
teaming

Scheduler

K

259

CONFIGURING
WORKLOADS

260

Enterprise Workload Demands vs. Capabilities

Workload Requires vSphere 4

Oracle 11g 8vcpus for 95% of DBs
64GB for 95% of DBs
60k IOPS max for OLTP @
8vcpus
77Mbits/sec for OLTP @ 8vcpus

8vcpus per VM
256GB per VM
120k IOPS per VM
9900Mbits/sec per VM

SQLserver 8vcpus for 95% of DBs
64GB @ 8vcpus
25kIOPS max for OLTP @
8vcpus
115Mbits/sec for OLTP @ 8vcpus

8vcpus per VM
256GB per VM
120k IOPS per VM
9900Mbits/sec per VM

SAP SD 8vcpus for 90% of SAP Installs
24GB @ 8vcpus
1k IOPS @ 8vcpus
115Mbits/sec for OLTP @ 8vcpus

8vcpus per VM
256GB per VM
120k IOPS per VM
9900Mbits/sec per VM

Exchange 4cpus per VM, Multiple VMs
16GB @ 4vcpus
1000 IOPS for 2000 users
8Mbits/sec for 2000 users

8vcpus per VM
256GB per VM
120k IOPS per VM
9900Mbits/sec per VM

Apache SPECweb 2-4cpus per VM, Multiple VMs
8GB @ 4vcpus
100IOPS for 2000 users
3Gbits/sec for 2000 users

8vcpus per VM
256GB per VM
120k IOPS per VM
9900Mbits/sec per VM

261

Databases: Top Ten Tuning Recommendations

1.  Optimize Storage Layout, # of Disk Spindles
2.  Use 64-bit Database
3.  Add enough memory to cache DB, reduce I/O
4.  Optimize Storage Layout, # of Disk Spindles
5.  Use Direct-IO high performance un-cached path in the Guest

Operating System
6.  Use Asynchronous I/O to reduce system calls
7.  Optimize Storage Layout, # of Disk Spindles
8.  Use Large MMU Pages
9.  Use the latest H/W – with AMD RVI or Intel EPT
10. Optimize Storage Layout, # of Disk Spindles

262

Databases: Workload Considerations

! OLTP

! Short Transactions
! Limited number of standardized queries
! Small amounts of data accessed
! Uses data from only one source
! I/O Profile
•  Small Synchronous reads/writes (2k->8k)
•  Heavy latency-sensitive log I/O

! Memory and I/O intensive

! DSS

Long Transactions
Complex queries
Large amounts of data accessed
Combines data from different sources
! I/O Profile
•  Large, Sequential I/Os (up to 1MB)
•  Extreme Bandwidth Required
•  Heavy ready traffic against data volumes
•  Little log traffic

! CPU, Memory and I/O intensive
! Indexing enables higher performance

263

Databases: Storage Configuration

!  Storage considerations
•  VMFS or RDM
•  Fibre Channel, NFS or iSCSI

•  Partition Alignment
• Multiple storage paths

! OS/App, Data, Transaction Log and TempDB on separate physical
spindles

!  RAID 10 or RAID5 for Data, RAID 1 for logs
! Queue depth and Controller Cache Settings
!  TempDB optimization

264

Databases: Storage Hierarchy

/dev/hda

Controller
Cache

Database Cache

Guest OS
Cache

" In a recent study, we scaled up to
320,000 IOPS to an EMC array from
a single ESX server.
" 8K Read/Write Mix

" Cache as much as possible in caches
" Q: What’s the impact on the number

of disks if we improve cache hit rates
from 90% to 95%?

" 10 in 100 => 5 in 100…

" #of disks reduced by 2x!

265

Databases: Typical I/O Architecture

File System

FS Cache

Database Cache

DB
Reads

DB
Writes

Log
Writes

512->1MB

2k,8k,16k x n 2k, 8k, 16k x n

266

VMkernel

Guest
I/O Drivers

File System

Virtual SCSI

File
System

Application

K

D

G

Windows
Device Queue

R = Perfmon
Physical Disk
“Disk Secs/transfer”

R

A

K = ESX Kernel

G = Guest Latency

A = Application Latency

D = Device Latency

S S = Windows
Physical Disk Service Time

Know your I/O: Use a top-down Latency analysis technique

267

Checking for Disk Bottlenecks

!  Disk latency issues are visible from Oracle stats
•  Enable statspack
• Review top latency events

Top 5 Timed Events
 % Total

Event Waits Time (s) Ela Time

--------------------------- ------------ ----------- -----------
db file sequential read 2,598 7,146 48.54
db file scattered read 25,519 3,246 22.04
library cache load lock 673 1,363 9.26
CPU time 2,154 934 7.83
log file parallel write 19,157 837 5.68

268

Oracle File System Sync vs DIO

269

Oracle DIO vs. RAW

270

Direct I/O

!  Guest-OS Level Option for Bypassing the guest cache
•  Uncached access avoids multiple copies of data in memory

•  Avoid read/modify/write module file system block size

•  Bypasses many file-system level locks

!  Enabling Direct I/O for Oracle and MySQL on Linux

vi init.ora
filesystemio_options=“setall”

Check:

iostat 3
(Check for I/O size matching the
DB block size…)

vi my.cnf
 innodb_flush_method to O_DIRECT

Check:

iostat 3
(Check for I/O size matching the
DB block size…)

271

Asynchronous I/O

!  An API for single-threaded process to launch multiple outstanding I/Os
•  Multi-threaded programs could just just multiple threads

•  Oracle databases uses this extensively

•  See aio_read(), aio_write() etc...

!  Enabling AIO on Linux

rpm -Uvh aio.rpm
vi init.ora
filesystemio_options=“setall”

Check:

ps –aef |grep dbwr
strace –p <pid>
io_submit()… <- Check for io_submit in syscall trace

272

Picking the size of each VM

!  vCPUs from one VM stay
on one socket*

! With two quad-core
sockets, there are only
two positions for a 4-way
VM

!  1- and 2-way VMs can be
arranged many ways on
quad core socket

!  Newer ESX schedulers
more efficiency use fewer
options
•  Relaxed co-scheduling

Socket 0 Socket 1 VM Size Options

2

12

8

273

Use Large Pages

!  Guest-OS Level Option to use Large MMU Pages
•  Maps the large SGA region with fewer TLB entries

•  Reduces MMU overheads

•  ESX 3.5 Uniquely Supports Large Pages!

!  Enabling Large Pages on Linux

vi /etc/sysctl.conf
(add the following lines:)

vm/nr_hugepages=2048
vm/hugetlb_shm_group=55

cat /proc/vminfo |grep Huge
HugePages_Total: 1024
HugePages_Free: 940
Hugepagesize: 2048 kB

274

Large Pages

!  Increases TLB memory coverage
•  Removes TLB misses, improves efficiency

!  Improves performance of
applications that are sensitive to
TLB miss costs

!  Configure OS and application to
leverage large pages
•  LP will not be enabled by default

0%

2%

4%

6%

8%

10%

12%

Performance Gains

Gain (%)

275

Linux Versions

!  Some older Linux versions have a 1Khz timer to optimize desktop-style
applications
•  There is no reason to use such a high timer rate on server-class applications
•  The timer rate on 4vcpu Linux guests is over 70,000 per second!

!  Use RHEL >5.1 or latest tickless timer kernels
•  Install 2.6.18-53.1.4 kernel or later
•  Put divider=10 on the end of the kernel line in grub.conf and reboot, or default on

tickless kernel

•  All the RHEL clones (CentOS, Oracle EL, etc.) work the same way

276

Java Requires Careful Memory Management

0

500

1000

1500

2000

2500

3000

0

0.2

0.4

0.6

0.8

1

1.2

3072 2816 2560 2304 2048 1792 1536

B
al

lo
on

ed
/S

w
ap

pe
d

M
em

or
y

(M
B

)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

 Memory limit (MB)

Ballooned size Swapped size

Throughout (Balloon only) Throughput (Swapping only)

Java/SPECjbb (Uses All Available Memory)

S

277

Managing Memory in Java Environments

!  Calculate OS memory
!  Estimate JVM needs
!  Specify heap exactly

!  Reservations =
OS + JVM + heap

!  Also applies to other
applications with static
memory needs
• Oracle SGA

S

278

For More Information

!  VMware’s Performance Technology Pages
•  http://vmware.com/technical-resources/performance

!  VMware’s Performance Blog
•  http://blogs.vmware.com/performance

!  Performance Community
•  http://communities.vmware.com/community/vmtn/general/performance

!  VMware Performance Class
• Check with VMware Education or VMware Authorized Training Center

!  VMware Performance Service Offering
•  Ask VMware account team

S

© 2010 VMware Inc. All rights reserved

VMware Performance for Gurus

Richard McDougall

CTO of Application Infrastructure, VMware

rmc@vmware.com twitter @richardmcdougll

