VMware Performance for Gurus

Richard McDougall Principal Engineer, VMware, Inc rmc@vmware.com @richardmcdougll

Usenix Tutorial, December, 2010

Abstract

- This class teaches the fundamentals of performance and observability for vSphere virtualization technology.
- The objective of the class is to learn how to be a practitioner of performance diagnosis and capacity planning with vSphere.
- We use a combination of introductory vSphere *internals* and performance analysis techniques to expose what's going on under the covers, learn how to interpret metrics, and how to triage performance problems.
- We'll learn how to interpret load measurements, to perform accurate capacity planning.

Credits

Thank you to the many contributors of slides and drawings, including:

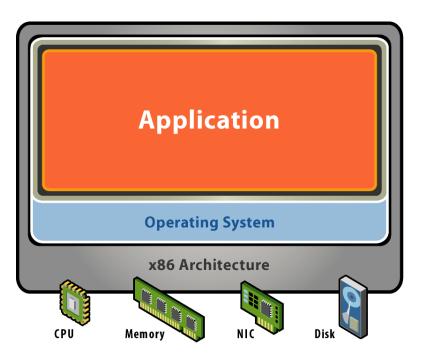
- Ravi Soundararajan VC and esxtop
- Andrei Dorofeev Scheduling
- Patrick Tullmann Architecture
- Bing Tsai Storage
- Howie Xu Networking
- Scott Drummonds Performance
- Devaki Kulkarni Tuning
- Jeff Buell Tuning
- Irfan Ahmad Storage & IO
- Krishna Raj Raja Performance
- Kit Colbert Memory
- Ole Agesen Monitor Overview
- Sreekanth Setty Networking
- Ajay Gulati Storage
- Wei Zhang Networking
- Amar Padmanabhan Networking

Agenda/Topics

- Introduction
- Performance Monitoring
- CPU
- Memory
- I/O and Storage
- Networking
- Applications

INTRODUCTION TO

VIRTUALIZATION


AND

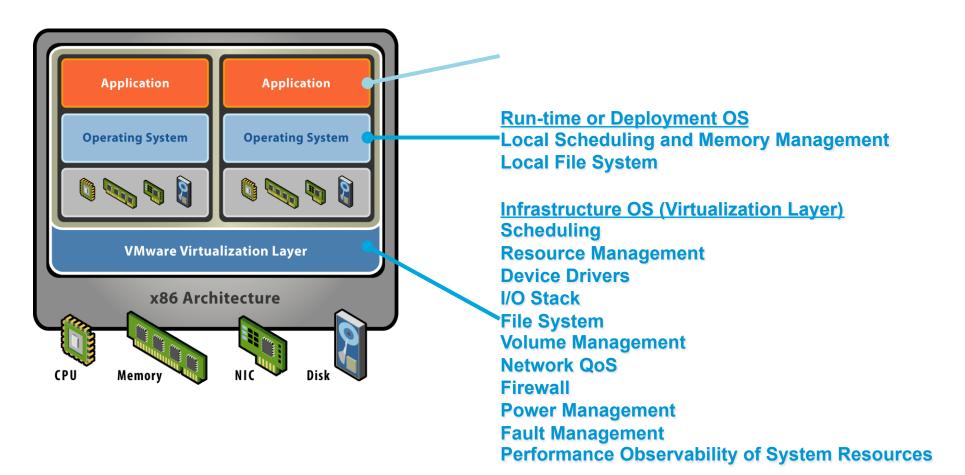
VMWARE VI/ESX

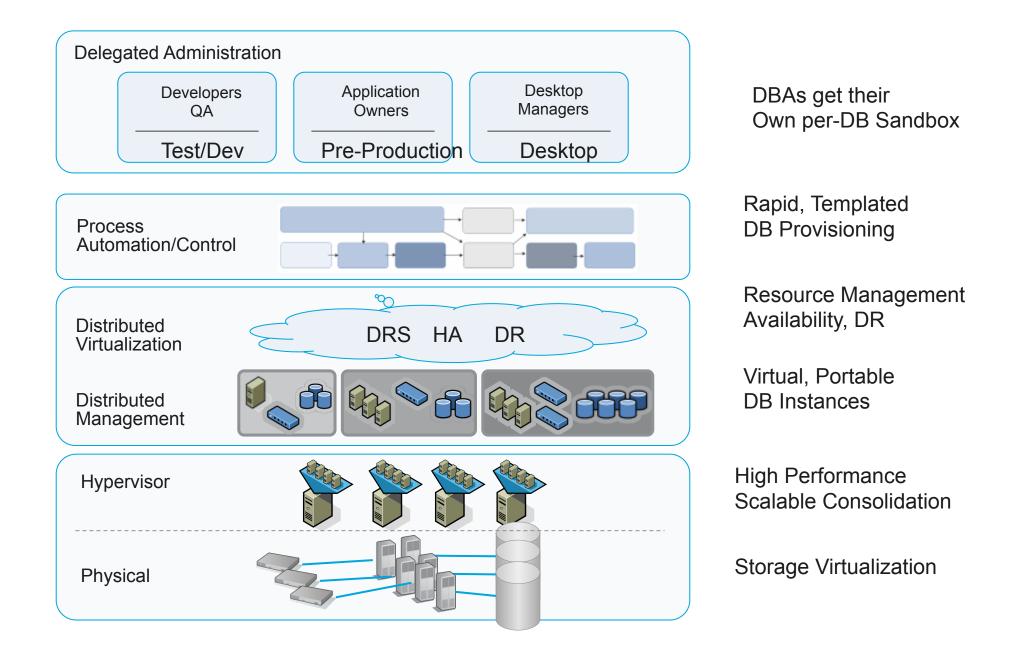
vmware[®]

Operating system performs various roles

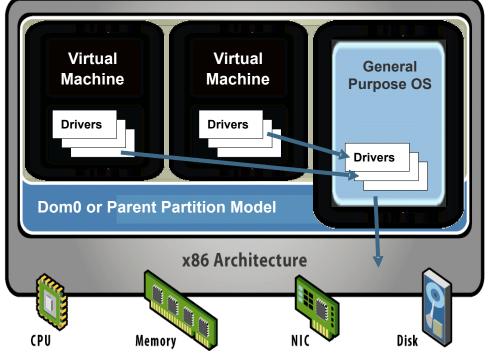
- Application Runtime Libraries
- Resource Management (CPU, Memory etc)
- Hardware + Driver management

- Performance & Scalability of the OS was paramount
- Performance Observability tools are a feature of the OS

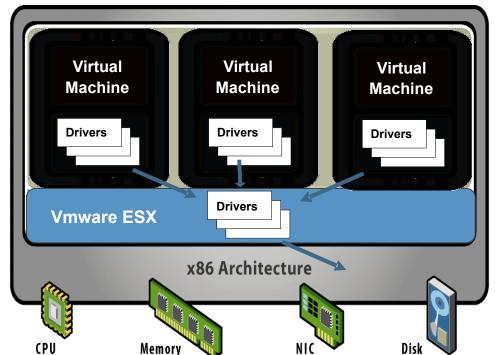



Application

Run-time Libraries and Services

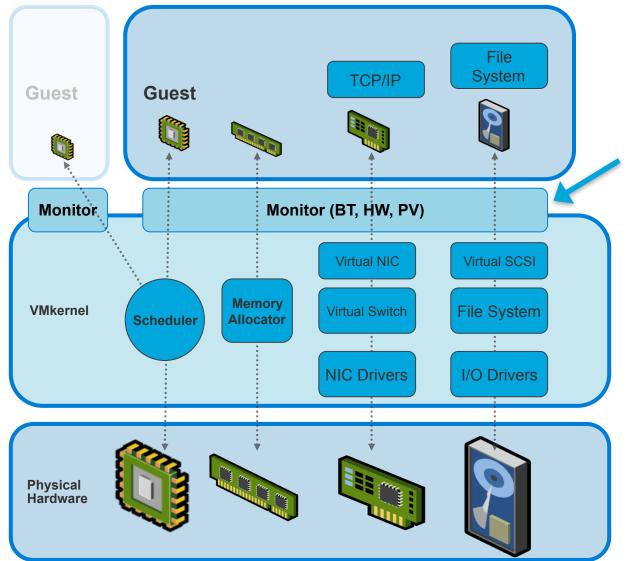

Application-Level Service Management

Application-decomposition of performance



Hypervisor Architectures

Very Small Hypervisor


- General purpose OS in parent partition for I/O and management
- All I/O driver traffic going thru parent OS
- Extra Latency, Less control of I/O

ESX Server

- Small Hypervisor < 24 mb
- Specialized Virtualization Kernel
- o Direct driver model
- Management VMs
 - > Remote CLI, CIM, VI API

VMware ESX Architecture

CPU is controlled by scheduler and virtualized by monitor

Monitor supports: •BT (Binary Translation) •HW (Hardware assist) •PV (Paravirtualization)

Memory is allocated by the VMkernel and virtualized by the monitor

Network and I/O devices are emulated and proxied though native device drivers

Inside the Monitor: Classical Instruction Virtualization

Trap-and-emulate

Nonvirtualized ("native") system

- OS runs in privileged mode
- OS "owns" the hardware
- Application code has less privilege

Virtualized

- VMM most privileged (for isolation)
- Classical "ring compression" or "de-privileging"
 - Run guest OS kernel in Ring 1
 - Privileged instructions trap; emulated by VMM
- But: does not work for x86 (lack of traps)

Classical VM performance

Native speed except for traps

• Overhead = trap frequency * average trap cost

Trap sources:

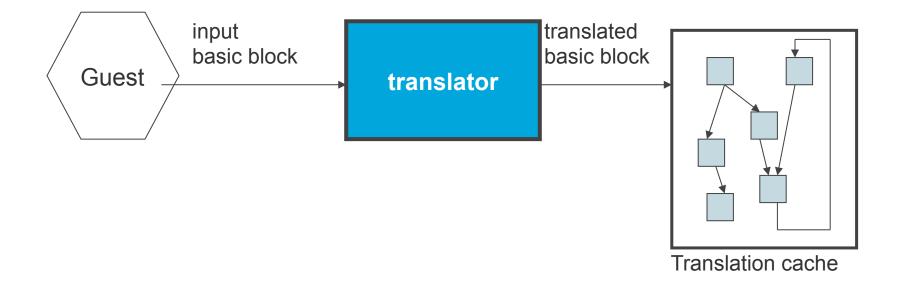
- Privileged instructions
- Page table updates (to support memory virtualization)
- Memory-mapped devices

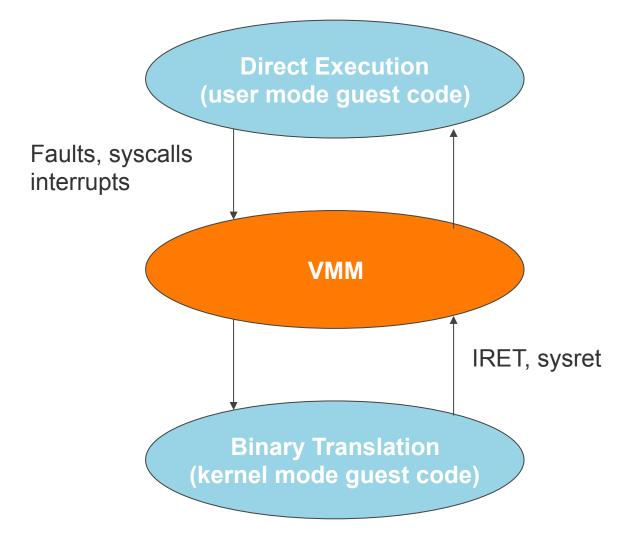
Back-of-the-envelope numbers:

- Trap cost is high on deeply pipelined CPUs: ~1000 cycles
- Trap frequency is high for "tough" workloads: 50 kHz or greater
- Bottom line: substantial overhead

Binary Translation of Guest Code

- Translate guest kernel code
- Replace privileged instrs with safe "equivalent" instruction sequences
- No need for traps
- BT is an extremely powerful technology
 - Permits any unmodified x86 OS to run in a VM
 - Can virtualize any instruction set


BT Mechanics


Each translator invocation

- Consume one input basic block (guest code)
- Produce one output basic block

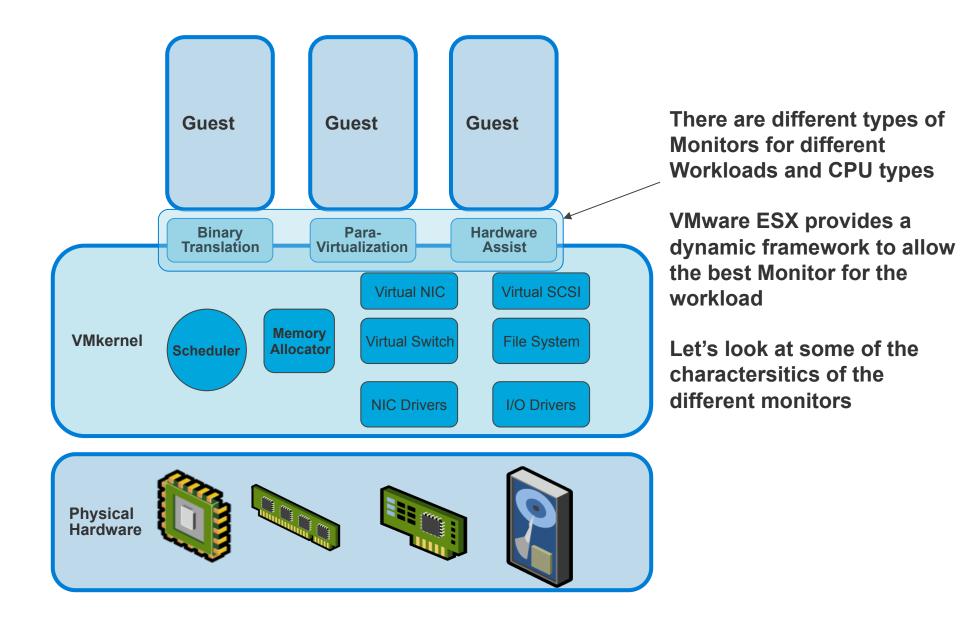
Store output in translation cache

- Future reuse
- Amortize translation costs
- Guest-transparent: no patching "in place"

vmware[®]

Performance of a BT-based VMM

Costs

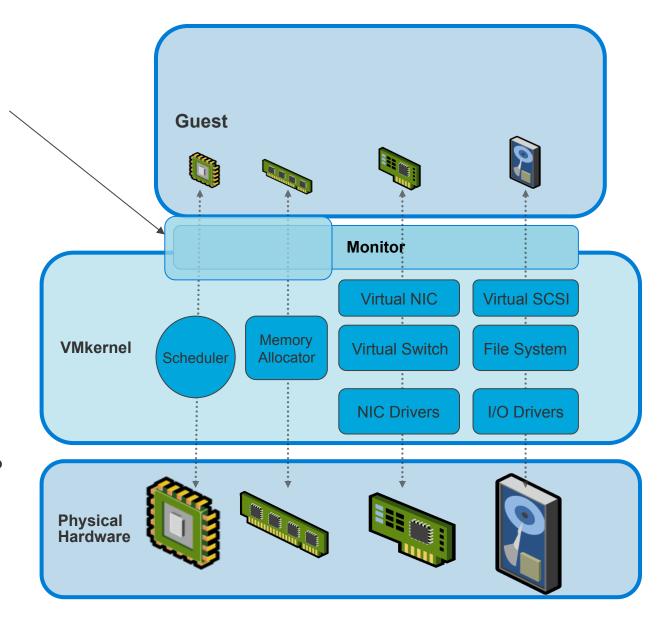

- Running the translator
- Path lengthening: output is sometimes longer than input
- System call overheads: DE/BT transition
- Benefits
 - Avoid costly traps
 - Most instructions need no change ("identical" translation)
 - Adaptation: adjust translation in response to guest behavior
 - Online profile-guided optimization
 - User-mode code runs at full speed ("direct execution")

Technologies for optimizing performance

Privileged instruction virtualization	Binary Translation, Paravirt. CPU Hardware Virtualization Assist
Mamanuvirtualization	Binary translation Paravirt. Memory
Memory virtualization	Hardware Guest Page Tables
Device and I/O virtualization	Paravirtualized Devices Stateless offload, Direct Mapped I/O

Multi-mode Monitors

Virtualization Hardware Assist


More recent CPUs have features to reduce some of the overhead at the monitor level

1st Gen: Intel VT and AMD-V

 doesn't remove all virtualization overheads: scheduling, memory management and I/O are still virtualized with a software layer

2nd Gen: AMD Barcelona RVI and Intel EPT

- Helps with memory virtualization overheads
- Most workloads run with less than 10% overhead
- EPT provides performance gains of up to 30% for MMU intensive benchmarks (Kernel Compile, Citrix etc)
- EPT provides performance gains of up to 500% for MMU intensive microbenchmarks
- Far fewer "outlier" workloads

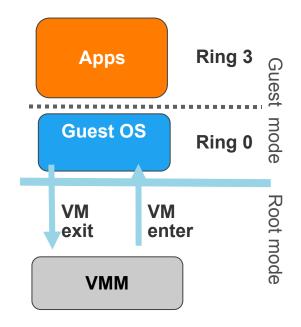
vSphere 4 Monitor Enhancements

8-VCPU virtual Machines

- Impressive scalability from 1-8 vCPUs
- Monitor type chosen based on Guest OS and CPU model
 - UI option to override the default

Support for upcoming processors with hardware memory virtualization

- Rapid Virtualization Indexing from AMD already supported
- Extended Page Table from Intel
- Improvements to software memory virtualization
- Better Large Page Support (Unique to VMware ESX)
 - (Includes enhancements in VMkernel)


Intel VT-x / AMD-V: 1st Generation HW Support

Key feature: root vs. guest CPU mode

- VMM executes in root mode
- Guest (OS, apps) execute in guest mode

VMM and Guest run as "co-routines"

- VM enter
- Guest runs
- A while later: VM exit
- VMM runs
- ...

How VMM Controls Guest Execution

Hardware-defined structure

- Intel: VMCS (virtual machine control structure)
- AMD: VMCB (virtual machine control block)

VMCB/VMCS contains

- Guest state
- Control bits that define conditions for exit
 - Exit on IN, OUT, CPUID, ...
 - Exit on write to control register CR3
 - Exit on page fault, pending interrupt, ...
- VMM uses control bits to "confine" and observe guest

Performance of a VT-x/AMD-V Based VMM

- VMM only intervenes to handle exits
- Same performance equation as classical trap-and-emulate:
 - overhead = exit frequency * average exit cost
- VMCB/VMCS can avoid simple exits (e.g., enable/disable interrupts), but many exits remain
 - Page table updates
 - Context switches
 - In/out
 - Interrupts

Qualitative Comparison of BT and VT-x/AMD-V

BT loses on:

- system calls
- translator overheads
- path lengthening
- indirect control flow

BT wins on:

- page table updates (adaptation)
- memory-mapped I/O (adapt.)
- IN/OUT instructions
- no traps for priv. instructions

- VT-x/AMD-V loses on:
 - exits (costlier than "callouts")
 - no adaptation (cannot elim. exits)
 - page table updates
 - memory-mapped I/O
 - IN/OUT instructions
- VT-x/AMD-V wins on:
 - system calls
 - almost all code runs "directly"

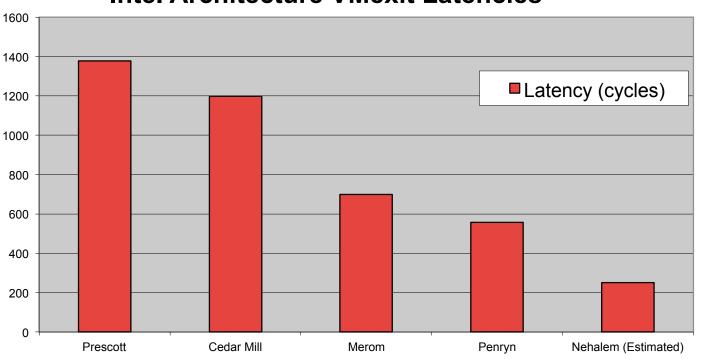
Qualitative Comparison of BT and VT-x/AMD-V

BT loses on:

- system calls
- translator overheads
- path lengthening
- indirect control flow
- BT wins on:
 - page table updates (adaptation)
 - memory-mapped I/O (adapt.)
 - IN/OUT instructions
 - no traps for priv. instructions

- VT-x/AMD-V loses on:
 - exits (costlier than "callouts")
 - no adaptation (cannot elim. exits)
 - page table updates
 - memory-mapped I/O
 - IN/OUT instructions
- VT-x/AMD-V wins on:
 - system calls
 - almost all code runs "directly"

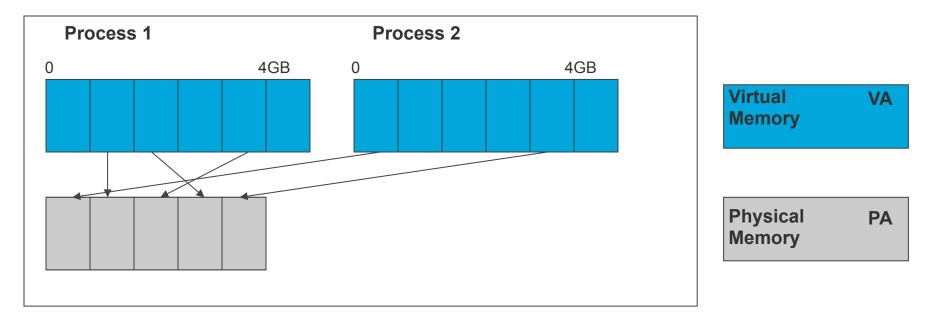
Qualitative Comparison of BT and VT-x/AMD-V


BT loses on:

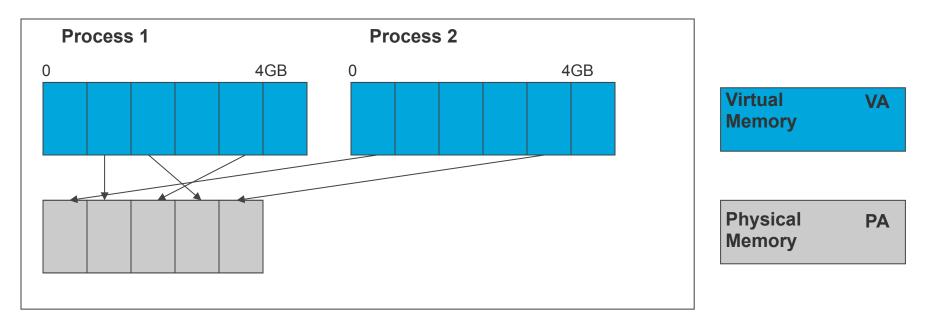
- system calls
- translator overheads
- path lengthening
- indirect control flow
- BT wins on:
 - page table updates (adaptation)
 - memory-mapped I/O (adapt.)
 - IN/OUT instructions
 - no traps for priv. instructions

- VT-x/AMD-V loses on:
 - exits (costlier than "callouts")
 - no adaptation (cannot elim. exits)
 - page table updates
 - memory-mapped I/O
 - IN/OUT instructions

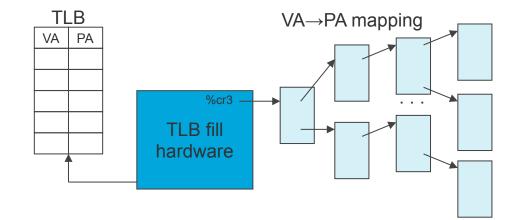
VT-x/AMD-V wins on:


- system calls
- almost all code runs "directly"

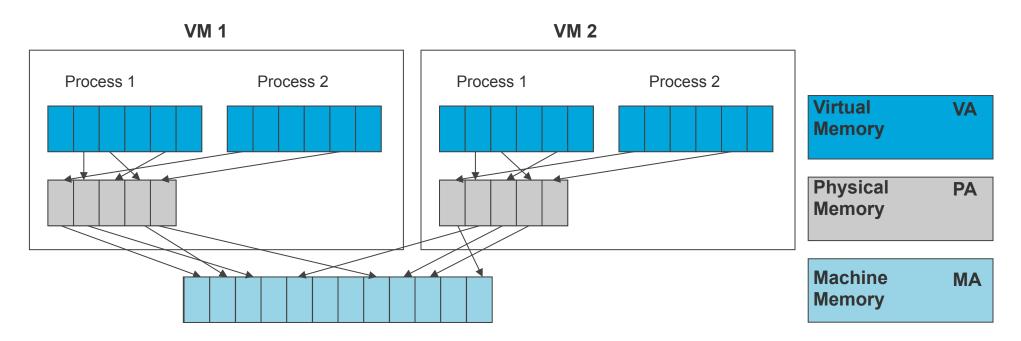
Intel Architecture VMexit Latencies


- VMexit performance is critical to hardware assist-based virtualization
- In additional to generational performance improvements, Intel is improving VMexit latencies

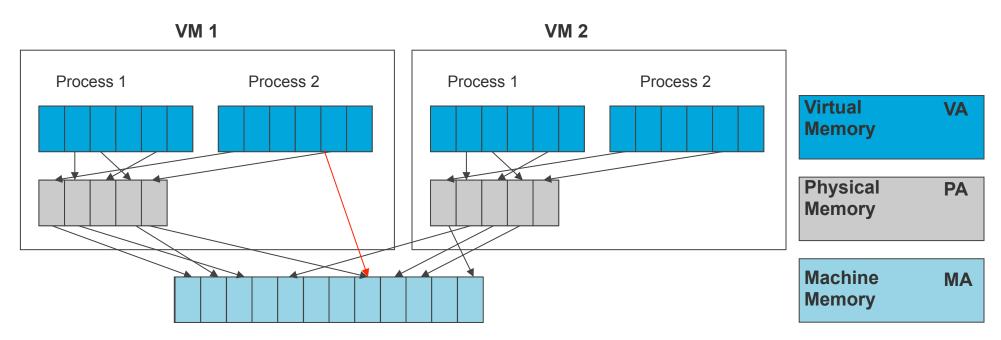
Virtual Memory in a Native OS



- Applications see contiguous virtual address space, not physical memory
- OS defines VA -> PA mapping
 - Usually at 4 KB granularity: a page at a time
 - Mappings are stored in page tables



- Applications see contiguous virtual address space, not physical memory
- OS defines VA -> PA mapping
 - Usually at 4 KB granularity
 - Mappings are stored in page tables
- HW memory management unit (MMU)
 - Page table walker
 - TLB (translation look-aside buffer)


Virtualizing Virtual Memory

- To run multiple VMs on a single system, another level of memory virtualization must be done
 - Guest OS still controls virtual to physical mapping: VA -> PA
 - Guest OS has no direct access to machine memory (to enforce isolation)
- VMM maps guest physical memory to actual machine memory: PA -> MA

Virtualizing Virtual Memory

Shadow Page Tables

- VMM builds "shadow page tables" to accelerate the mappings
 - Shadow directly maps VA -> MA
 - Can avoid doing two levels of translation on every access
 - TLB caches VA->MA mapping
 - Leverage hardware walker for TLB fills (walking shadows)
 - When guest changes VA -> PA, the VMM updates shadow page tables

3-way Performance Trade-off in Shadow Page Tables

1. Trace costs

- VMM must intercept Guest writes to primary page tables
- Propagate change into shadow page table (or invalidate)

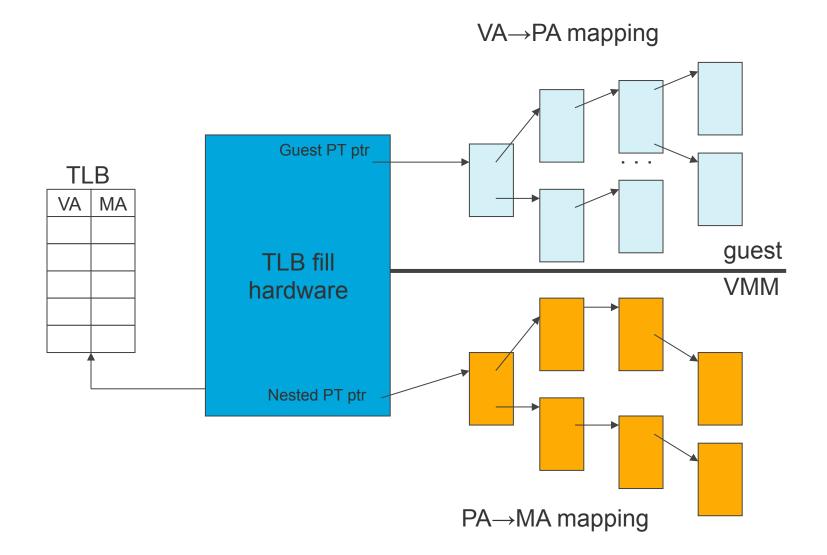
2. Page fault costs

- VMM must intercept page faults
- Validate shadow page table entry (hidden page fault), or forward fault to Guest (true page fault)

3. Context switch costs

- VMM must intercept CR3 writes
- Activate new set of shadow page tables
- Finding good trade-off is crucial for performance
- VMware has 9 years of experience here

Shadow Page Tables and Scaling to Wide vSMP VMware currently supports up to 4-way vSMP


- Problems lurk in scaling to higher numbers of vCPUs
 - Per-vcpu shadow page tables
 - High memory overhead
 - Process migration costs (cold shadows/lack of shadows)
 - Remote trace events costlier than local events
 - vcpu-shared shadow page tables
 - Higher synchronization costs in VMM

Can already see this in extreme cases

• forkwait is slower on vSMP than a uniprocessor VM

2nd Generation Hardware Assist

Nested/Extended Page Tables

vmware[®]

Analysis of NPT

MMU composes VA->PA and PA->MA mappings on the fly at TLB fill time

Benefits

- Significant reduction in "exit frequency"
 - No trace faults (primary page table modifications as fast as native)
 - Page faults require no exits
 - Context switches require no exits
- No shadow page table memory overhead
- Better scalability to wider vSMP
 - Aligns with multi-core: performance through parallelism

Costs

 More expensive TLB misses: O(n²) cost for page table walk, where n is the depth of the page table tree

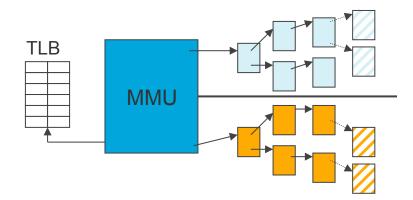
Analysis of NPT

MMU composes VA->PA and PA->MA mappings on the fly at TLB fill time

Benefits

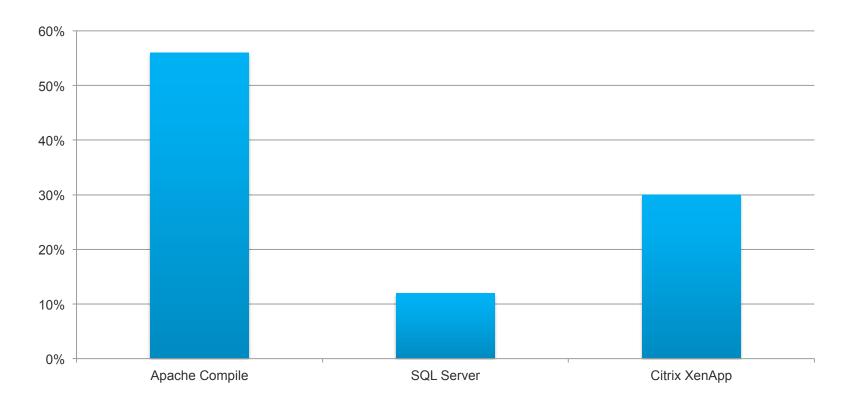
- Significant reduction in "exit frequency"
 - No trace faults (primary page table modifications as fast as native)
 - Page faults require no exits
 - Context switches require no exits
- No shadow page table memory overhead
- Better scalability to wider vSMP
 - Aligns with multi-core: performance through parallelism

Costs


 More expensive TLB misses: O(n²) cost for page table walk, where n is the depth of the page table tree

Improving NPT Performance

Large pages


2 MB today, 1 GB in the future

- In part guest's responsibility: "inner" page tables
 - For most guests/workloads this requires explicit setup
- In part VMM's responsibility: "outer" page tables
 - ESX will take care of it
- 1st benefit: faster page walks (fewer levels to traverse)
- 2nd benefit: fewer page walks (increased TLB capacity)

Efficiency Improvement

Efficiency Improvement

vSphere Monitor Defaults

VM Configuration	Core i7	45nm Core2 with VT-x	65nm Core2 with VT-x and FlexPriority	65nm Core2 with VT-x and No FlexPriority	P4 with VT-x	EM64T without VT-x	No EM64T
FT enabled	VT-x + swMMU	VT-x + swMMU	VT-x + swMMU	VT-x + swMMU	Not runnable	Not runnable	Not runnable
64-bit Guests	VT-x + EPT	VT-x + swMMU	VT-x + swMMU	VT-x + swMMU	VT-x + swMMU	Not Runnable	Not runnable
VMI enabled**	BT + swMMU	BT + swMMU	BT + swMMU	BT + swMMU	BT + swMMU	BT + swMMU	BT + swMMU
OpenServer UnixWare	VT-x + EPT	VT-x + swMMU	VT-x + swMMU	VT-x + swMMU	VT-x + swMMU	BT + swMMU	BT + swMMU
OS/2	VT-x + EPT	VT-x + swMMU	VT-x + swMMU	VT-x + swMMU	VT-x + swMMU	Not Runnable	Not Runnable
32-bit Linux 32-bit FreeBSD	VT-x + EPT	VT-x + swMMU	BT + swMMU (*)	BT + swMMU (*)	BT + swMMU (*)	BT + swMMU	BT + swMMU
32-bit Windows: XP, Vista, Server 2003, Server 2008	VT-x + EPT	VT-x + swMMU	VT-x + swMMU	BT + swMMU (*)	BT + swMMU (*)	BT + swMMU	BT + swMMU
Windows 2000, NT, 95, 98, DOS, Netware, 32- bit Solaris	BT + swMMU (*)	BT + swMMU (*)	BT + swMMU (*)	BT + swMMU (*)	BT + swMMU (*)	BT + swMMU	BT + swMMU
Other 32-bit Guests	VT-x + EPT	VT-x + swMMU	VT-x + swMMU	VT-x + swMMU	VT-x + swMMU	BT + swMMU	BT + swMMU

Performance Help from the Hypervisor

Take advantage of new Hardware

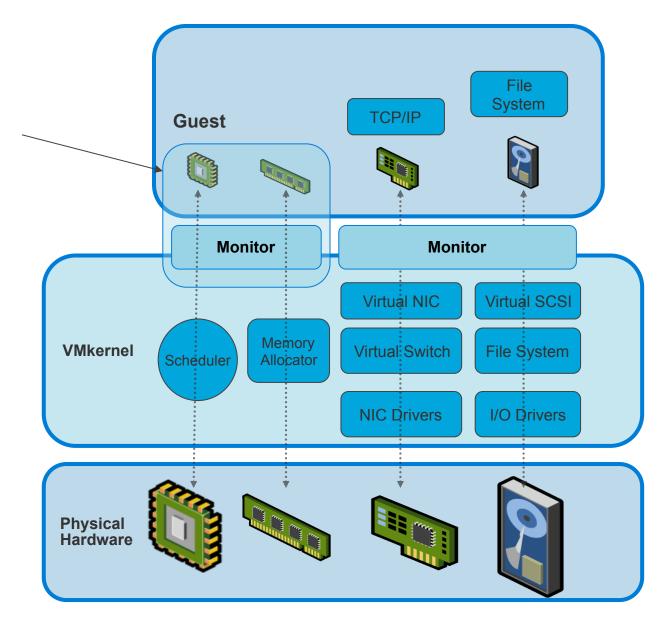
- Utilize multi-core systems easily without changing the app or OS
- Leverage 64-bit memory hardware sizes with existing 32-bit VMs
- Take advantage of newer high performance I/O + networking asynchronously from guest-OS changes/revs.

More flexible Storage

- More options for distributed, reliable boot
- Leverage low-cost, high performance NFS, iSCSI I/O for boot or data without changing the guest OS

Distributed Resource Management

- Manage Linux, Solaris, Windows with one set of metrics and tools
- Manage horizontal apps with cluster-aware resource management

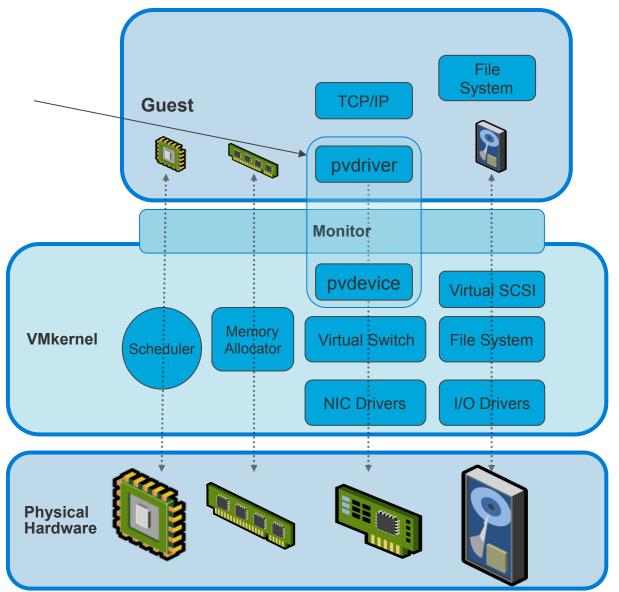

Paravirtualization extends the guest to allow direct interaction with the underlying hypervisor

Paravirtualization reduces the monitor cost including memory and System call operations.

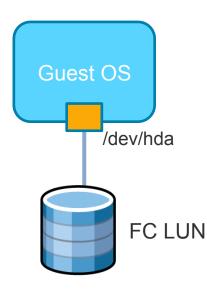
Gains from paravirtualization are workload specific

Hardware virtualization mitigates the need for some of the paravirtualization calls

VMware approach: VMI and paravirt-ops



Device Paravirtualization places A high performance virtualization-Aware device driver into the guest


Paravirtualized drivers are more CPU efficient (less CPU overhead for virtualization)

Paravirtualized drivers can also take advantage of HW features, like partial offload (checksum, large-segment)

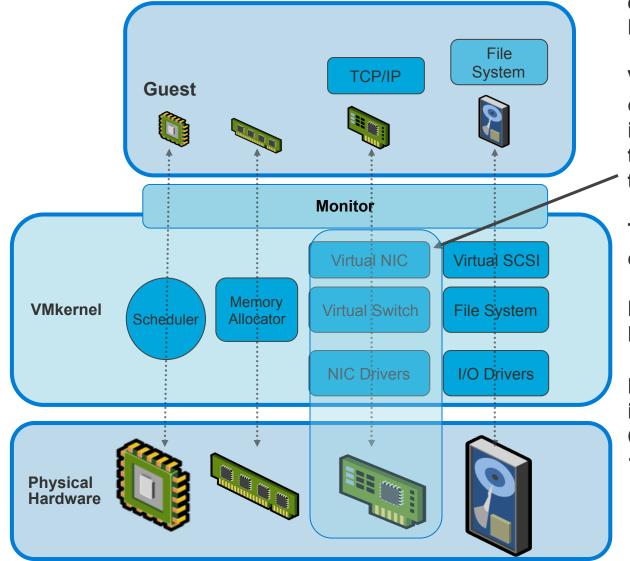
VMware ESX uses paravirtualized network drivers

Storage – Fully virtualized via VMFS and Raw Paths

Guest OS /dev/hda VMFS database1.vmdk database2.vmdk FC or iSCSI LUN

RAW

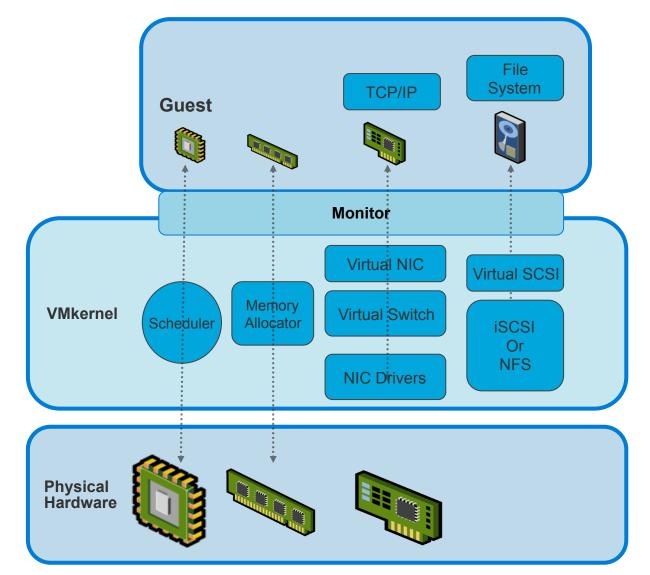
- RAW provides direct access to a LUN from within the VM
- Allows portability between physical and virtual
- RAW means more LUNs
 - More provisioning time
- Advanced features still work


Leverage templates and quick provisioning

Fewer LUNs means you don't have to watch Heap

- Scales better with Consolidated Backup
- Preferred Method

Optimized Network Performance


Network stack and drivers ere implemented in ESX layer (not in the guest)

VMware's strategy is to optimize the network stack in the ESX layer, and keep the guest 100% agnostic of the underlying hardware

This enables full-virtualization capabilities (vmotion etc)

ESX Stack is heavily Performance optimized

ESX Focus: stateless offload; including LSO (large segment Offload), Checksum offload, 10Gbe perf, Multi-ring NICs

iSCSI and NFS are growing To be popular, due to their low port/switch/fabric costs

Virtualization provides the ideal mechanism to transparently adopt iSCSI/NFS

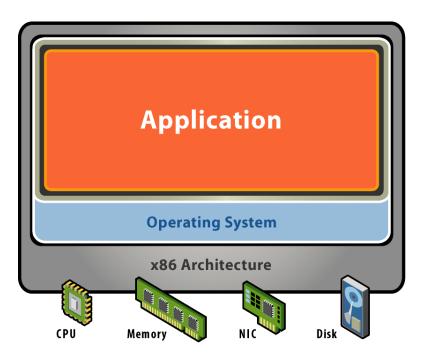
Guests don't need iSCSI/NFS Drivers: they continue to see SCSI

VMware ESX 3 provides high Performance NFS and iSCSI Stacks

Futher emphasis on 1Gbe/ 10Gbe performance

INTRODUCTION TO

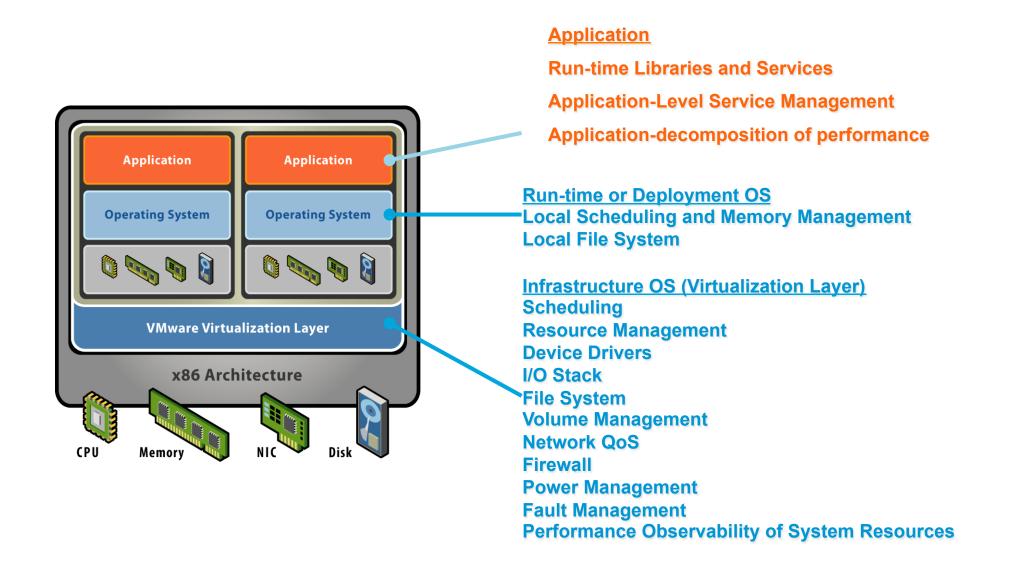
PERFORMANCE


MONITORING

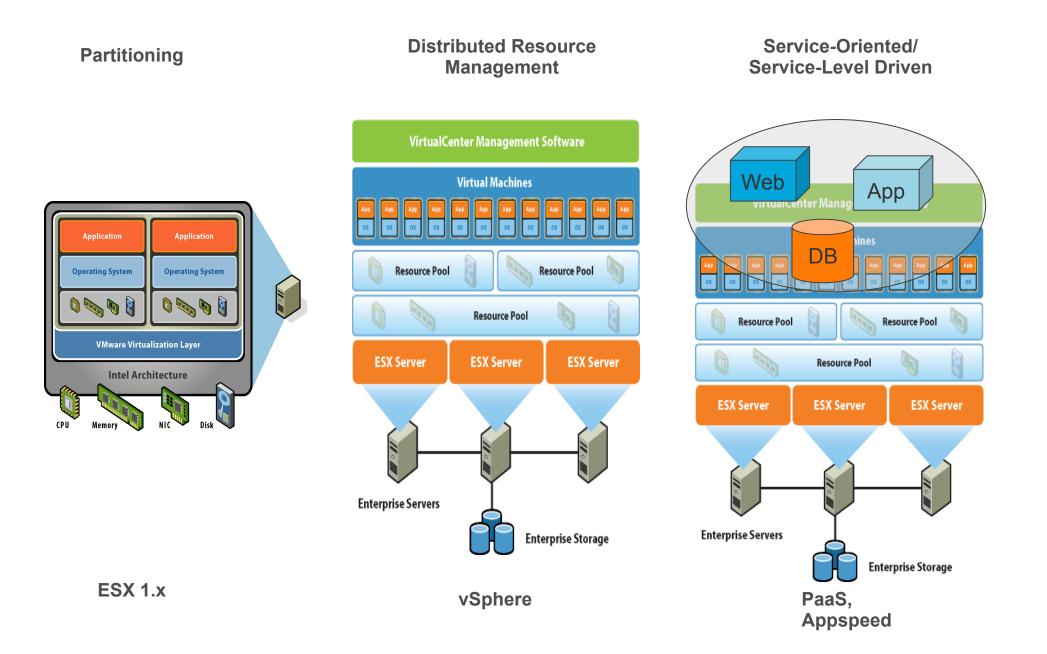
Traditional Architecture

Operating system performs various roles

- Application Runtime Libraries
- Resource Management (CPU, Memory etc)
- Hardware + Driver management



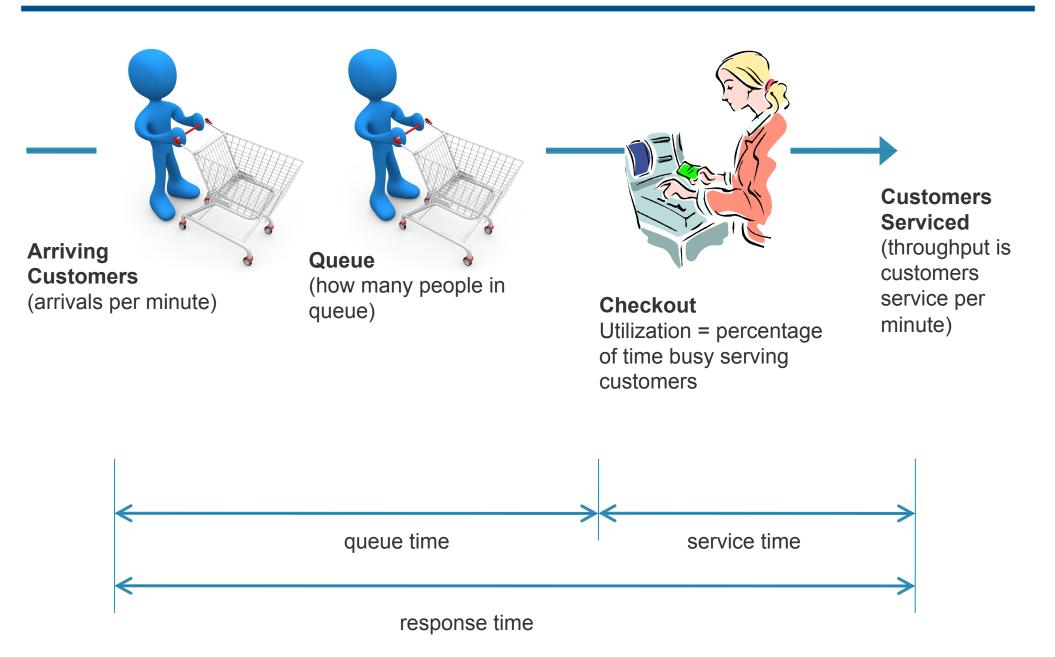
- > Performance & Scalability of the OS was paramount
- Performance Observability tools are a feature of the OS



Performance in a Virtualized World

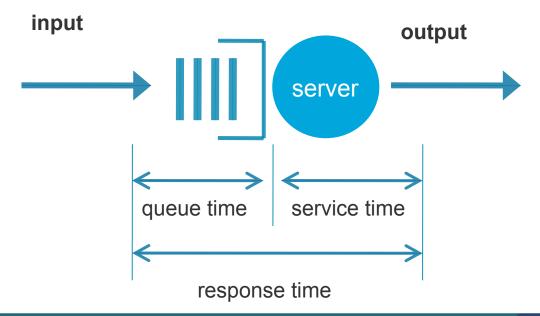
The OS takes on the role of a Library, Virtualization layer grows

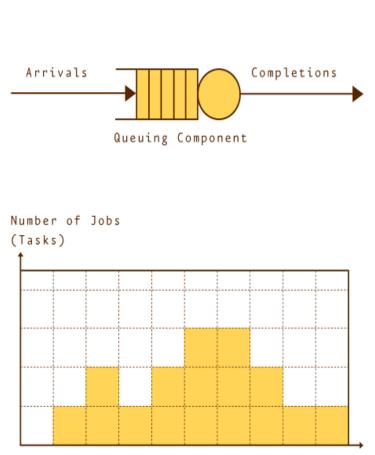
Performance Management Trends



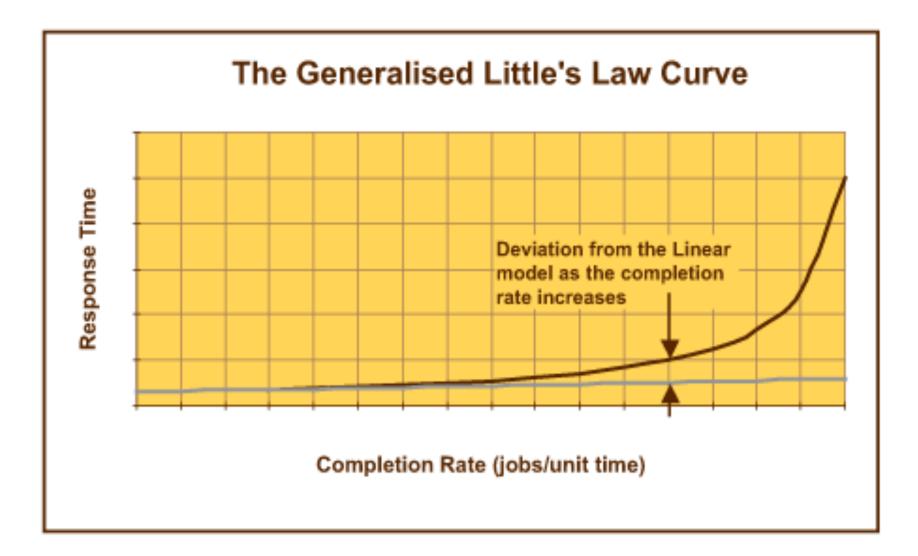
- Three basic performance measurement metrics:
 - Throughput: Transactions per/Sec, Instructions Retired per sec, MB/sec, IOPS, etc, ...
 - Latency: How long does it take
 - e.g., Response time

- Utilization: How much resource is consumed to perform a unit of work
- Latency and throughput are often inter-related, latency becomes important for smaller jobs


Throughput, Queues and Latency


Mathematical Representation, terms

Utilization = busy-time at server / time elapsed



The Buzen and Denning Method

Time

Metric	Symbol	Definition
Length of Observation	т	Total number of time units over which the observation has been made.
Arrivals	N	Total number of Arrivals over the length of observation.
Completions	с	Total number of Completions over the length of the observation.
Busy Time	В	The number of time units where the number of messages in the system exceeds zero.
Utilisation	U	The calculated value: $U = \frac{B}{T}$
Throughput	x	The calculated value: $X = \frac{C}{T}$
Mean Service Time	s	The calculated value: $S = \frac{B}{C}$
Execution Distribution	A	The calculated value: $A = \sum_{n=0}^{T} (Messagen)$
Mean Queue Length	L	The calculated value: $L = \frac{A}{T}$
Residence Time	RT	The calculated value: $RT = \frac{A}{C}$
Queuing Time	Q	The calculated value: RT – S

vmware[®]

Summary of Queuing and Measurements

Utilization is a measure of the resources, not quality of service

- We can measure utilization (e.g. CPU), but don't assume good response time
- Measuring service time and queuing (Latency) is much more important

Throughput shows how much work is completed only

- Quality of service (response time) may be compromised if there is queuing or slow service times.
- Make sure your key measurement indicators represent what constitutes good performance for your users
 - Measure end-user latency of users
 - Measure throughput and latency of a system

Common mistakes

- Measure something which has little to do with end-user happiness/performance
- Measure utilization only
- Measure throughput of an overloaded system with a simple benchmark, resulting in artificially high results since response times are bad

Potential Impacts to Performance

Virtual Machine Contributors Latency:

- CPU Overhead can contribute to latency
- Scheduling latency (VM runnable, but waiting...)
- Waiting for a global memory paging operation
- Disk Reads/Writes taking longer

Virtual machine impacts to Throughput:

- Longer latency, but only if the application is thread-limited
- Sub-systems not scaling (e.g. I/O)

Virtual machine Utilization:

• Longer latency, but only if the application is thread-limited

Pick the key measure

- Not always Utilization
- User response-time and throughput might be more important

It's sometimes possible to get better virtual performance

- Higher throughput: Can use multiple-VMs to scale up higher than native
- Memory sharing can reduce total memory footprint

Pick the right benchmark

- The best one is your real application
- Avoid micro-benchmarks: they often emphasize the wrong metric
 - especially in virtualized environments

Can trade-off utilization for latency

- Offloading to other CPUs can improve latency of running job at the cost of more utilization
- A good thing in light of multi-core

Latency and Throughput may be skewed by time

- If the time measurement is inaccurate, so will be the latency or throughput measurements
- Ensure that latency and throughput are measured from a stable time source

Time keeping in Native World

OS time keeping

- OS programs the timer hardware to deliver timer interrupts at specified frequency
- Time tracked by counting timer interrupts
- Interrupts are masked in critical section of the OS code
- Time loss is inevitable however rate of progress of time is nearly constant

Hardware time keeping

- TSC: Processor maintains Time Stamp Counter. Applications can query TSC (RDTSC instruction) for high precision time
 - Not accurate when processor frequency varies (e.g. Intel's Speedstep)

OS time keeping

- Time progresses in the guest with the delivery of virtual timer interrupts
- Under CPU over commitment timer interrupts may not be delivered to the guest at the requested rate
- Lost ticks are compensated with fast delivery of timer interrupts
 - Rate of progress of time is not constant (Time sync does not address this issue)

Hardware time keeping

- TSC: Guest OSes see pseudo-TSC that is based on physical CPU TSC
- TSC's may not be synchronized between physical CPUs
- RDTSC is unreliable if the VM migrates between physical CPUs or across host (Vmotion)

Native-VM Comparison Pitfalls (1 of 3)

- Guest reports clock speed of the underlying physical processor
 - Resource pool settings may limit the CPU clock cycles
 - Guest may not get to use the CPU all the time under contention with other virtual machines
- Guest reports total memory allocated by the user
 - This doesn't have to correspond to the actual memory currently allocated by the hypervisor

System Restor	e Automa	Automatic Updates	
ieneral	Computer Name	Hardware	Advanced
	SI	stem:	
		Microsoft Window	sXP
		Professional	22.0
		Version 2002	
		Service Pack 2	
	<mark>у</mark> в	egistered to:	
-	10	kicha	
		55274-641-30201	26-23159
	Co	mputer:	
		Intel(R) Core(TM)2	2 CPU
		T7200 @ 2.00G	Hz
		2.00 GHz, 764 MB	3 of RAM
		Physical Address	Extension

Native-VM Comparison Pitfalls (2 of 3)

Processor Utilization accounting

- Single threaded application can ping pong between CPUs
- CPU utilization reported in task manager is normalized per CPU
- Windows does not account idle loop spinning
- Available Memory
 - Available memory inside the guest may come from swap on the host

plications Pr	rocesses Performanc	e Networking	
-CPU Usage -	CPU Usage H	listory	
	num	MMM MMA	A
50 %			Ver MUNA
50 70			
PF Usage	Page File Usa	age History	
		ي و و و و و و و	
1.42 GB			,
-			
Totals		Physical Memory (
Totals Handles	40148	Total	2096652
Totals Handles Threads	757	Total Available	2096652 522976
Totals Handles	1.2.2.2.2	Total	2096652
Totals Handles Threads	757 74	Total Available	2096652 522976 540812
Totals Handles Threads Processes	757 74	Total Available System Cache	2096652 522976 540812
Totals Handles Threads Processes Commit Char	757 74 ge (K)	Total Available System Cache Kernel Memory (K	2096652 522976 540812

Native-VM Comparison Pitfalls (3 of 3)

Hardware setup and configuration differences

- Processor: Architecture, cache, clock speed
 - Performance difference between different architecture is quite substantial
 - L2, L3 cache size impacts performance of some workload
 - · Clock speed becomes relevant only when the architecture is the same
- Disk : Local dedicated disk versus shared SAN
 - Incorrect SAN configuration could impact performance
- File system: Local file system versus Distributed VMFS
 - Distributed file systems (VMFS) have locking overhead for metadata updates
- Network: NIC adapter class, driver, speed/duplex
- → Slower hardware can outperform powerful hardware when the latter shares resources with more than one OS/Application

Virtualized World Implications

Guest OS metrics

- Performance metrics in the guest could be skewed when the rate of progress of time is skewed
- Guest OS resource availability can give incorrect picture

Resource availability

- Resources are shared, hypervisors control the allocation
- Virtual machines may not get all the hardware resources

Performance Profiling

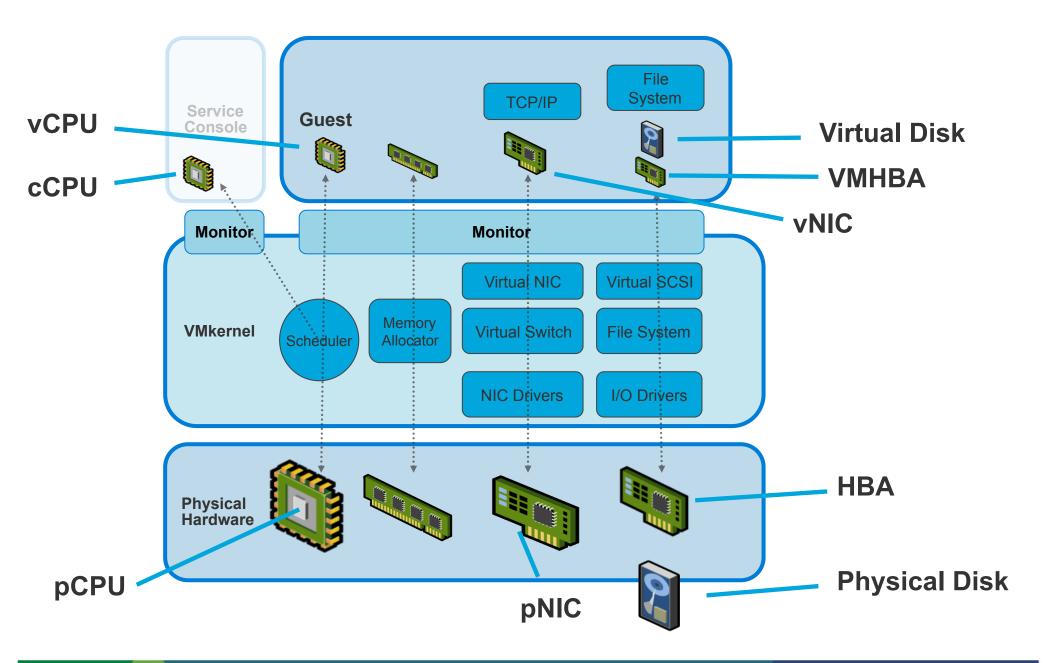
- Hardware performance counters are not virtualized
- Applications cannot use hardware performance counters for performance profiling in the guest

Virtualization moves performance measurement and management to the hypervisor layer

Approaching Performance Issues

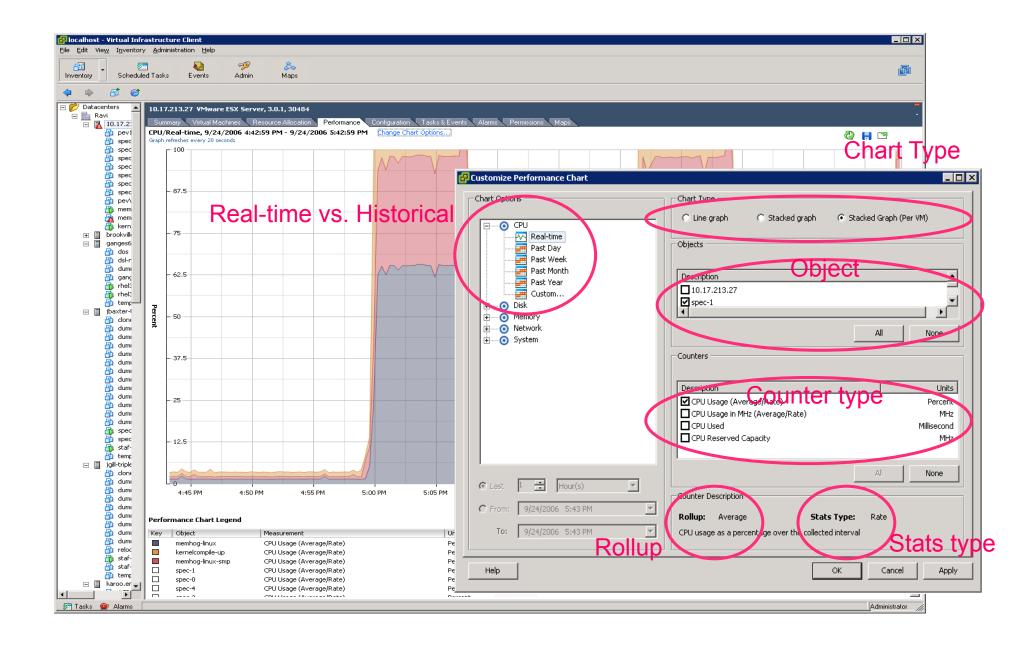
- Make sure it is an apples-to-apples comparison
- Check guest tools & guest processes
- Check host configurations & host processes
- Check VirtualCenter client for resource issues
- Check esxtop for obvious resource issues
- Examine log files for errors
- If no suspects, run microbenchmarks (e.g., lometer, netperf) to narrow scope
- Once you have suspects, check relevant configurations
- If all else fails...discuss on the Performance Forum

Tools for Performance Analysis


VirtualCenter client (VI client):

- Per-host and per-cluster stats
- Graphical Interface
- Historical and Real-time data
- esxtop: per-host statistics
 - Command-line tool found in the console-OS
- SDK
 - Allows you to collect only the statistics they want

All tools use same mechanism to retrieve data (special vmkernel calls)

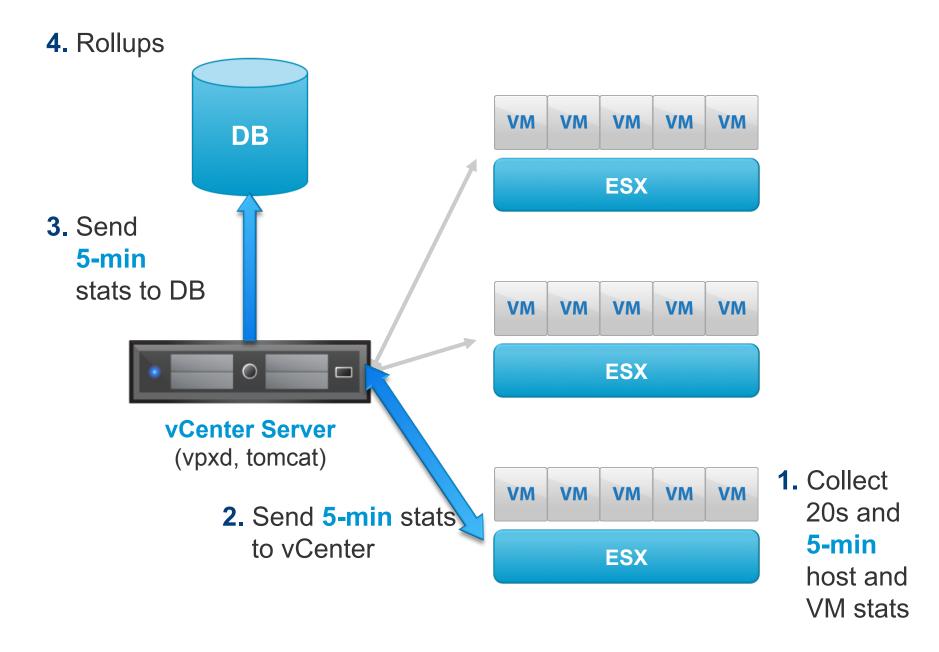


Important Terminology

vmware[®]

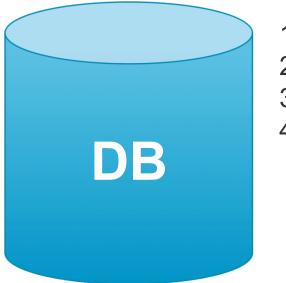
VI Client

vmware[®]


VI Client

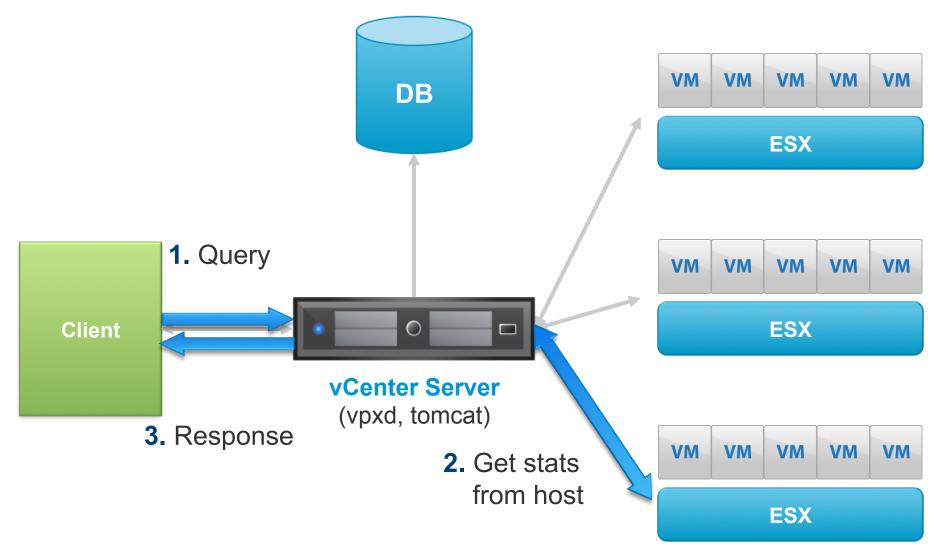
- Real-time vs. archived statistics (past hour vs. past day)
- Rollup: representing different stats intervals
- Stats Type: rate vs. number
- Objects (e.g., vCPU0, vCPU1, all CPUs)
- Counters (e.g., which stats to collect for a given device)
- Stacked vs. Line charts

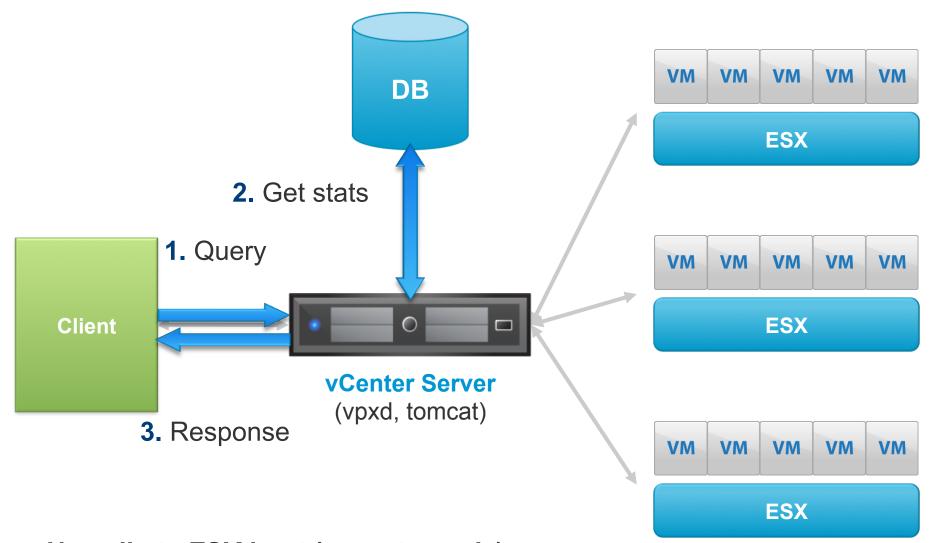
VirtualCenter stores statistics at different granularities


Time Interval	Data frequency	Number of samples
Past Hour (real-time)	20s	180
Past Day	5 minutes	288
Past Week	15 minutes	672
Past Month	1 hour	720
Past Year	1 day	365

Stats Infrastructure in vSphere

vmware[®]


Rollups


- 1. Past-Day (5-minutes) \rightarrow Past-Week
- 2. Past-Week (30-minutes) \rightarrow Past-Month
- 3. Past-Month (2-hours) \rightarrow Past-Year
- 4. (Past-Year = 1 data point per day)

DB only archives historical data

- Real-time (i.e., Past hour) NOT archived at DB
- Past-day, Past-week, etc. \rightarrow Stats Interval
- Stats Levels ONLY APPLY TO HISTORICAL DATA

No calls to DB Note: Same code path for past-day stats within last 30 minutes

No calls to ESX host (caveats apply) Stats Level = Store this stat in the DB

Stats type

• Statistics type: rate vs. delta vs. absolute

Statistics type	Description	Example	
Rate	Value over the current interval	CPU Usage (MHz)	
Delta	Change from previous interval	CPU Ready time	
Absolute	Absolute value (independent of interval)	Memory Active	
		vn	ware

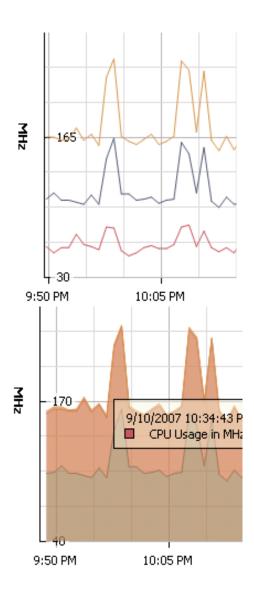
Objects and Counters

Objects: instances or aggregations of devices

• Examples: VCPU0, VCPU1, vmhba1:1:2, aggregate over all NICs

Counters: which stats to collect

- Examples:
 - CPU: used time, ready time, usage (%)
 - NIC: network packets received
 - Memory: memory swapped


Stacked vs. Line charts

Line

Each instance shown separately

Stacked

- Graphs are stacked on top of each other
- Only applies to certain kinds of charts, e.g.:
 - Breakdown of Host CPU MHz by Virtual Machine
 - Breakdown of Virtual Machine CPU by VCPU

esxtop

What is esxtop ?

- Performance troubleshooting tool for ESX host
- Displays performance statistics in rows and column format

Fields

10:55:46am up 43 days 23:51, 61 worlds; CPU load average: 0.01, 0.01, 0.01 PCPU(%): 2.54, 1.70, 1.82, 1.16; used total: 1.80 CCPU(%): 0 us, 0 sy, 97 id, 2 wa; cs/sec: 77

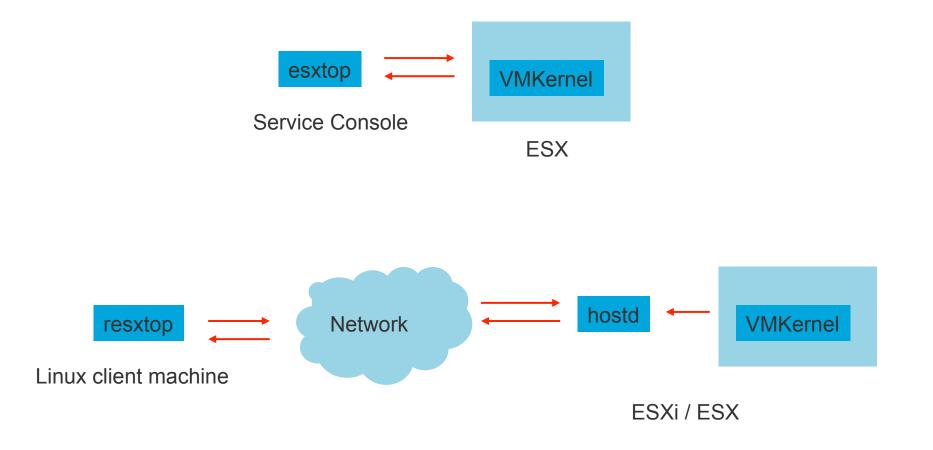
ID	GID	NAME	NWLD	%USED	%RUN	%SYS	%WAIT	%RDY	%IDLE	%ovr
1	1	idle	4	395.54	395.97	0.00	0.00	6.71	0.00	0.
2	2	system	6	0.01	0.01	0.00	600.00	0.00	0.00	ο.
6	6	helper	22	0.01	0.01	0.00	2200.00	0.01	0.00	ο.
7	7	drivers	11	0.01	0.01	0.00	1100.00	0.00	0.00	ο.
9	9	console	1	1.07	1.08	0.00	99.00	0.60	98.98	Ο.
14	14	vmkapimod	2	0.00	0.00	0.00	200.00	0.00	0.00	ο.
15	15	vmware-vmkauthd	1	0.00	0.00	0.00	100.00	0.00	0.00	Ο.
16	16	Windows 2003 SP	7	4.28	4.28	0.01	699.85	0.54	196.53	ο.
17	17	SQL2005	7	1.41	1.41	0.01	700.00	0.27	199.79	ο.

Entities -running worlds in this case

esxtop FAQ

Where to get it?

- Comes pre-installed with ESX service console
- Remote version of esxtop (resxtop) ships with the Remote Command Line interface (RCLI) package


What are its intended use cases?

- Get a quick overview of the system
- Spot performance bottlenecks

What it is not meant for ?

• Not meant for long term performance monitoring, data mining, reporting, alerting etc. Use VI client or the SDK for those use cases

What is the difference between esxtop and resxtop

Performance statistics

- Some are static and don't change during runtime, for example MEMSZ (memsize), VM Name etc
- Some are computed dynamically, for example CPU load average, memory over-commitment load average etc
- Some are calculated from the delta between two successive snapshots. Refresh interval (-d) determines the time between successive snapshots
 - for example %CPU used = (CPU used time at snapshot 2 CPU used time at snapshot 1) / time elapsed between snapshots

esxtop modes

Interactive mode (default)

- Shows data in the screen and accepts keystrokes
- Requires TERM=xterm

Batch mode (-b)

- Dumps data to stdout in CSV format
- Dumps default fields or fields stored in the configuration file

Replay mode (-R)

• Replays data from vm-support performance snapshot

esxtop interactive mode

Global commands

- space update display
- s set refresh interval (default 5 secs)
- f select fields (context sensitive)
- W save configuration file (~/.esxtop3rc)
- V view VM only
- oO Change the order of displayed fields (context sensitive)
- ? help (context sensitive)
- ^L redraw screen
- q quit

Screens

- c: cpu (default)
- m: memory
- n: network
- d: disk adapter
- u: disk device (added in ESX 3.5)
- v: disk VM (added in ESX 3.5)
- i: Interrupts (new in ESX 4.0)
- p: power management (new in ESX 4.1)

Time	Uptime runr	ning work	ds							
8:34:56am PCPU(%):	3.78, 2.31, 1.	89, 4.	63; i	oad avera sed total	.: 3.1	15	0.11			
CCPU (~):	0 us, 0 sy, 100	1d, 0	wa ;	cs/sec	::	75				
ID	GID NAME	NWLD	%USED	%RUN	%SYS	%WAIT	%RDY	%IDLE	%OVRLP	%CSTP
A	1 idle	4	390.25	390.81	0.00	0.00	11.86	0.00	0.00	0.00
2	2 system	6	0.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00
6	6 helper	22	0.01	0.01	0.00	2200.00	0.01	0.00	0.00	0.00
7	7 drivers	11	0.01	0.01	0.00	1100.00	0.00	0.00	0.00	0.00
9	9 console	1	0.56	0.56	0.00	99.93	0.18	99.92	0.04	0.00
14	14 vmkapimod	2	0.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00
15	15 vmware-vmkauth	d 1	0.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00
16	16 Windows 2003 S	P 7	2.91	2.90	0.01	700.00	0.64	198.16	0.17	0.00
17	17 SQL2005	7	1.58	1.57	0.02	700.00	0.50	199.59	0.13	0.00

fields hidden from the view...

Worlds = VMKernel processes
ID = world identifier
GID = world group identifier
NWLD = number of worlds

%ML

press 'e' key

ID	GID	MAME	NWLD	%USED	%RUN	%SYS	%WAIT	%RDY	%IDLE	%OVRLP	%CSTP	%ML
1	1	idle	4	386.38	387.21	0.00	0.00	12.14	0.00	0.00	0.00	0
2	2	system	6	0.01	0.01	0.00	599.02	0.00	0.00	0.00	0.00	0
6	6	helper	22	0.00	0.00	0.00	2196.41	0.00	0.00	0.00	0.00	0
7	7	drivers	11	0.01	0.01	0.00	1098.20	0.00	0.00	0.00	0.00	0
9	9	console	1	0.47	0.51	0.00	99.21	0.12	99.21	0.05	0.00	0
14	14	vmkapimod	2	0.00	0.00	0.00	199.67	0.00	0.00	0.00	0.00	0
15	15	vmware-vmkauthd	1	0.00	0.00	0.00	99.84	0.00	0.00	0.00	0.00	0
16	16	Windows 2003 SP	7	3.81	3.81	0.01	694.29	0.76	195.39	0.13	0.00	0
1078	17	vmware-vmx	1	0.05	0.05	0.00	99.77	0.01	0.00	0.00	0.00	0
1079	17	vmm0:SQL2005	1	0.74	0.74	0.01	98.96	0.14	98.87	0.04	0.00	0
1080	1	vmm1:SQL2005	1	0.44	0.44	0.00	99.14	0.26	99.04	0.03	0.00	0
1081	1	vmware-vmx	1	0.00	0.00	0.00	99.83	0.00	0.00	0.00	0.00	0
1082	1/1	mks:SQL2005	1	0.13	0.13	0.00	99.60	0.11	0.00	0.03	0.00	0
1083	17	vcpu-0:SQL2005	1	0.01	0.01	0.00	99.83	0.00	0.00	0.00	0.00	0
1084	17	vcpu-1:SQL2005	1	0.01	0.01	0.00	99.83	0.00	0.00	0.00	0.00	0
18	18	vc server	7	1.08	1.08	0.00	697.45	0.33	198.40	0.16	0.00	0

•In rolled up view stats are cumulative of all the worlds in the group

•Expanded view gives breakdown per world

•VM group consists of mks, vcpu, vmx worlds. SMP VMs have additional vcpu and vmm worlds

•vmm0, vmm1 = Virtual machine monitors for vCPU0 and vCPU1 respectively

esxtop replay mode

To record esxtop data

vm-support -S -d <duration>

To replay

- tar xvzf vm-support-dump.tgz
- cd vm-support-*/
- esxtop -R ./ (esxtop version should match)

		Current time						
4:40:47a PCPU(%): CCPU(%):	am up 4 10.94 0 us	2015년 - 한동일 전 2019 12 12 12 12 12 12 12 12 12 12 12 12 12	B, 2.		oad averag sed total: cs/sec:	5.0		0.04
ID	GID	NAME	NWLD	%USED	%RUN	%SYS	%WAIT	%RDY
1	1	idle	4	379.00	379.69	0.00	0.00	19.43
2	2	system	6	0.01	0.01	0.00	598.89	0.00
6	6	helper	22	0.16	0.16	0.00	2194.82	0.16
7	7	drivers	11	0.01	0.01	0.00	1098.32	0.00
9	9	console	1	9.17	9.23	0.01	90.11	0.43
14	14	vmkapimod	2	0.00	0.00	0.00	199.94	0.00
15	15	vmware-vmkauthd	1	0.00	0.00	0.00	99.97	0.00
16	16	Windows 2003 SP	7	3.39	3.39	0.02	695.68	0.72
17	17	SQL2005	7	1.33	1.32	0.01	698.04	0.40
18	18	vc server	7	0.98	0.97	0.01	698.57	0.25
19	19	Conductor	5	2.74	2.72	0.03	496.34	0.79
20	20	fakeDB	7	1.30	1.30	0.00	698.14	0.33
*** Read	stats	from ./snapshot:	s/vsi/v	si.2 ***				

Batch mode (-b)

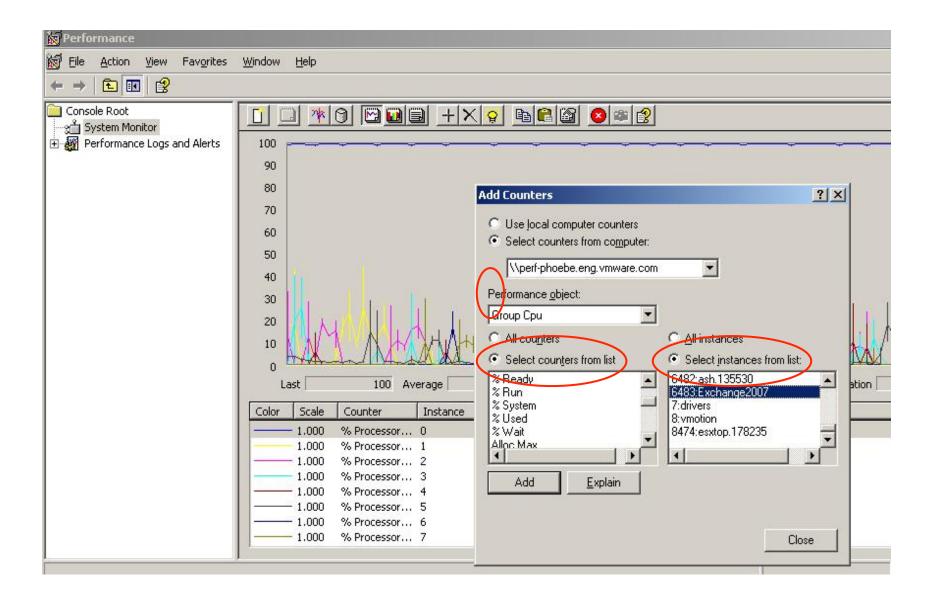
- Produces windows perfmon compatible CSV file
- CSV file compatibility requires fixed number of columns on every row statistics of VMs/worlds instances that appear after starting the batch mode are not collected because of this reason
- Only counters that are specified in the configuration file are collected, (-a) option collects all counters
- Counters are named slightly differently

To use batch mode

esxtop -b > esxtop_output.csv

To select fields

- Run esxtop in interactive mode
- Select the fields
- Save configuration file ('w' key)

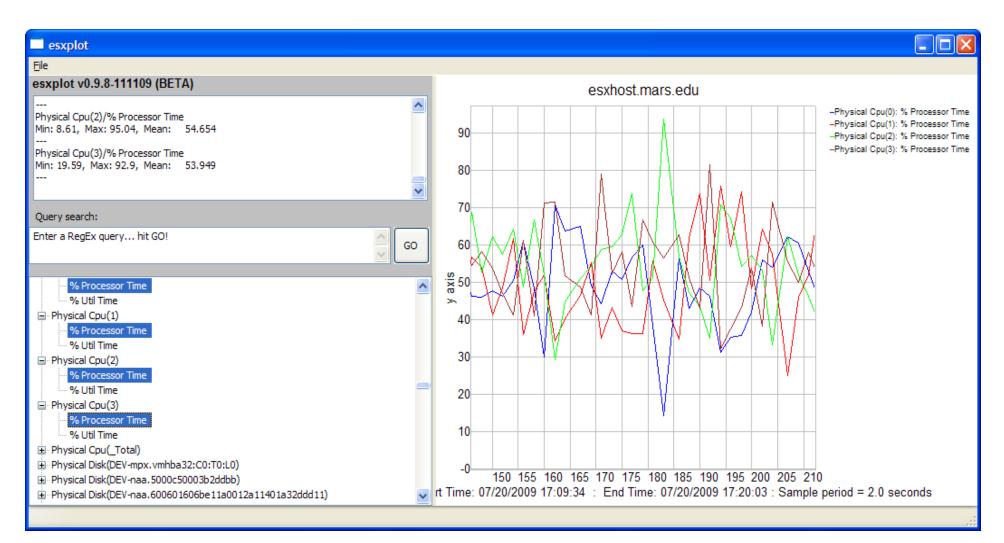

To dump all fields

esxtop -b -a > esxtop_output.csv

esxtop batch mode – importing data into perfmon

k Performance		
👹 Eile Action View Favorites	Window	Help
← → 1 🗈 🔢 🔮		
Console Root Console Root System Monitor Merformance Logs and Alerts	100	
	90	System Monitor Properties
	80	General Source Data Graph Appearance Data source C <u>C</u> urrent activity
	70	Log files: C:\esxtop_data.csv
	60 50	
	40	Add
	30	C Database: System DSN:
	20	
4	10	

Trimming data


General	Monitor Proper	a Graph Appeara	ince	
C	a source Current activity Log files:			
	C:\esxtop_bate	h.csv		
	A <u>d</u> d	Remove		
C	Data <u>b</u> ase: System DS <u>N</u> :	[
	Log <u>s</u> et:	 		
	ne Range	Total range	10	2 F0 PM
	52:44 PM /11/2009			3:58 PM 1/2009
	J 1:00:53 7/11/3		1:16:07 PM 7/11/2009	
		ОК	Cancel	Apply

Saving data after trim

esxplot

<u>http://labs.vmware.com/flings/esxplot</u>

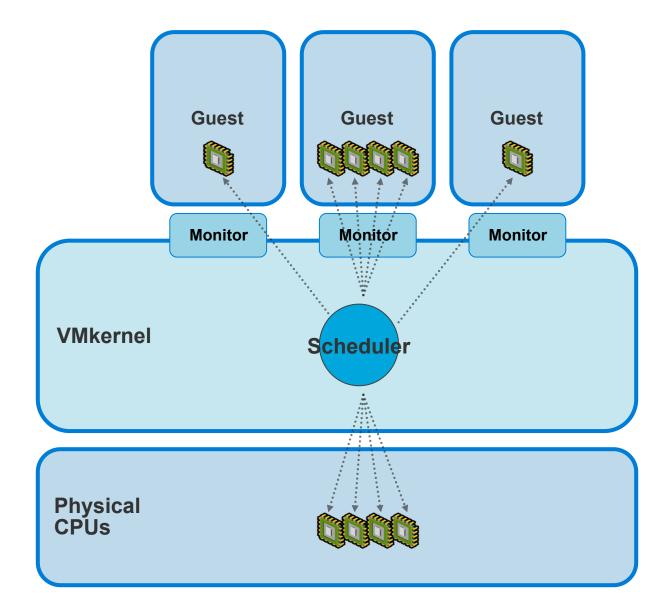
- Use the VIM API to access statistics relevant to a particular user
- Can only access statistics that are exported by the VIM API (and thus are accessible via esxtop/VI client)

Conclusions

Always Analyze with a Latency approach

- Response time of user
- Queuing for resources in the guest
- Queuing for resources in vSphere
- Queing for resources outside of the host (SAN, NAS etc)

These tools are useful in different contexts


- Real-time data: esxtop
- Historical data: VirtualCenter
- Coarse-grained resource/cluster usage: VirtualCenter
- Fine-grained resource usage: esxtop

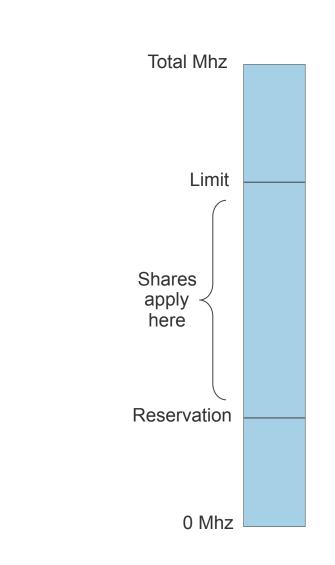
CPU

CPUs and Scheduling

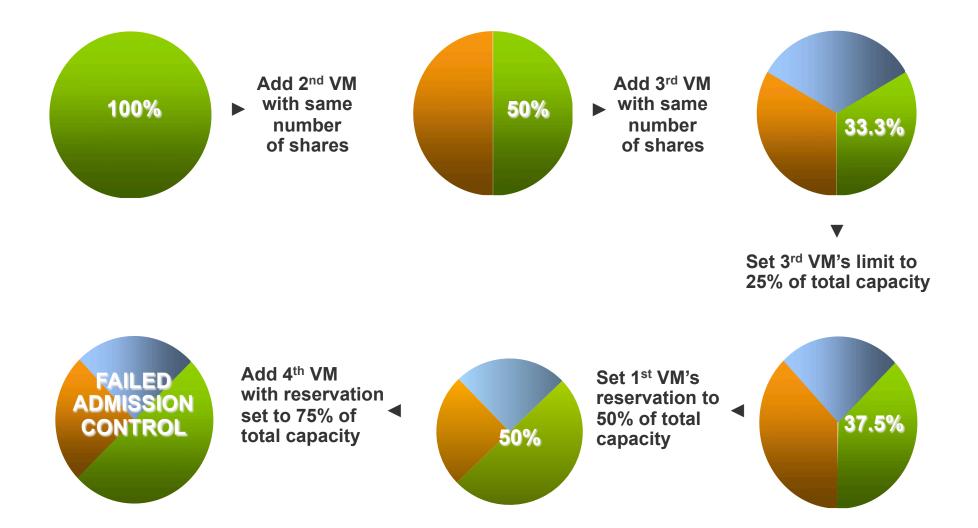
- Schedule virtual CPUs on physical CPUs
- Virtual time based proportionalshare CPU scheduler
- Flexible and accurate rate-based controls over CPU time allocations
- NUMA/processor/cache topology aware
- Provide graceful degradation in over-commitment situations
- High scalability with low scheduling latencies
- Fine-grain built-in accounting for workload observability
- Support for VSMP virtual machines

Resource Controls

Reservation


- Minimum service level guarantee (in MHz)
- Even when system is overcommitted
- Needs to pass admission control

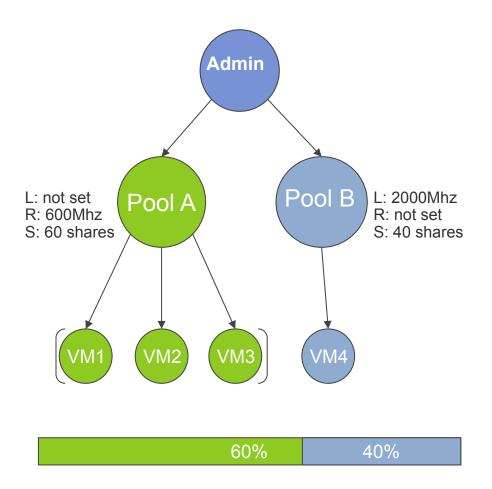
Shares

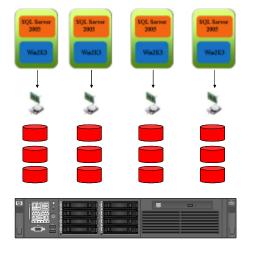

- CPU entitlement is directly proportional to VM's shares and depends on the total number of shares issued
- Abstract number, only ratio matters

Limit

- Absolute upper bound on CPU entitlement (in MHz)
- Even when system is not overcommitted

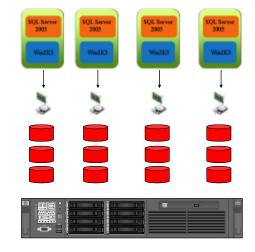
Resource Control Example

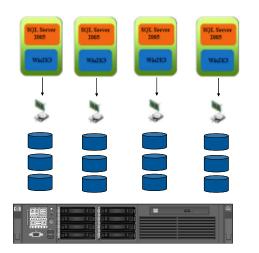



Resource Pools

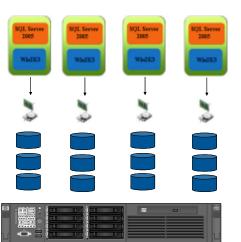
Motivation

- Allocate aggregate resources for sets of VMs
- Isolation between pools, sharing within pools
- Flexible hierarchical organization
- Access control and delegation
- What is a resource pool?
 - Abstract object with permissions
 - Reservation, limit, and shares
 - Parent pool, child pools and VMs
 - Can be used on a stand-alone host or in a cluster (group of hosts)

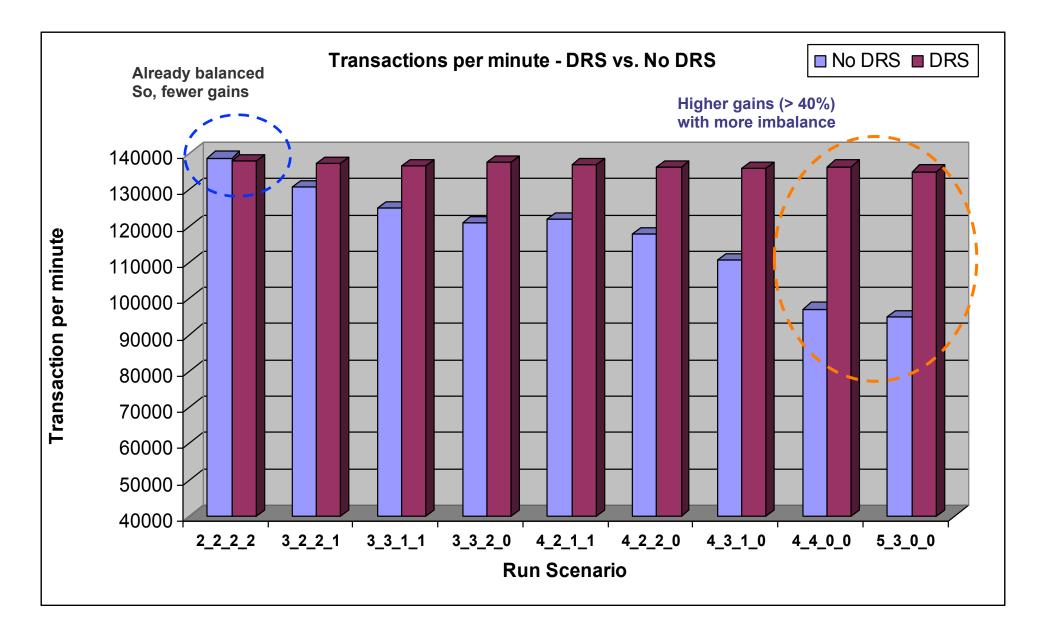



Example migration scenario 4_4_0_0 with DRS

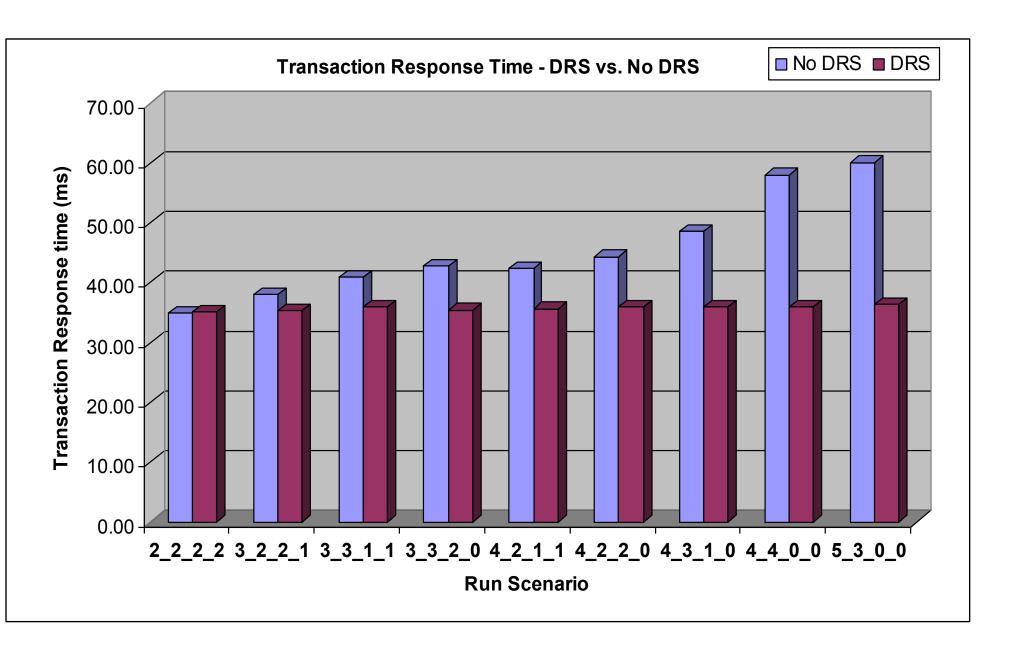
vCenter



In Eladamocecci C Clisteter


Heavy Load

Lighter Load

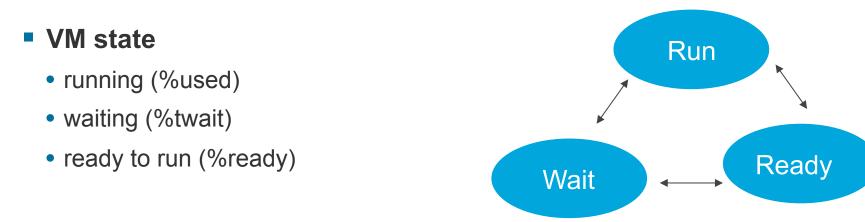


DRS Scalability – Transactions per minute

DRS Scalability – Application Response Time

(Lower the better)

ESX CPU Scheduling States


World states (simplified view):

- ready = ready-to-run but no physical CPU free
- run = currently active and running
- wait = blocked on I/O

Multi-CPU Virtual Machines => gang scheduling

- Co-run (latency to get vCPUs running)
- Co-stop (time in "stopped" state)

When does a VM go to "ready to run" state

- Guest wants to run or need to be woken up (to deliver an interrupt)
- CPU unavailable for scheduling the VM

Factors affecting CPU availability

- · CPU overcommitment
 - . Even Idle VMs have to be scheduled periodically to deliver timer interrupts
- · NUMA constraints
 - · NUMA node locality gives better performance
- · Burstiness Inter-related workloads
 - Tip: Use host anti affinity rules to place inter related workloads on different hosts
- · Co-scheduling constraints
- · CPU affinity restrictions

Fact: Ready time could exist even when CPU usage is low

Problem Indication

- Response Times, Latency contributors
- Queuing

Headroom Calculation

• Measure Utilization, predict headroom

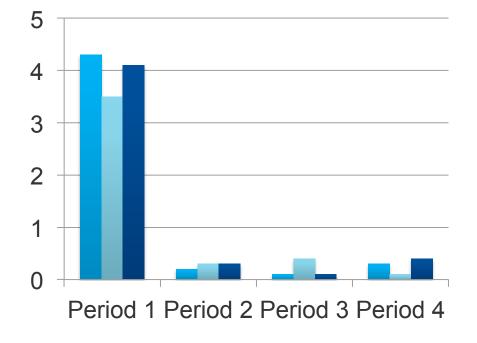
Capacity Prediction

• If I have n users today, how much resource is needed in the future?

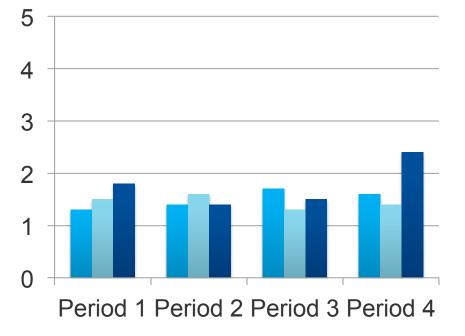
Service Level Prediction

- Predict the effect of response time changes
- Resource or Load changes

Myths and Fallacies

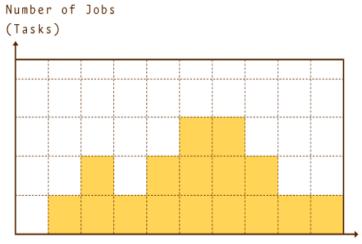

High CPU utilization is an indicator of a problem

• Not always: Single threaded compute intensive jobs operate quite happily at 100%


Less than 100% CPU means service is good (false)

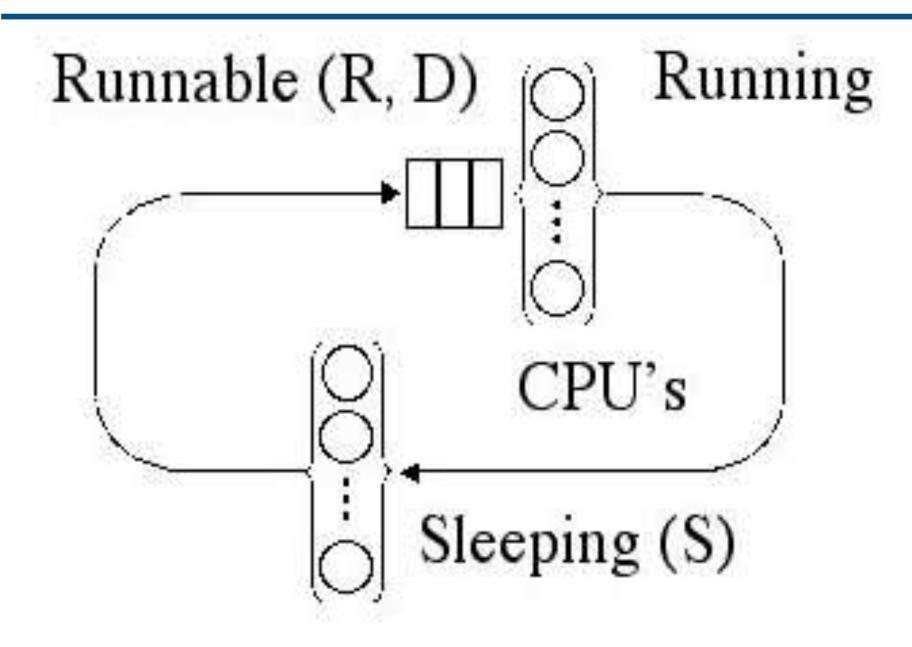
• Not always: Bursty transaction oriented workloads follow littles-law curve, which limits effective utilization to a lower number

Consider these two workloads


Utilization is 25% Average Response time is high

Utilization is 25% Average Response time is low

The Buzen and Denning Method

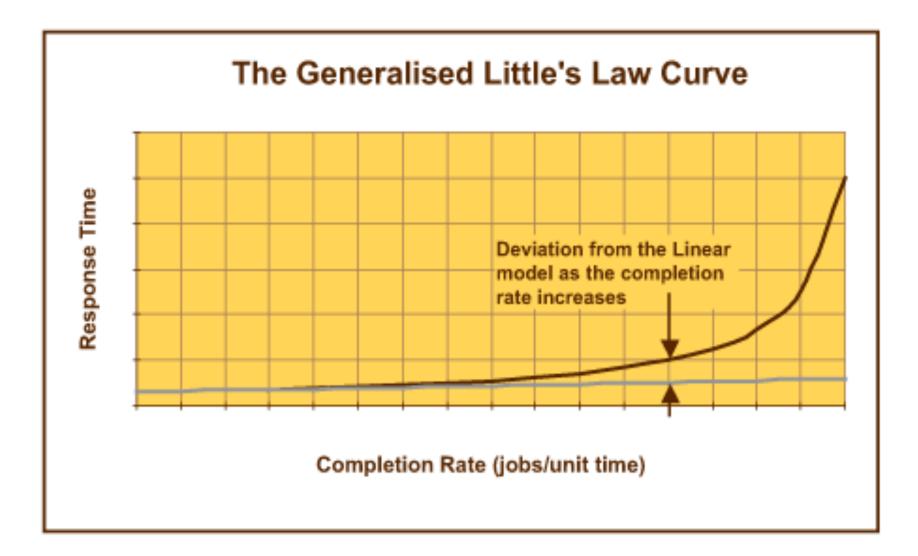


Time

Metric	Symbol	Definition
Length of Observation	т	Total number of time units over which the observation has been made.
Arrivals	N	Total number of Arrivals over the length of observation.
Completions	с	Total number of Completions over the length of the observation.
Busy Time	В	The number of time units where the number of messages in the system exceeds zero.
Utilisation	U	The calculated value: $U = \frac{B}{T}$
Throughput	x	The calculated value: $X = \frac{C}{T}$
Mean Service Time	s	The calculated value: $S = \frac{B}{C}$
Execution Distribution	A	The calculated value: $A = \sum_{n=0}^{T} (Messages)$
Mean Queue Length	L	The calculated value: $L = \frac{A}{T}$
Residence Time	RT	The calculated value: $RT = \frac{A}{C}$
Queuing Time	Q	The calculated value: RT – S

Simple model of the Scheduler

CPU and Queuing Metrics


How much CPU is too much?

- It's workload dependent.
- The only reliable metrics is to calculate how much time a workload waits in a queue for CPU
- This must be a measure of guest-level threads (not VMkernel)

Which is better – a faster CPU or more CPUs?

- Typical question in the physical world
- Question for us: will additional vCPUs help?

Tools for diagnosing CPU performance: VI Client

Basic stuff

- CPU usage (percent)
- CPU ready time (but ready time by itself can be misleading)

Advanced stuff

- · CPU wait time: time spent blocked on IO
- CPU extra time: time given to virtual machine over reservation
- CPU guaranteed: min CPU for virtual machine

Cluster-level statistics

- · Percent of entitled resources delivered
- Utilization percent
- Effective CPU resources: MHz for cluster

CPU capacity

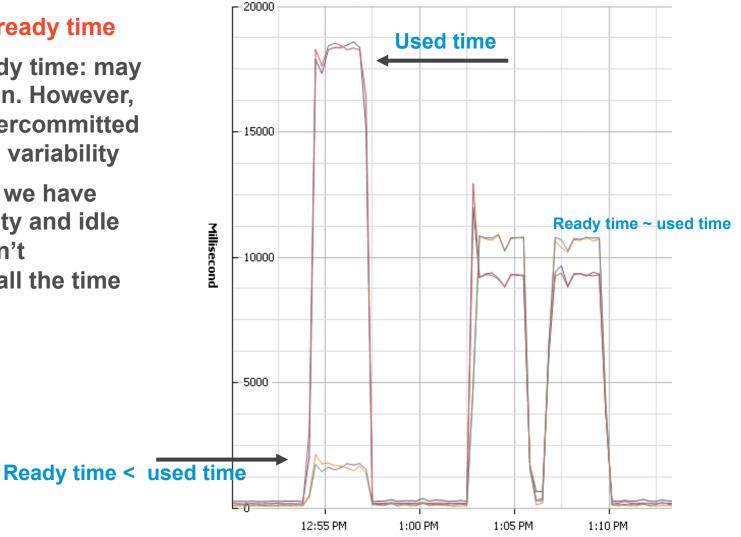
How do we know we are maxed out?

- If VMs are waiting for CPU time, maybe we need more CPUs.
- To measure this, look at CPU *ready time*.

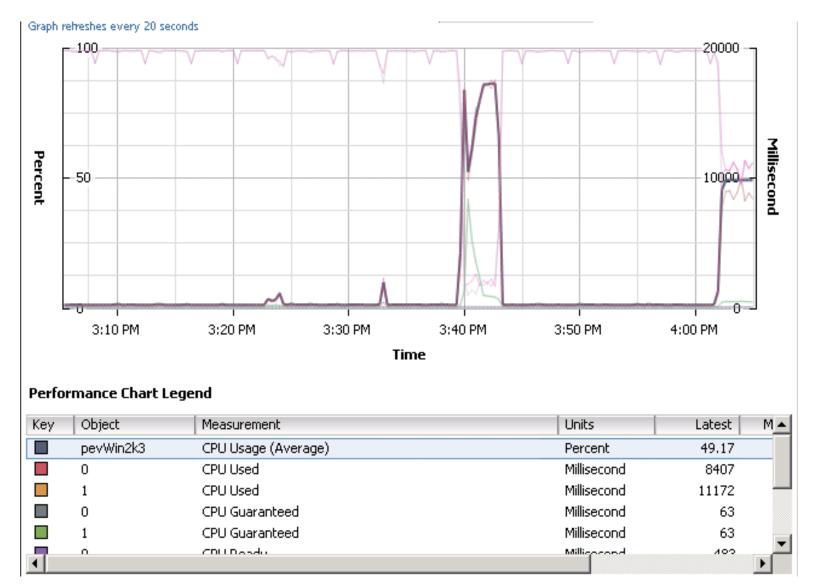
What exactly am I looking for?

- For each host, collect *ready time* for each VM
- Compute %ready time for each VM (ready time/sampling interval)
- If average *%ready time* > 50%, probe further

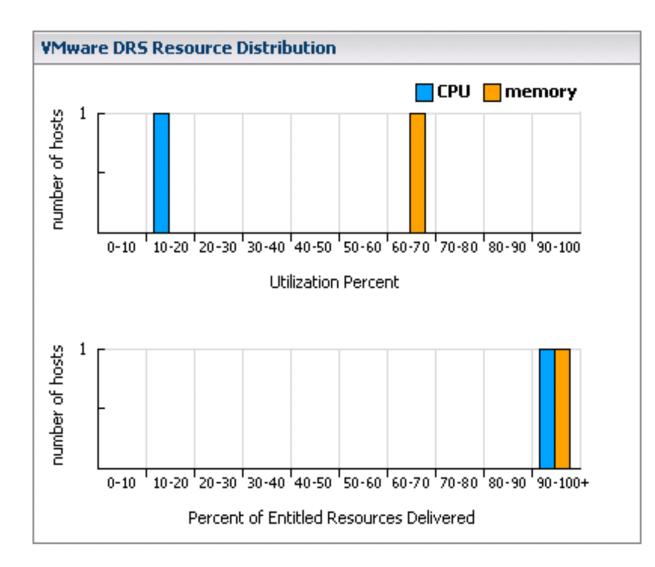
Possible options


- DRS could help optimize resources
- Change share allocations to de-prioritize less important VMs
- More CPUs may be the solution

(screenshot from VI Client)


Some caveats on ready time

- Used time ~ ready time: may signal contention. However, might not be overcommitted due to workload variability
- In this example, we have periods of activity and idle periods: CPU isn't overcommitted all the time



vmware[®]

VI Client CPU screenshot

Note CPU milliseconds and percent are on the same chart but use different axes

 Utilization % describes available capacity on hosts (here: CPU usage low, memory usage medium)

 % Entitled resources delivered: best if all 90-100+.

CPU performance analysis: esxtop

- PCPU(%): CPU utilization
- Per-group stats breakdown
 - %USED: Utilization
 - %RDY: Ready Time
 - %TWAIT: Wait and idling time
- Co-Scheduling stats (multi-CPU Virtual Machines)
 - %CRUN: Co-run state
 - %CSTOP: Co-stop state
- Nmem: each member can consume 100% (expand to see breakdown)
- Affinity
- HTSharing

PCPU(%): CCPU(%):	2.54, 1.70, 1.82 O us, O sy, 97 id	0	.16; u wa;	sed total: cs/sec:		77			
ID	GID NAME	NWLD	%USED	%RUN	%SYS	%WAIT	%RDY	%IDLE	%0VR
1	1 idle	4	395.54	395.97	0.00		6.71	0.00	0.
2	2 system	6	0.01	0.01	0.00		0.00	0.00	Ο.
2 6 7	6 helper	22	0.01	0.01		2200.00	0.01	0.00	ο.
	7 drivers	11	0.01	0.01		1100.00	0.00	0.00	0.
9	9 console	1	1.07	1.08	0.00		0.60	98.98	0.
14	14 vmkapimod	2	0.00	0.00	0.00		0.00	0.00	0.
15	15 vmware-vmkauthd	1	0.00	0.00	0.00		0.00	0.00	0.
16	16 Windows 2003 SP	7	4.28	4.28	0.01		0.54	196.53	ο.
17	17 SQL2005	7	1.41	1.41	0.01	700.00	0.27	199.79	0.
PCPU = Pl	nysical CPU		Curre	nt Field d	order:	ABCDEfgh	r		
			* A:	ID = Id					
CPU = C	onsole CPU (CPU 0)		* B:	GID = Gro	oup Ic	4			
			* C:	NAME = Na					
ress t ke	y to choose fields		* D:	NWLD = Nu		hers			
			* E:			= CPU Stat	- Time	~	
			F:			$s = CPU E_{1}$			
			G:		아망 아파 양성에 있는 것	PU Allocat		unes	
			H:			= CPU Sun			

Toggle fields with a-h, any other key to return:

		ED (%):											
PCPU	UTI	[L(%):	100	100	0.7	0.1	0.8	0.1	0.3	0.1	1.1	0.4	0.5
CORE	UTI	[L(%):	100		0.7		0.9		0.3		1.4		0.6
	ID	NAME	%LAT	C	8LAT	M %	DMD	EMIN	TI	MER/	s		
-		NAME KC1		С .0		М % .0		ЕМП N 9767					

%LAT_C : %time the VM was not scheduled due to CPU resource issue

%LAT_M : %time the VM was not scheduled due to memory resource issue

%DMD : Moving CPU utilization average in the last one minute

EMIN : Minimum CPU resources in MHZ that the VM is guaranteed to get when there is CPU contention

CPU constrained

PCPU (%) :	up 53 days 1:39, 103 40.87, 26.84, 88.10, 0 us, 0 sy, 100 id,	73.8	6; use	ed tota:	SMP VM
ID	GID NAME N		%USED	%RUN	
23	23 cpuBurn-CLONE	7		211.30	
16	16 Windows 2003 SP	7	5.18	5.19	High CPU utilization
12:45:02p	m up 53 days 1:40, 103	3 worl	ds; CPU .	load ave	
PCPU (%) :	20.28, 31.85, 92.27,	, 84.	18; u	sed tota	
CCPU (%) :	0 us, 0 sy, 99 id,	, 1	wa;	cs/se	
ID	GID NAME	NWLD	%USED	%RUN	
1118	23 vmware-vmx	1	0.06	0.06	
1119	23 vmm0:cpuBurn-CL	1	105.05	105 22	Both the
1120	23 vmm1: cpuBurn-CL	1	105,83	105.98	virtual CPUs
1121	23 vmware-vmx	1	0.00	0.00	CPU
1122	23 mks:cpuBurn-CLO	1	0.20	0.20	
1123	23 vcpu-0:cpuBurn-	1		0.01	constrained
1124	23 vcpu-1:cpuBurn-	1	0.00	0.00	
16	16 Windows 2003 SP	7	5.04	5.08	

CPU limit

1:10:48pm up 55 PCPU(%): 61.62,	59.58, 64	1.95 <i>,</i> 93.86	; used	total: 70.	00	0.34	
CCPU(%): 0 us,	0 sy, 99)id, 1 wa	; (cs/sec: 1	.11		
NAME	NWLD USI		%SYS ⁹	WAIT %RI	Y %IDLE	%OVRLP	SCSTP SMLMTD
cpuBurn-CLONE1	7 206.3			29.94 7.8		0.59	0.11 0.00
cpuBurn-CLONE	7 53.3	39 53.60	0.05 52	25.18 162.7	0.00	0.27	3.13 1 50.80
					Max Limited		
1:12:00pm up 5	5 days 2:	07, 101 wor	lds; CPU	load avera	ge: 0.71, C	.48, 0.40)
PCPU(%): 54.36	69			sed total:	62.78		
CCPU(%): 0 us	, 1 sy,	92 id, 7	wa ;	cs/sec:	95		
			33/737	21/21/	201120	A ME ME	31111700
GID NAME 30 cpuBurn-		NLD 7	AMIN O	-1	ASHRS -3	AMLMT -1	AUNITS
32 cpuBurn-		7	õ	1000	-3	-1	mhz
or opabarn	olone		°,	1000		-	1111.2
		CPU	Limit		AMAX =	= -1 : Unlir	nited

CPU contention

PCPU(%): 1	m up 53 days 1:35, 103 100.00, 100.00, 100.00, 1 us, 1 sy, 98 id,	100.00 ; used total:	100.00
ID	GID NAME N	NWLD %USED %RUN	%SYS %WAIT %RDY
23	23 cpuBurn-CLONE	7 148.67 149.02	0.00 532.96 62.42
25	25 cpuBurn-CLONE2	128.25 128.58	0.01 542.29 73.46
24	24 cpuBurn-CLONE1	1 127.69 128.15	0.01 541.34 74.94
4 CPUs, all a 100%	at 3 SMP VMs	VMs don't get to run all the time	%ready accumulates

2:01:53pm up 4 days 29 min, 87 worlds; CPU load average: 0.16, 0.16, 0.09 PCPU(%): 13.20, 15.55, 10.71, 23.06; used total: 15.63 CCPU(%): 0 us, 0 sy, 99 id, 0 wa; cs/sec: 98

ID	GID	NAME	NWLD	%USED	%RUN	%SYS	%WAIT	%RDY	%MLMTD
1	1	idle	4	337.41	338.34	0.00	0.00	61.66	0.00
2	2	system	6	0.02	0.02	0.00	599.97	0.00	0.00
6	6	helper	22	0.02	0.02	0.00	2199.96	0.11	0.00
7	7	drivers	11	0.01	0.01	0.00	1099.98	0.00	0.00
9	9	console	1	0.92	0.93	0.00	98.27	0.80	0.00
14	14	vmkapimod	2	0.00	0.00	0.00	200.00	0.00	0.00
15	15	vmware-vmkauthd	1	0.00	0.00	0.00	100.00	0.00	O .00
16	16	cpuBurn-CLONE	7	50.11	50.03	0.00	495.74	154.20	152.44
17	17	fakeDB	7	1.43	1.44	0.00	697.67	0.89	0.00
18	18	Windows 2003 SP	7	5.10	5.12	0.00	693.01	1.87	0.00
19	19	SQL2005	7	1.63	1.59	0.03	697.16	1.24	0.00
20	20	memhog-linux-CL	5	1.17	1.16	0.02	498 29	0.55	0.00
21	21	cpuBurn-CLONE2	7	1.31	1.29	0.03	698.01	0.70	0.00

High Ready Time

High MLMTD: there is a limit on this VM...

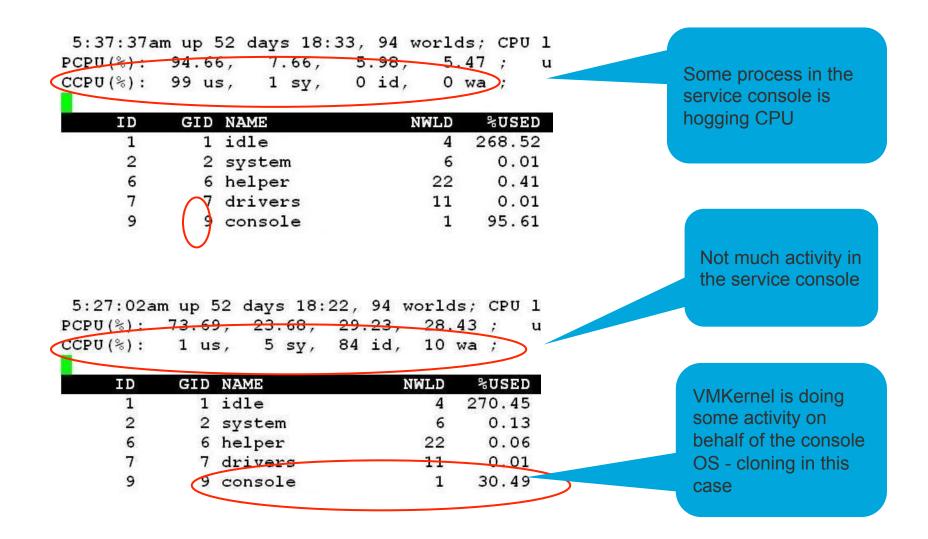
 \rightarrow High ready time not always because of overcommitment \rightarrow When you see high ready time, double-check if limit is set

SMP VM running UP HAL/Kernel

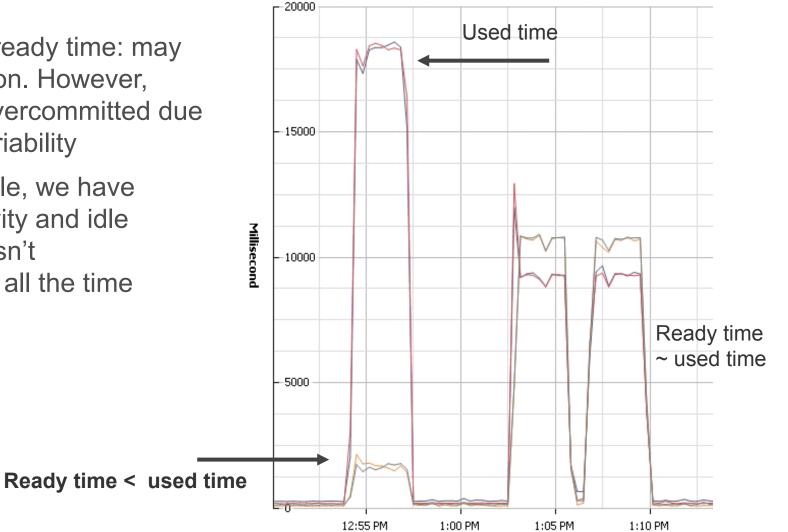
vCPU 1 not used by

the VM

4:38:19am up 53 days 17:33, 110 worlds; CPU load average: 0.15, 0.12, 0.06 PCPU(%): 17.82, 15.09, 13.71, 25.65; used total: 18.07 CCPU(%): 1 us, 2 sy, 91 id, 6 wa; cs/sec: 623


ID	GID NAME	NWLD	%USED	%RUN	%SYS	%WAIT	%RDY
1139	26 vmware-vmx	1	0.14	0.14	0.00	95.50	0.10
1140	26 vmm0:win2k	1	52.10	52.16	0.35	42.07	1.52
1141	26 vmm1:win2k	1	0.22	0.22	0.00	94.95	0.58
1142	26 vmware-vmx	1	0.00	0.00	0.00	95.75	0.00
1143	26 mks:win2k	1	0.36	0.33	0.02	94.87	0.55
1144	26 vcpu-0:win2k	1	0.11	0.11	0.00	95.62	0.02
1145	26 vcpu-1:wip	1	0.00	0.00	0.00	95.73	0.01

It is also possible that you are running a single threaded application in a SMP VM


Troubleshooting CPU related problems

High CPU activity in the Service Console

 Used time ~ ready time: may signal contention. However, might not be overcommitted due to workload variability

o In this example, we have periods of activity and idle periods: CPU isn't overcommitted all the time

CPU Performance

vSphere supports eight virtual processors per VM

- Use UP VMs for single-threaded applications
 - Use UP HAL or UP kernel
- For SMP VMs, configure only as many VCPUs as needed
- Unused VCPUs in SMP VMs:
 - Impose unnecessary scheduling constraints on ESX Server
 - Waste system resources (idle looping, process migrations, etc.)

CPU Performance

For threads/processes that migrate often between VCPUs

- Pin the guest thread/process to a particular VCPU
- Pinning guest VCPUs to PCPUs rarely needed

Guest OS timer interrupt rate

- Most Windows, Linux 2.4: 100 Hz
- Most Linux 2.6: 1000 Hz
- Recent Linux: 250 Hz
- Upgrade to newer distro, or rebuild kernel with lower rate

Performance Tips

Idling VMs

- Consider overhead of delivering guest timer interrupts
- Lowering guest periodic timer interrupt rate should help

VM CPU Affinity

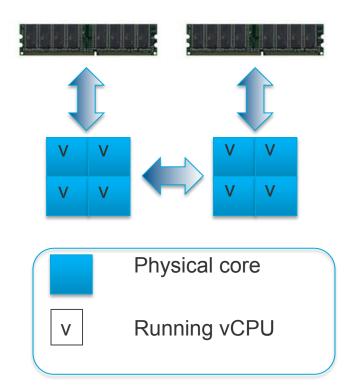
- Constrains the scheduler: can cause imbalances
- Reservations may not be met use on your own risk

Multi-core processors with shared caches

- Performance characteristics heavily depend on the workload
- Constructive/destructive cache interference

Performance Tips

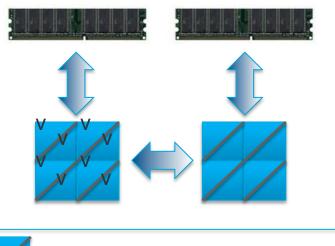
SMP VMs

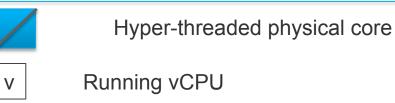

- Use as few virtual CPUs as possible
- Consider timer interrupt overhead of idling CPUs
- Co-scheduling overhead increases with more VCPUs
- Use SMP kernels in SMP VMs
- Pinning guest threads to VCPUs may help to reduce migrations for some workloads

Interactive Workloads (VDI, etc)

• Assign more shares, increase reservations to achieve faster response times

vSphere Scheduler and HT

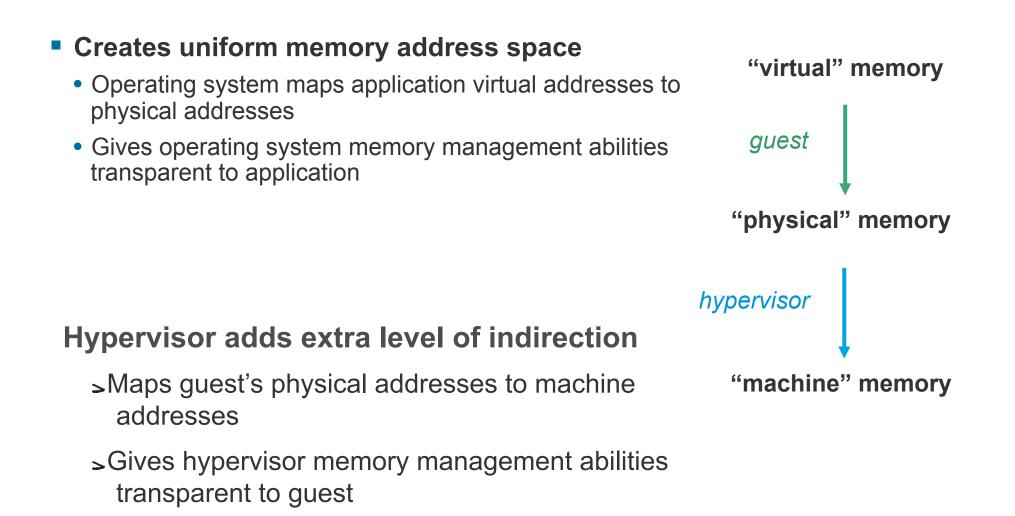

- Intel Hyper-threading provides the appearance of two logical cores for each physical core
 - They are somewhat faster than one core but not as fast as two
- Threads sharing cores less CPU than threads with their own cores
- Threads accessing common memory will benefit from running on the same socket
- So, 5+ vCPU VMs must choose between more CPU and faster memory

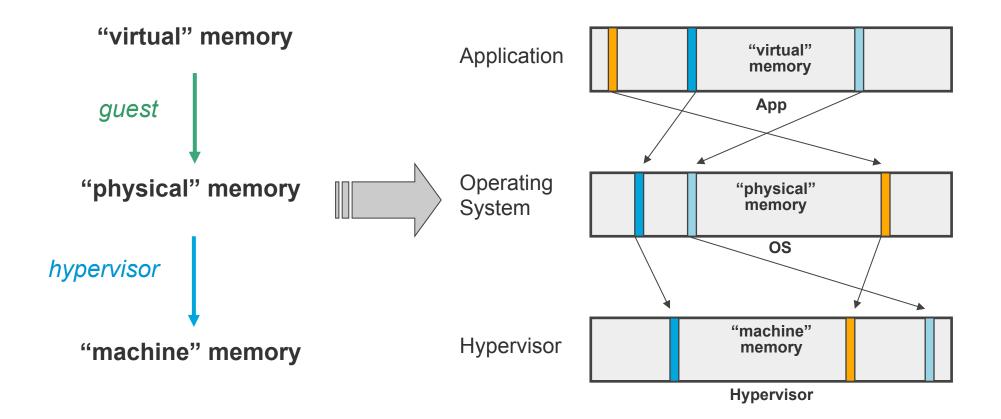

The default: more CPU

Optimizing the Scheduler for Large VMs

- On some virtual machines, memory latency is more important than CPU
- If VM has more vCPUs than there are cores in a single socket, it will run faster if forced to a single socket
- Done with Advanced Settings: NUMA.preferHT

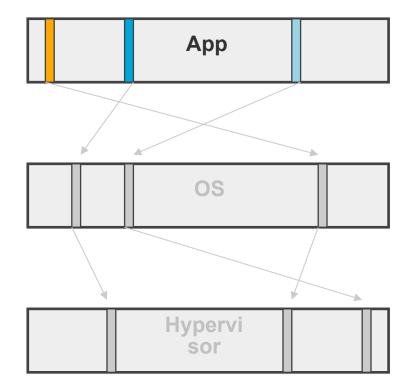
preferHT

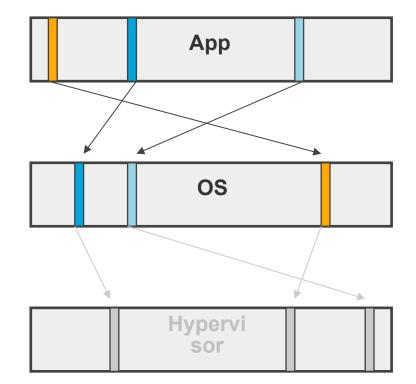




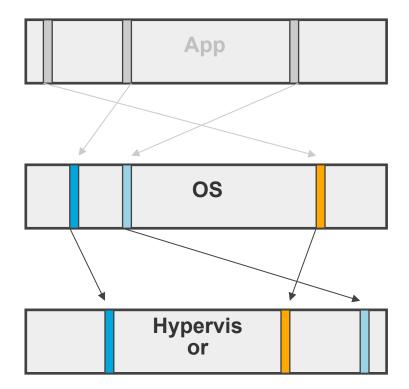
MEMORY

Virtual Memory




Application Memory Management

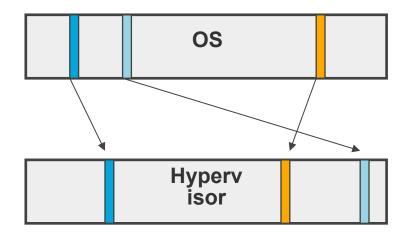
- Starts with no memory
- Allocates memory through syscall to operating system
- Often frees memory voluntarily through syscall
- Explicit memory allocation interface with operating system


Operating System Memory Management

- Assumes it owns all physical memory
- No memory allocation interface with hardware
 - Does not explicitly allocate or free physical memory
- Defines semantics of "allocated" and "free" memory
 - Maintains "free" list and "allocated" lists of physical memory
 - Memory is "free" or "allocated" depending on which list it resides

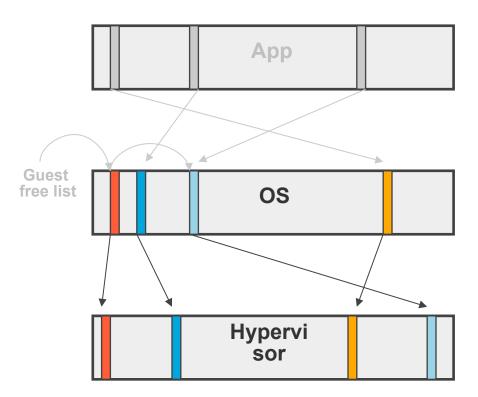
Hypervisor Memory Management

- Very similar to operating system memory management
 - Assumes it owns all machine memory
 - No memory allocation interface with hardware
 - Maintains lists of "free" and "allocated" memory



VM Memory Allocation

- VM starts with no physical memory allocated to it
- Physical memory allocated on demand
 - Guest OS will not explicitly allocate
 - Allocate on first VM access to memory (read or write)


VM Memory Reclamation

- Guest physical memory not "freed" in typical sense
 - Guest OS moves memory to its "free" list
 - Data in "freed" memory may not have been modified

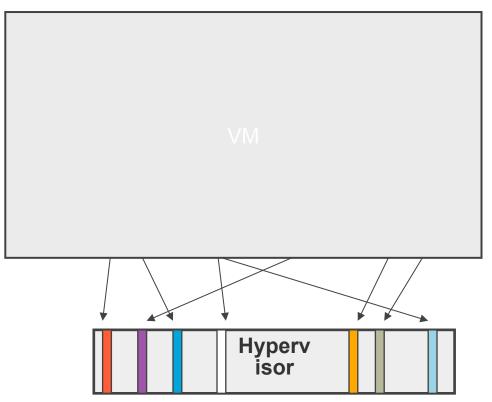
>Freed memory state unchanged

- SNo access to guest's "free" list
- Surve when to reclaim "freed" guest memory

VM Memory Reclamation Cont'd

Guest OS (inside the VM)

- Allocates and frees...
- And allocates and frees...
- And allocates and frees...


o VM

SAllocates...

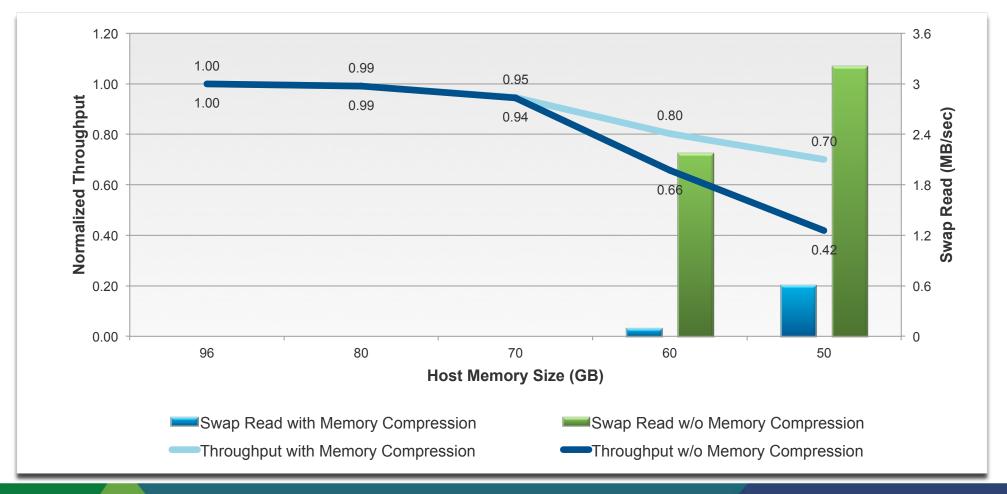
→And allocates...

→And allocates...

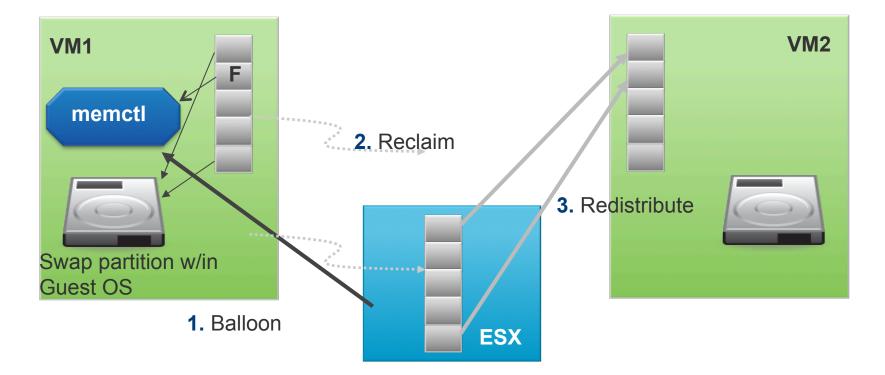
 Hypervisor needs some way of reclaiming memory!

ESX must balance memory usage

- Page sharing to reduce memory footprint of Virtual Machines
- Ballooning to relieve memory pressure in a graceful way
- Host swapping to relieve memory pressure when ballooning insufficient
- Compression to relieve memory pressure without host-level swapping

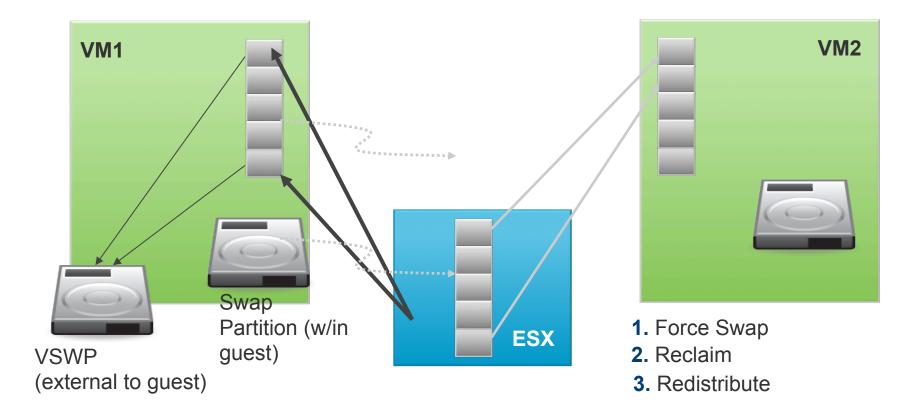

ESX allows overcommitment of memory

- Sum of configured memory sizes of virtual machines can be greater than physical memory if working sets fit
- Memory also has limits, shares, and reservations
- Host swapping can cause performance degradation


New in vSphere 4.1 – Memory Compression

- Compress memory as a last resort before swapping
- Kicks in after ballooning has failed to maintain free memory
- Reclaims part of the performance lost when ESX is forced to induce swapping

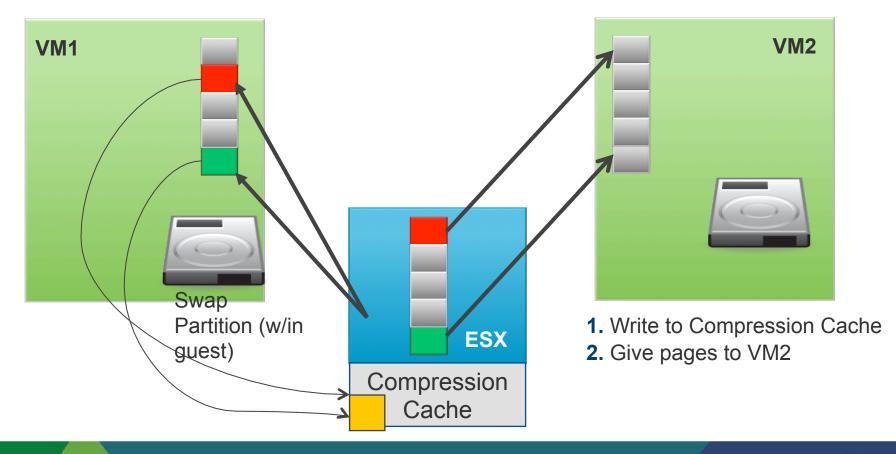
Ballooning, Compression, and Swapping (1)


- Ballooning: Memctl driver grabs pages and gives to ESX
 - Guest OS choose pages to give to memctl (avoids "hot" pages if possible): either free pages or pages to swap
 - Unused pages are given directly to memctl
 - Pages to be swapped are first written to swap partition within guest OS and then given to memctl

Ballooning, Swapping, and Compression (2)

Swapping: ESX reclaims pages forcibly

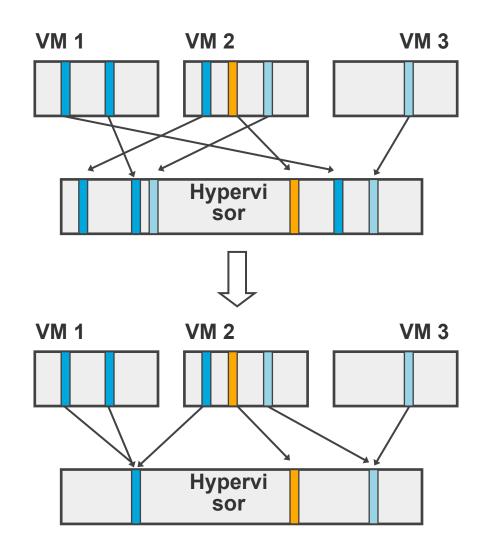
- Guest doesn't pick pages...ESX may inadvertently pick "hot" pages (→possible VM performance implications)
- Pages written to VM swap file

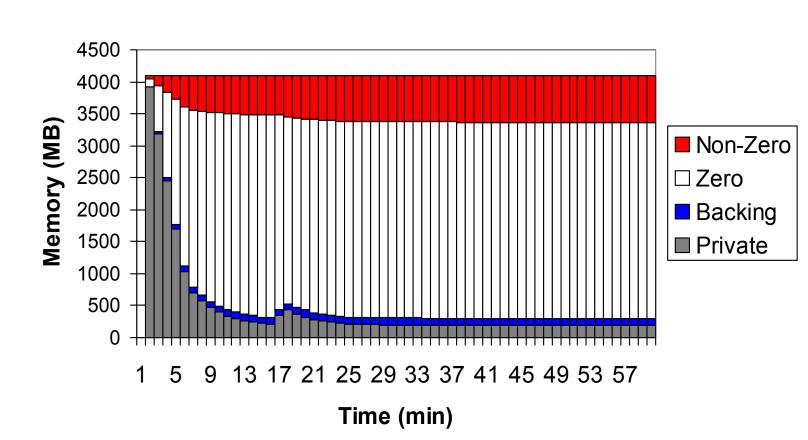


Ballooning, Swapping and Compression (3)

Compression: ESX reclaims pages, writes to in-memory cache

- Guest doesn't pick pages...ESX may inadvertently pick "hot" pages (→possible VM performance implications)
- Pages written in-memory cache \rightarrow faster than host-level swapping

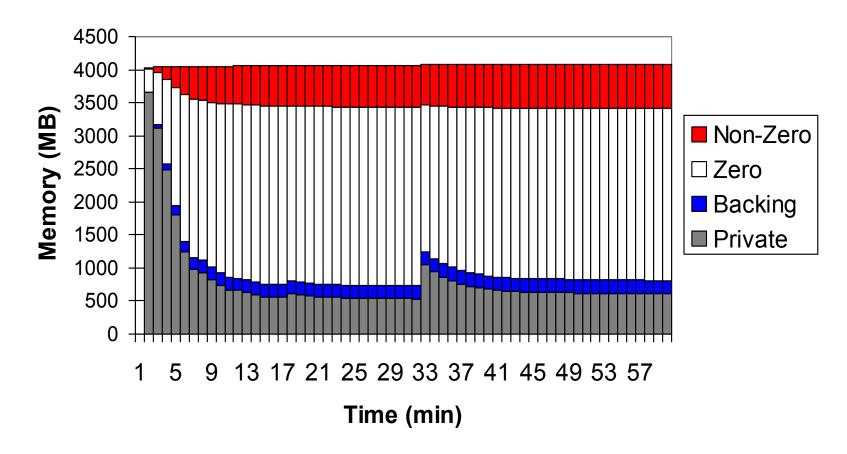

Ballooning, Swapping, and Compression (4)


Bottom line:

- Ballooning may occur even when no memory pressure just to keep memory proportions under control
- Ballooning is preferable to compression and vastly preferable to swapping
 - Guest can surrender unused/free pages
 - With host swapping, ESX cannot tell which pages are unused or free and may accidentally pick "hot" pages
 - Even if balloon driver has to swap to satisfy the balloon request, guest chooses what to swap
 - Can avoid swapping "hot" pages within guest
 - Compression: reading from compression cache is faster than reading from disk

Transparent Page Sharing

- Simple idea: why maintain many copies of the same thing?
 - If 4 Windows VMs running, there are 4 copies of Windows code
 - Only one copy needed
- Share memory between VMs when possible
 - Background hypervisor thread identifies identical sets of memory
 - Points all VMs at one set of memory, frees the others
 - VMs unaware of change

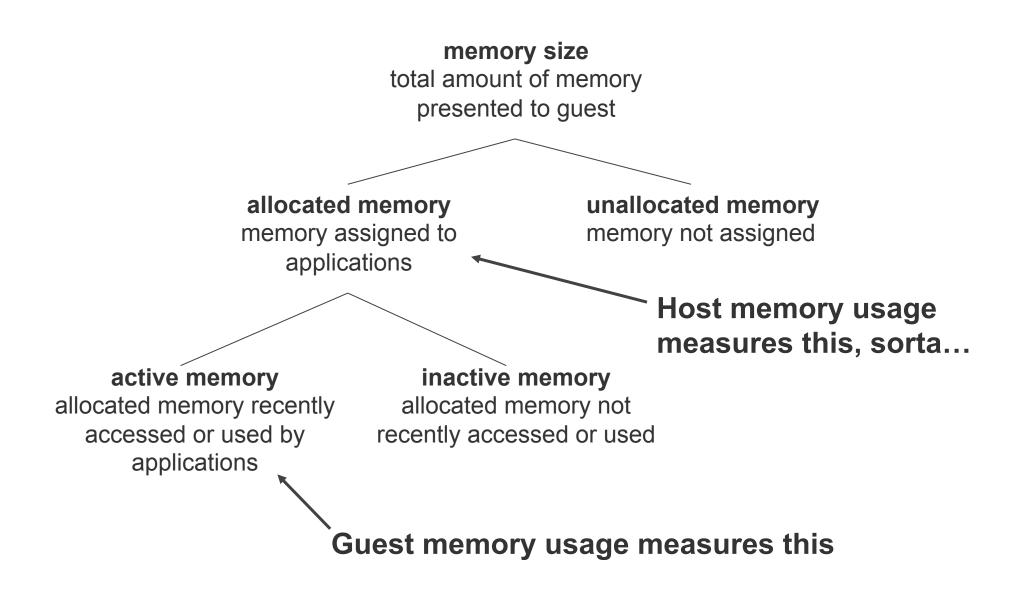


XP Pro SP2: 4x1GB

Memory footprint of four idle VMs quickly decreased to 300MB due to aggressive page sharing.

Vista32: 4x1GB

Memory footprint of four idle VMs quickly decreased to 800MB. (Vista has larger memory footprint.)



How do we identify host memory contention?

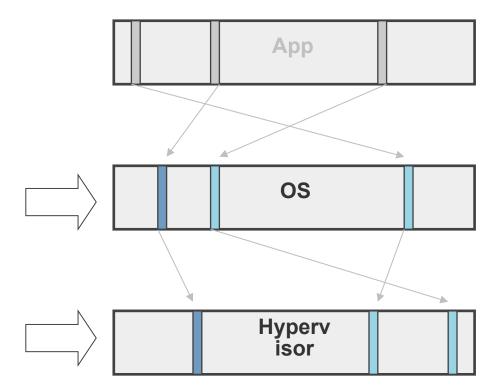
- Host-level swapping (e.g., robbing VM A to satify VM B).
- Active memory for all VMs > physical memory on host This could mean possible memory over-commitment

What do I do?

- Check *swapin* (cumulative), *swapout* (cumulative) and *swapused* ("instantaneous") for the host. Ballooning (vmmemctl) is also useful.
- If *swapin* and *swapout* are increasing, it means that there is possible memory overcommitment
- Another possibility: sum up active memory for each VM. See if it exceeds host physical memory.

Differences Between Memory Statistics

Biggest difference is physical memory vs. machine memory

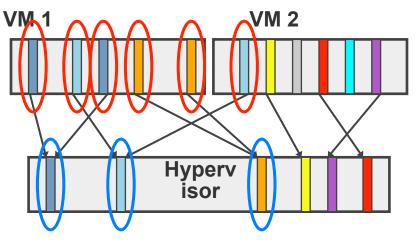

Accounting very different between the two layers!

Physical memory statistics

 Active, Balloon, Granted, Shared, Swapped, Usage

Machine memory statistics

 Consumed, Overhead, Shared Common

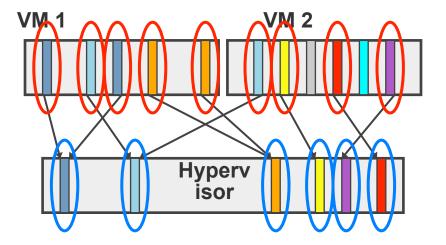


Memory Shared

- Amount of physical memory whose mapped machine memory has multiple pieces or physical memory mapped to it
- 6 pieces of memory (VM 1 & 2)

Memory Shared Common

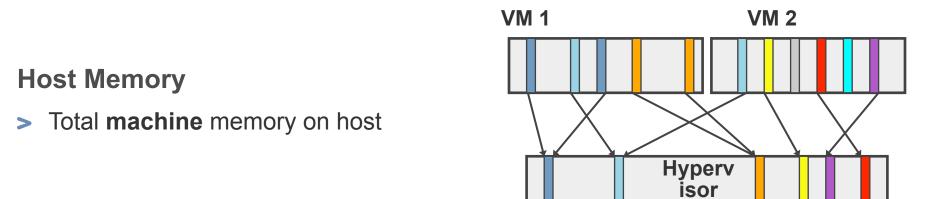
- Amount of machine memory with multiple pieces of physical memory mapped to it
- > 3 pieces of memory


Memory Granted

- Amount of physical memory mapped to machine memory
- 9 pieces of memory (VM 1 & 2)

Memory Consumed

- Amount of machine memory that has physical memory mapped to it
- > 6 pieces of memory


Difference due to page sharing!

Memory Active/Consumed/Shared

• All measure **physical** memory

Be careful to not mismatch physical and machine statistics!

 Guest physical memory can/will be greater than machine memory due to memory overcommitment and page sharing

VM

VM memsize									
vmmemctl (ballooned) guest physical		swapped morv	zipped	grante active write	d acti	sha	ared	<unallocated> (no stat)</unallocated>	
	gaoet physical momeny			zipped - zipSaved			shared savings (no stat)		
<unallocated or<br="">used by other VMs> (no stat)</unallocated>			consumed				<unallocated by="" or="" other<br="" used="">VMs> (no stat)</unallocated>		

host physical memory

He	ost	clusterService	s.effectivemem (aggreg	gated over	er all hosts in cluster)	
	sysUsage	consumed	shared common		unreserved	Service console
Ľ	reserved	•		 +		(no stat) ▶
	boot physics	1			*	ure pette seelel

host physical memory

* Figure not to scale!

Using Host and Guest Memory Usage

Useful for quickly analyzing VM's status

- Coarse-grained information
- Important for prompting further investigation

Requires understanding of memory management concepts

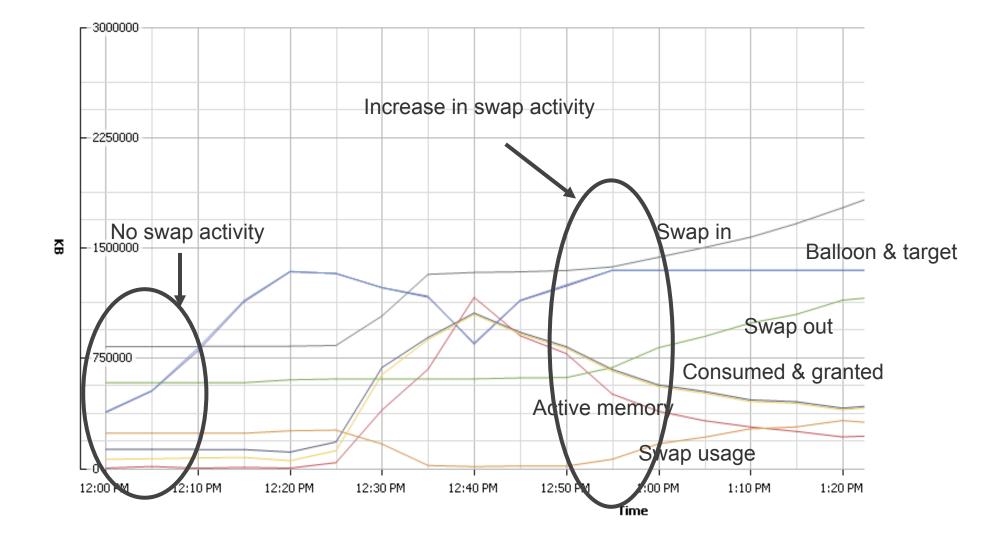
• Many aspects of host/guest memory interaction not obvious

Data	acenters Virtual Machines Hosts Tasks & Events Ala	arms Permissions	Maps		
Name	e	Host CPU - MHz	Host Mem ▽	Guest Mem - %	Memory Size -
	CPUBurnIn-2_NPEE4	2557	3164	0	8192
6	CPUBurnIn-2_NP	2504	2830	0	8192
	Memthrash-w2k3e-3_NP_7EE	4440	2625	7	16384
	Memthrash-w2k3e-3_NP_7EE4	3799	2610	6	16384
	Memthrash-w2k3e_NP_3_visor3	4545	2457	10	16384
6	Memthrash-w2k3e-3_NP_7EE2	1198 📖	2539	16	16384
6	CPUBurnIn_NP_bc9	45	1360 🛄	0	8192
	CPUBurnIn_NP_bc	46	1359	0	8192
	CPUBurnIn_NP_bc_bc1	79	1331	0	8192

Host CPU: avg. CPU utilization for Virtual Machine Host Memory: consumed memory for Virtual Machine Guest Memory: active memory for guest

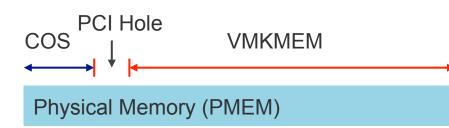
Host and Guest Memory Usage

osdc-iox191 ubuntu-vmkernel-paravirt-3; ubuntu-vmkernel-paravirt-3; ubuntu-vmkernel-paravirt-3; General Guest O5; CPU; Memory;	Help ect Floppy 1 (2) (2) (2) (2) kernel-paravirt-32bit ted Summary Performance Events Console Ubuntu Linux (32-bit) 1 vCPU 8192 MB verhead: 192.00 MB ols: OK es: osdc-p1a-dhcp22 Powered On osdc-iox191	CPU usage: Host memory usage: Guest memory usage: Data-tore Storage1 Network VM Network	139 MHz 6.78 GB 701.00 MB Capacity 60.25 GB	CPU usage: Host memory usage: Guest memory usage: 45.17 GB	139 MHz 6.78 GB 701.00 MB
Inventory Administration	kernel-paravirt-32bit ted Summary Performance Events Console Ubuntu Linux (32-bit) 1 vCPU 8192 MB verhead: 192.00 MB ols: OK es: osdc-p1a-dhcp22 Powered On osdc-iox191	CPU usage: Host memory usage: Guest memory usage: Datustore Storage1 Network	6.78 GB 701.00 MB	Host memory usage: Guest memory usage:	139 MHz 6.78 GB
osdc-iox191 ubuntu-vmkernel-paravirt-3; ubuntu-vmkernel-paravirt-3; ubuntu-vmkernel-paravirt-3; General Guest OS: CPU: Memory: Memory: Memory: Memory: DNS Name State: Host: Active Ta:	kernel-paravirt-32bit ted Summary Performance Events Console Ubuntu Linux (32-bit) 1 vCPU 8192 MB verhead: 192.00 MB ols: OK es: osdc-p1a-dhcp22 Powered On osdc-iox191	CPU usage: Host memory usage: Guest memory usage: Datustore Storage1 Network	6.78 GB 701.00 MB	Host memory usage: Guest memory usage:	6.78 GB
ubuntu-vmkernel-paravirt-3: Getting State ubuntu-vmkernel-paravirt-3: General Guest OS: CPU: Memory: Memory: Memory: Memory: Memory: DNS Name State: Host: Active Ta:	ted Summary Performance Events Console Ubuntu Linux (32-bit) 1 vCPU 8192 MB verhead: 192.00 MB ols: OK es: osdc-p1a-dhcp22 Powered On osdc-iox191	CPU usage: Host memory usage: Guest memory usage: Datustore Storage1 Network	6.78 GB 701.00 MB	Host memory usage: Guest memory usage:	
Guest OS: CPU: Memory: Memory C VMware T IP Addres DNS Name State: Host: Active Ta:	1 vCPU 8192 MB verhead: 192.00 MB ols: OK es: osdc-p1a-dhcp22 Powered On osdc-iox191	CPU usage: Host memory usage: Guest memory usage: Datu=tore istorage1 Network	6.78 GB 701.00 MB	Host memory usage: Guest memory usage:	6.78 GB
CPU: Memory: Memory C VMware T IP Addres DNS Name State: Host: Active Ta:	1 vCPU 8192 MB verhead: 192.00 MB ols: OK es: osdc-p1a-dhcp22 Powered On osdc-iox191	Host memory usage: Guest memory usage: Data-tore storage1 Network	6.78 GB 701.00 MB	Host memory usage: Guest memory usage:	6.78 GB
IP Addres DNS Name State: Host: Active Ta:	es: osdc-p1a-dhcp22 Powered On osdc-iox191	storage1		45.17 GB	
Comman					
	5				
Pow Susy Susy Edit	end t				
P Ope					
Annotatio	ns				
Notes:	1	Edit			_
<					×
Recent Tasks		1			×
Name Target	Status Initiated by 🤝	Time Start Time	Complete Time		



VI Client

- Main page shows "consumed" memory (formerly "active" memory)
- Performance charts show important statistics for virtual machines
 - Consumed memory
 - Granted memory
 - Ballooned memory
 - Shared memory
 - Swapped memory
 - Swap in
 - Swap out


Resources		
CPU usage:	430 MHz	
	2 x 2.793 (GHz
Memory usage:	1.81 GB	
	2.00 GB	

Possible states: High, Soft, hard and low

10:55:29am PMEM /MB: VMKMEM/MB: COSMEM/MB: PSHARE/MB: SWAP /MB: MEMCTL/MB:	4095 3735 5 2403 0	total: managed: free: shared, curr,	272 224	cos, minfree, swap_t, common: target:	171 496 541 2368	vmk, rsvd, swap_f: saving	avg: 0.00, 847 other, 3132 ursvd, 0.00 r/s, 0.00 r/s,	2805 high 0.00	free state w/s	Sof	t, hard ar
GID NAM	ſE	N	WLD	MEMSZ	SZTGT	SWCUE	R SWTGT	SWR/s	SWW/s	OVHDUW	OVHD
15 vmw	vare-vm	kauthd	1	5.46	5.46	0.00	0.00	0.00	0.00	0.00	0.00
16 Win	dows 2	003 SP	7 1	024.00	380.20	0.00	0.00	0.00	0.00	30.41	62.86
17 SQL	2005		72	048.00	591.30	0.00	0.00	0.00	0.00	47.45	78.74

VMKMEM - Memory managed by VMKernel COSMEM - Memory used by Service Console Current Field order: aBCDefGhiJklMno

- A: ID = Id
- * B: GID = Group Id
- * C: NAME = Name
- * D: NWLD = Num Members
 - E: MEM ALLOC = MEM Allocations
- F: NUMA STATS = Numa Statistics
- * G: SIZE = MEM Size (MB)
 - H: ACTV = MEM Active (MB)
- I: MCTL = MEM Ctl (MB)
- * J: SWAP STATS = Swap Statistics (MB)
- K: CPT = MEM Checkpoint (MB)
- L: COW = MEM Cow (MB)
- * M: OVHD = MEM Overhead (MB)
- N: CMT = MEM Committed (MB)
 - O: RESP? = MEM Responsive?

Toggle fields with a-o, any other key to return:

OVHDMAX

0.00

121.87 145.46

											wapping ervice Co		n
10:55:29	am up 4	3 days 2	3:50, 6:	worlds;	MEM ove	ercomm	it a	avg: 0.00, (0.00, 0.	00			
PMEM /M	B: 409	5 tota	1: 272	cos	, 171	vmk,		847 other,	2805	free			
MKMEM/M	B: 373	5 manage	d: 224	minfree	, 496	rsvd,	3	132 ursvd,	high s	state			
COSMEM/M	В:	5 fre	e: 541	. swap_t	, 541	swap_	f:	0.00 r/s,	0.00	w/s			
SHARE/M	B: 240	3 share	d, 3	common	: 2368	savin	g				VIVIK	cernel S	wapping
SWAP /M	В:	0 cur	r, () target	:			0.00 r/s,	0.00	w/s 🚽	activ	∕it∨	
MEMCTL/M	В:	0 cur	r, () target	, 1996	max						-5	
OTD N			NILIT D	MEMOR				CT/III CIII	SWR/s	SWW/s		OTATIO	OWNDWAY
GID N		mkauthd	NWLD	MEMSZ 5.46	5.46		CUR . 00	SWTGT 0.00	0.00	0.00	OVHDUW 0.00	OVHD 0.00	OVHDMAX
			1 7 -				0.000						
		2003 SP		.024.00	380.20		. 00	0.00	0.00	0.00	30.41	62.86	121.87
17 S	2L2005		7 2	2048.00	591.30	0	.00	0.00	0.00	0.00	47.45	78.74	145.46

SZTGT : determined by reservation, limit and memory shares SWCUR = 0 : no swapping in the past SWTGT = 0 : no swapping pressure

SWR/S, SWR/W = 0 : No swapping activity currently

SZTGT = Size target SWTGT = Swap target SWCUR = Currently swapped MEMCTL = Balloon driver SWR/S = Swap read /sec SWW/S = Swap write /sec

Compression stats (new for 4.1)

9:46:	:10am	up 38	min, 300	worlds	s; MEM ov	ercomm	it avg:	2.13, 2.12,	1.71
PMEM	/MB:	19834	total:	1214	∨mk,	17252	other,	1367 free	
VMKMEN	M/MB:	19737	managed:	1184	minfree,	17595	rsvd,	2142 ursvd,	high state
PSHARE	E/MB:	3537	shared,	757	common:	2780	saving		
SWAP	/MB:	1163	curr,	3115	rclmtgt:			2.99 r/s,	1.51 w/s
ZIP	/MB:	3458	zipped,	2014	saved				
MENCTI	ь/мв:	38641	CUFF,	38641	target,	38641	max		

NAME	SWCUR	SWTGT	SWR/s	SWW/s	ZERO	SHRD	SHRDSVD	COWH	CACHESZ	CACHEUSD	ZIP/s U	JNZIP/s
linux-vm1-swing	86.64	265.96	0.20	0.16	22.49	292.32	222.19	91.54	128.14	127.66	0.70	0.78
linux-vm2-swing	78.48	243.46	0.20	0.11	24.17	309.55	249.12	117.39	122.91	122.62	0.69	0.60
linux-vm3-swing	163.55	273.43	0.42	0.00	26.46	270.03	218.65	75.95	113.11	113.05	0.00	0.60
linux-vm4-swing	88.36	256.22	0.19	0.11	24.12	300.68	235.86	89.93	121.47	120.73	0.71	0.84
linux-vm5-swing	71.60	245.20	0.17	0.14	21.69	317.78	246.88	111.80	129.13	128.83	0.55	0.66
linux-vm6-swing	55.66	237.05	0.20	0.16	23.03	322.99	255.54	124.95	132.64	132.28	0.57	0.62
linux-vm7-swing	132.75	279.92	0.44	0.18	24.80	267.16	212.66	80.04	102.43	102.05	1.35	0.98
linux-vm8-swing	78.23	257.79	0.16	0.15	22.80	286.76	231.27	105.32	130.21	129.09	0.74	0.82
linux-vm9-swing	100.01	264.39	0.22	0.15	23.82	281.05	223.23	95.72	117.99	117.43	0.96	0.93
linux-vm10-swin	134.38	293.99	0.43	0.16	24.72	259.42	198.09	62.30	110.43	110.01	1.18	0.77
linux-vm11-swin	104.31	261.22	0.18	0.11	24.14	292.48	230.86	92.01	105.42	104.97	0.77	0.59
linux-vm0-swing	63.08	237.23	0.17	0.10	23.97	322.36	254.85	122.49	128.89	127.88	0.63	0.58

COWH : Copy on Write Pages hints – amount of memory in MB that are potentially shareable

CACHESZ: Compression Cache size

CACHEUSD: Compression Cache currently used

ZIP/s, UNZIP/s: Memory compression/decompression rate

PCPU	USE	ED(%):	54	- 54	0.7	1	0.9	0.1	0.1	0.1	0.9	0.3	0.2
PCPU	UT:	[L(%):	100	100	0.7	0.1	0.8	0.1	0.3	0.1	1.1	0.4	0.5
CORE	UTT	L(%):	100		0.7		0.9		0.3		1.4		0.6
COLL	01.	гп(°).	100		• • • •								
		NAME			5238 H.Y								
	ID		%LA1		%LAT	M %		EMIN	TI	MER/	s		

%LAT_C : %time the VM was not scheduled due to CPU resource issue

%LAT_M : %time the VM was not scheduled due to memory resource issue

%DMD : Moving CPU utilization average in the last one minute

EMIN : Minimum CPU resources in MHZ that the VM is guaranteed to get when there is CPU contention

Swapping

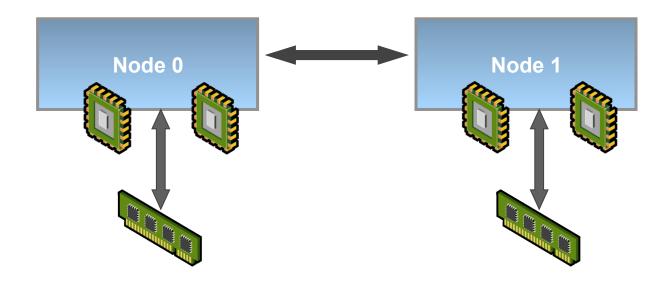
VMKMEM/MB: COSMEM/MB: PSHARE/MB:	4095	days 19:49 total: managed: free: shared, curr, curr,	272	<pre>worlds;</pre>	175 976 541 5154	vmk, rsvd, swap_f: saving	1461 2648 0.	other,	2186 fi high sta 0.00 w,	ree ate /s
NAME		MEMSZ	SZTO	T MCTL?	MCTL	SZ MCTL	TGT	MCTLMAX	SWCUR	SWTGT
Windows 2003	SP	1024.00	385.5		0.0		.00	665.60		0.00
SQL2005		2048.00	456.7	13 Ү	0.0	0 0	.00	1331.20	215.91	0.00
vc server		1024.00	284.1	l9 Y	0.0	0 0	.00	665.60) 78.65	0.00
fakeDB		2048.00	483.7	75 <u>x</u>	0.0	0 00	.00	1331.20	203.79	0.00
memhog-linux	-sm	1024.00	376.2	21 N	0.0	0 00	.00	0.00) £18.47	620.38
memhog-linux	-CL	1024.00	347.3	39 Y	652.2	21 652	.21	652.21	55.10	57.07
Memory r	not ac	: N - Balloon tive, tools pro stalled		Dalluc	on driver	the p not a	oped in ast but ctively oping n	t	Swap targe for the VM balloon driv	without the

CPU Screen

- PCPU USED(%) the CPU utilization per physical core or SMT
- PCPU UTIL(%) the CPU utilization per physical core or SMT thread
- CORE UTIL(%) GRANT (MB): Amount of guest physical memory mapped to a resource pool or virtual machine. Only used when hyperthreading is enabled.
- SWPWT (%) Percentage of time the Resource Pool/World was waiting for the ESX VMKernel swapping memory. The %SWPWT (swap wait) time is included in the %WAIT time.

Memory Screen

• GRANT (MB) - Amount of guest physical memory mapped to a resource pool or virtual machine. The consumed host machine memory can be computed as "GRANT - SHRDSVD".


Interrupt Screen (new)

• Interrupt statistics for physical devices

Increasing a VM's memory on a NUMA machine

- Will eventually force some memory to be allocated from a remote node, which will decrease performance
- Try to size the VM so both CPU and memory fit on one node

Memory Performance

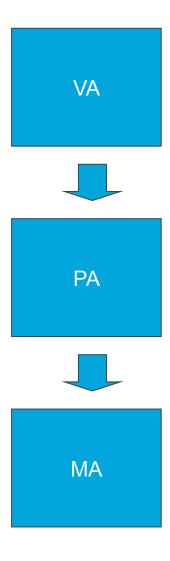
- NUMA scheduling and memory placement policies in ESX 3 manages all VMs transparently
 - No need to manually balance virtual machines between nodes
 - NUMA optimizations available when node interleaving is disabled

Manual override controls available

- Memory placement: 'use memory from nodes'
- Processor utilization: 'run on processors'
- Not generally recommended

For best performance of VMs on NUMA systems

- # of VCPUs + 1 <= # of cores per node
- VM memory <= memory of one node

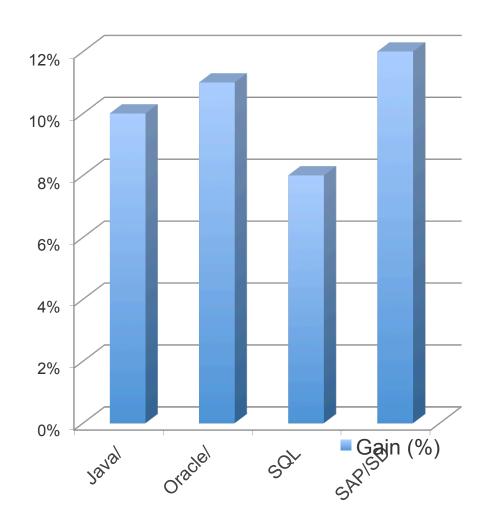

Memory Performance

Page tables

- ESX cannot use guest page tables
 - ESX Server maintains shadow page tables
 - Translate memory addresses from virtual to machine
 - Per process, per VCPU
- VMM maintains physical (per VM) to machine maps
- No overhead from "ordinary" memory references

Overhead

- Page table initialization and updates
- Guest OS context switching



Large Pages

Increases TLB memory coverage

- Removes TLB misses, improves efficiency
- Improves performance of applications that are sensitive to TLB miss costs
- Configure OS and application to leverage large pages
 - LP will not be enabled by default

Performance Gains

ESX 3.5: Large pages enabled manually for guest operations only

• ESX 4.0:

- With EPT/RVI: all memory backed by large pages
- Without EPT/RVI: manually enabled, liked ESX 3.5

	Host Small Pages	Host Large Pages
Guest Small Pages	Baseline Performance	Efficient kernel operations, improved TLB for guest operations
Guest Large Pages	Improved page table performance	Improved page table, improved TLB

Memory Performance

ESX memory space overhead

- Service Console: 272 MB
- VMkernel: 100 MB+
- Per-VM memory space overhead increases with:
 - Number of VCPUs
 - Size of guest memory
 - 32 or 64 bit guest OS

ESX memory space reclamation

- Page sharing
- Ballooning

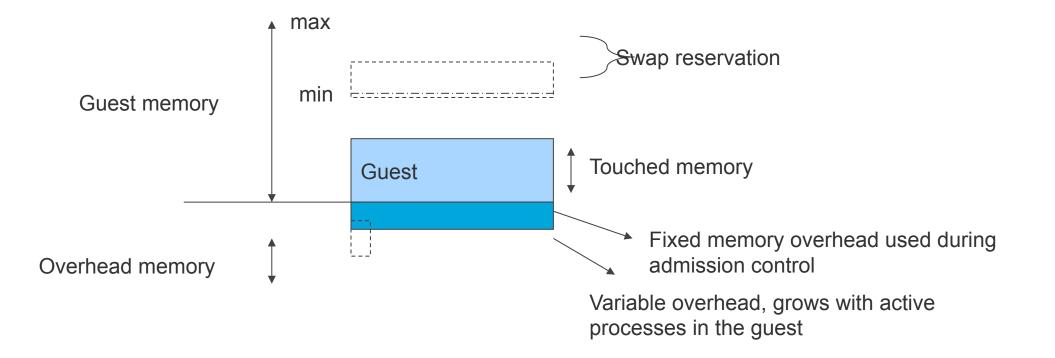
Avoid high active host memory over-commitment

• Total memory demand = active working sets of all VMs

+ memory overhead

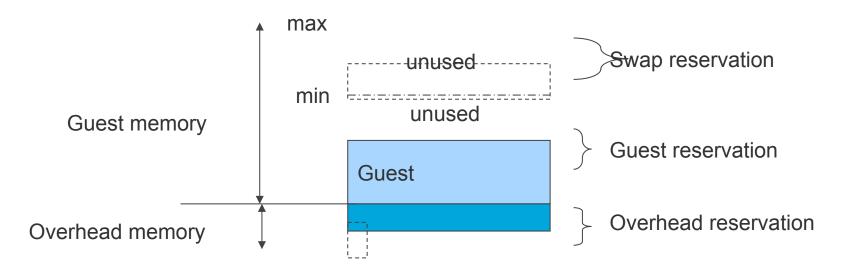
- page sharing

• No ESX swapping: total memory demand < physical memory


Right-size guest memory

- Define adequate guest memory to avoid guest swapping
- Per-VM memory space overhead grows with guest memory

Memory Space Overhead


Additional memory required to run a guest

- · Increases with guest memory size
- Increases with the virtual CPU count
- Increases with the number of running processes inside the guest

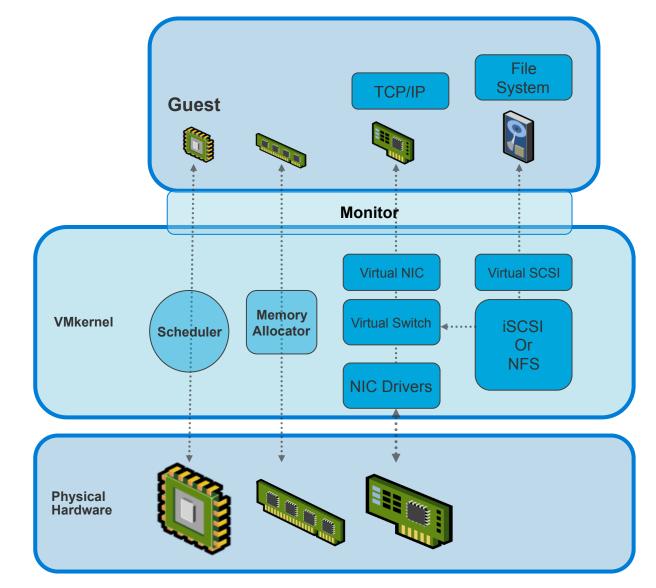
Memory Reservation

- Reservation guarantees that memory is not swapped
- · Overhead memory is non-swappable and therefore it is reserved
- Unused guest reservation cannot be used for another reservation
- Larger guest memory reservation could restrict overhead memory growth
 - Performance could be impacted when overhead memory is restricted

Reducing Memory Virtualization Overhead

Basic idea

Smaller is faster (but do not undersize the VM) ☺

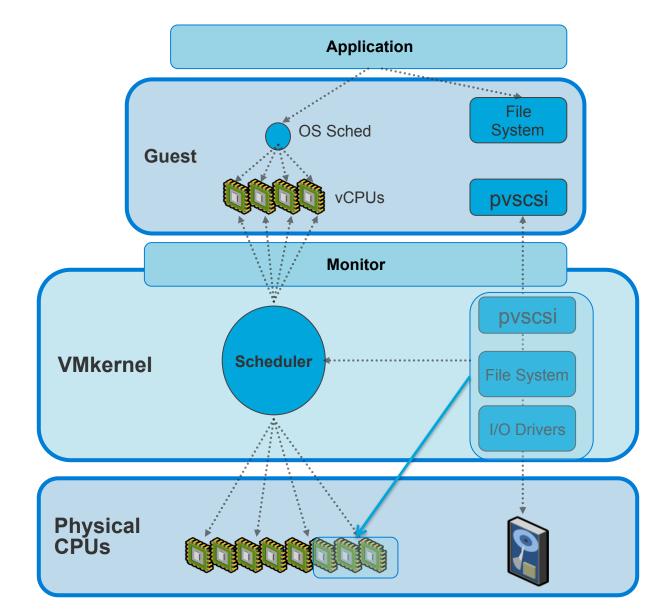

Recommendations

- Right size VM
 - avoids overhead of accessing HIGHMEM (>786M) and PAE pages (>4G) in 32-bit VMs
 - Smaller memory overhead provides room for variable memory overhead growth
- UP VM
 - Memory virtualization overhead is generally lesser
 - Smaller memory space overhead
- Tune Guest OS/applications
 - Prevent/reduce application soft/hard page faults
 - Pre-allocate memory for applications if possible

I/O AND STORAGE

iSCSI and NFS are growing To be popular, due to their low port/switch/fabric costs

Virtualization provides the ideal mechanism to transparently adopt iSCSI/NFS


Guests don't need iSCSI/NFS Drivers: they continue to see SCSI

VMware ESX 3 provides high Performance NFS and iSCSI Stacks

Futher emphasis on 1Gbe/ 10Gbe performance

Asynchronous I/O (4.0)

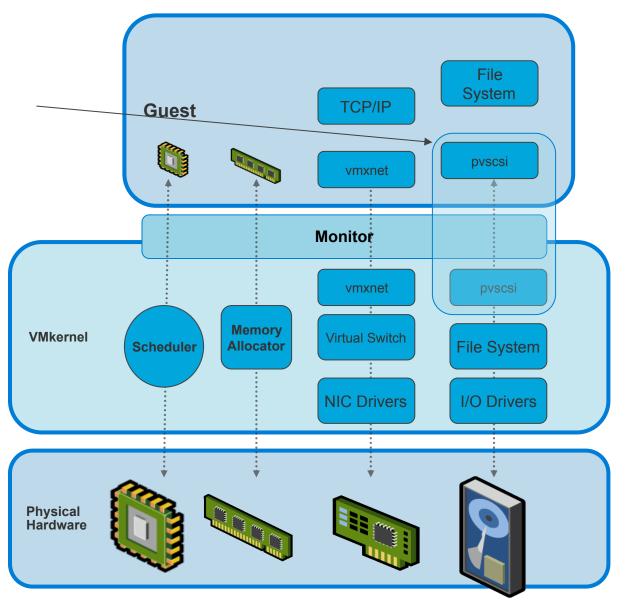
On-loads I/O processing to additional cores

Guest VM issues I/O and continues to run immediately

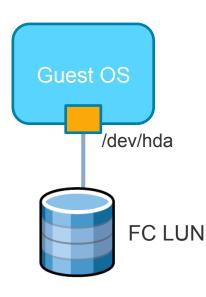
VMware ESX asynchronously issues I/Os and notifies the VM upon completion

VMware ESX can process Multiple I/Os in parallel on separate cpus

Significantly Improves IOPs and CPU efficiency


Device Paravirtualization places A high performance virtualization-Aware device driver into the guest

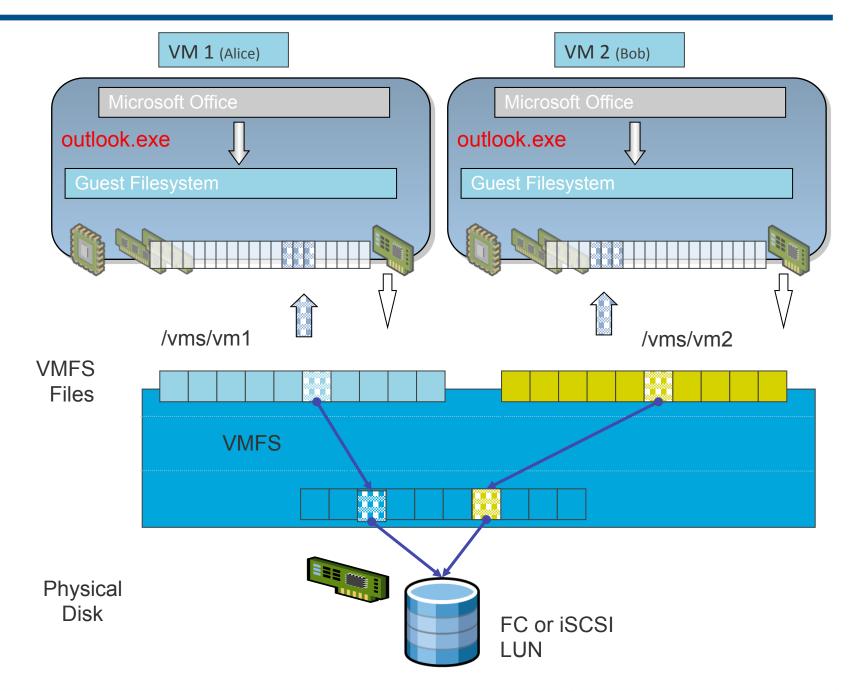
Paravirtualized drivers are more CPU efficient (less CPU overhead for virtualization)


Paravirtualized drivers can also take advantage of HW features, like partial offload (checksum, large-segment)

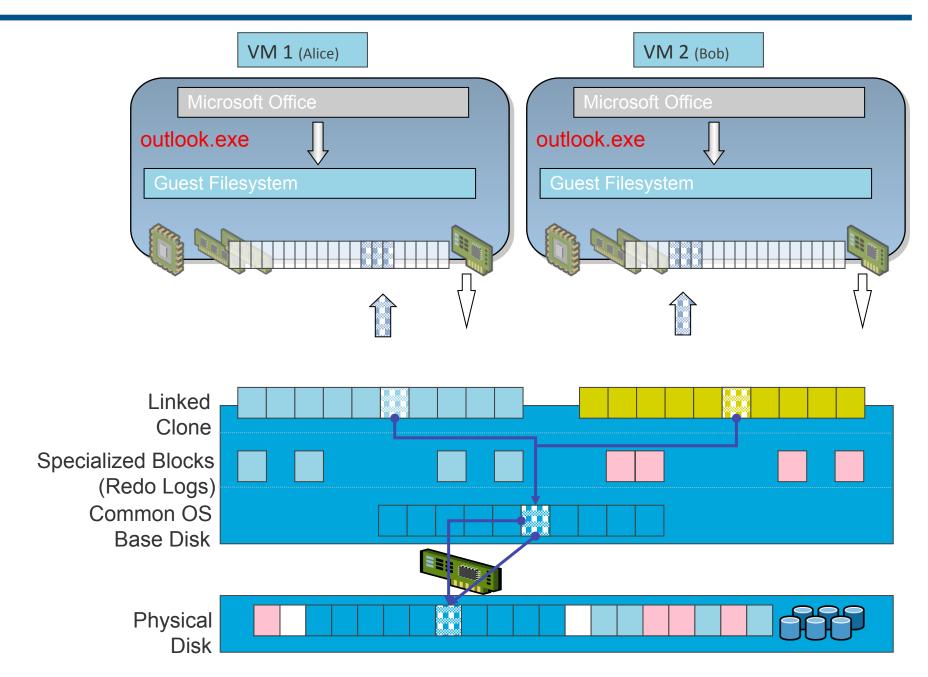
VMware ESX uses paravirtualized network drivers

vSphere 4 now provides pvscsi

Storage – Fully virtualized via VMFS and Raw Paths


Guest OS /dev/hda VMFS Vm1.vmdk vm2.vmdk FC or iSCSI LUN

RAW


- RAW provides direct access to a LUN from within the VM
- Allows portability between physical and virtual
- RAW means more LUNs
 - More provisioning time
- Advanced features still work

- Easier provisioning
- Snapshots, clones possible
- Leverage templates and quick provisioning
- Scales better with Consolidated Backup
- Preferred Method

How VMFS Works

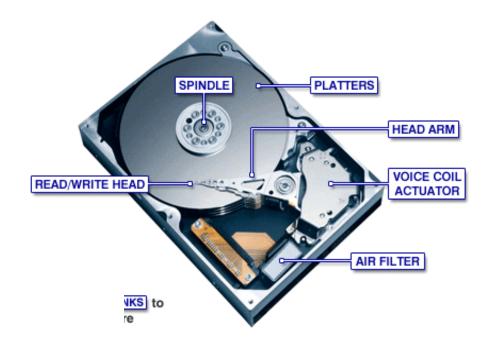
VMFS Clones and Snapshots

I/O Performance

Disk performance is dependent on many factors:

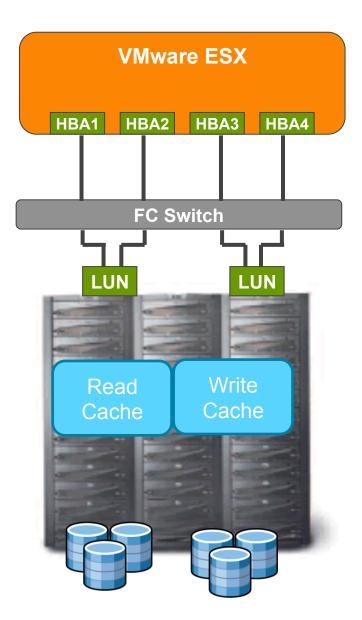
- Filesystem performance
- Disk subsystem configuration (SAN, NAS, iSCSI, local disk)
- Disk caching
- Disk formats (thick, sparse, thin)
- ESX is tuned for Virtual Machine I/O
- VMFS clustered filesystem => keeping consistency imposes some overheads

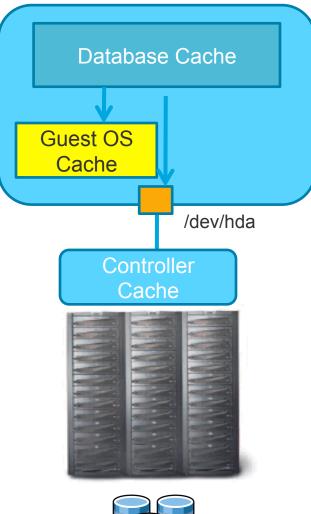
Disk Fundamentals


- Disk performance is impacted by Bandwidth and I/O demands
- Sequential accesses to disk are bandwidth limited
 - ~70MBytes/sec for a SATA disk
 - ~150Mbytes/sec for a 15k RPM FC disk

Random Accesses to disk are dominated by seek/rotate

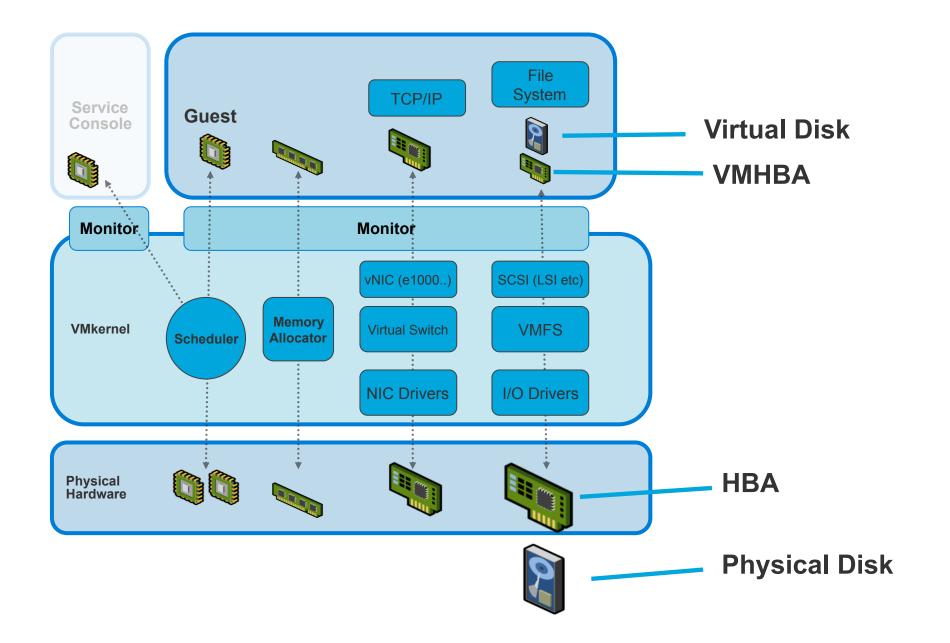
- 10k RPM Disks: 150 IOPS max, ~80 IOPS Nominal
- 15k RPM Disks: 250 IOPS max, ~120 IOPS Nominal

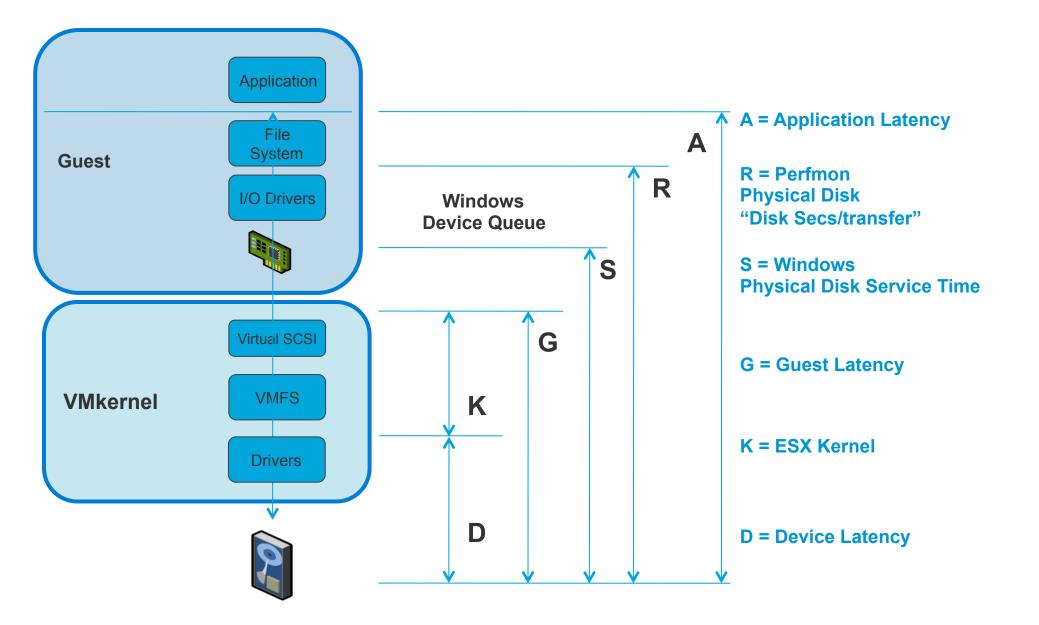

Typically hidden behind an array


- ESX sees LUN latency
- Exception is local-disk

Disk Arrays

- Lowest level resource is disk
 - 150 IOPS, 70-150MByte/sec
- Disks are aggregated into LUNS
 - Increase performance and availability
- LUNS can be (should be) cached
 - Read caches or write caches
 - Write caches hide wait-for-write
- Disk arrays share FC Connections
 - Typically 200 or 400MBytes/sec

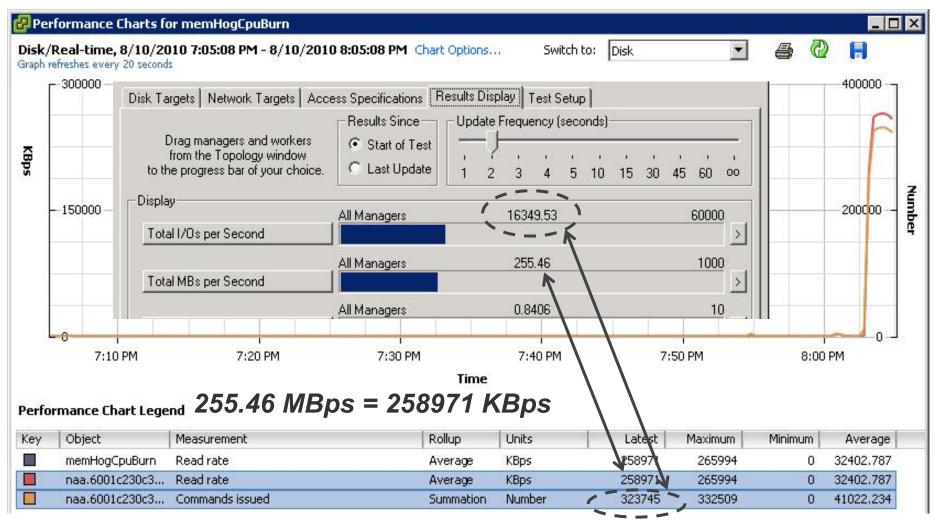




- o Caches attempt to eliminate I/Os
 - The best I/O is the one you don't do
- Caches are at multiple layers:
 - Application
 - o Guest-OS
 - o Disk-array
- Q: What's the impact on the number of disks if we improve cache hit rates from 90% to 95%?
 - 10 in 100 => 5 in 100...
 - #of disks reduced by 2x!

Observing I/O Performance: Important I/O Terminology

Let's look at the vSphere client...



A Word About Units in vSphere

Operation throughput: commands per refresh interval (not IOPS)

Bandwidth in KBps (not MBps)

Real-time chart: refresh 20s. 16349 IOPS = 323745 commands/20s

(screenshot of esxtop)

🛃 root@k	avir:~										
11:46:3	3pm	up	20 : 46					/			
ADAPTR	CID	TID	LID	CMDS/s	READS/s	WRITES/s	MBREAD/s	MBWRTN/s	DAVG/cmd	KAVG/ cmd	GA
vmhba0	_	_	_	1.18	0.00	1.18	0.00	0.01	13.07	0.02	
vmhba1	_	_	_	0.99	0.20	0.79	0.00	0.00	0.37	0.02	

Latency seems high

🛃 root@k	avir:~										
11:51:5	52 pm	up	20:5						\frown		
ADAPTR	CID	TID	LID	CMDS/s	READS/s	WRITES/s	MBREAD/s	MBWRTN/s	DAVG/cmd	KAVG/cmd	GA
vmhba0	_	_	_	2.76	0.00	2.76	0.00	0.01	2.42	0.02	
vmhba1	-	-	-	1.38	0.00	1.38	0.00	0.00	0.33	0.01	

After enabling cache, latency is much better

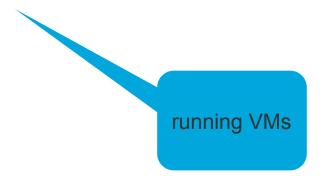
ADAPTR							KAVG/cmd		QAVG/cmd
vmhba0	5.24	0.00	5.24	0.00	0.09	46.11	29.01	75.98	0.00
vmhba1	5.06	0.00	5.06	0.00	0.02	1.10	0.01	1.11	0.00
vmhba2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
includ	ous adapter es SCSI, iS BA adapters	SCSI, RAÍD,	and			stats from th Sernel and t			

10:46:28am up 2 days 3:16, 77 worlds; CPU load average: 0.32, 0.31, 0.32

DAVG/cmd - Average latency (ms) from the Device (LUN) KAVG/cmd - Average latency (ms) in the VMKernel GAVG/cmd - Average latency (ms) in the Guest

DEVICE	CMDS/s	READS/s	WRITES/s	MBREAD/s	MBWRTN/s	DAVG/cmd	KAVG/cmd	GAVG/cmd	QAVG/cmd
vmhba0:0:0	4.68	0.00	4.68	0.00	0.08	47.80	32.74	80.53	32.73
vmhba0:1:0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
vmhba1:0:0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
vmhba1:0:1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
vmhba1:0:2	25.37	19.29	6.00	2.37	2.40	3.35	0.01	3.35	0.00
vmhba1:0:3	0.34	0.00	0.34	0.00	0.00	4.79	0.01	4.80	0.00
vmhba1:0:4	3.90	0.00	3.90	0.00	0.02	0.49	0.01	0.50	0.00
vmhba1:0:5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
vmhba1:0:6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
vmhba1:0:7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
vmhba1:0:8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

10:23:35am up 2 days 2:53, 77 worlds; CPU load average: 0.30, 0.33, 0.37



C:T:L - Controller: Target: Lun

10:44:06am up 2 days 3:13, 77 worlds; CPU load average: 0.31, 0.32, 0.32 View VM only

ID	GID	NAME	CMDS/s	READS/s	WRITES/s	MBREAD/s	MBWRTN/s
21	21	windows vm	0.00	0.00	0.00	0.00	0.00
24		windows vm3	2.05	0.00	2.05	0.00	0.01
25	25	windows vm4	0.00	0.00	0.00	0.00	0.00
27	27	windows_sp2_vm1	0.00	0.00	0.00	0.00	0.00
31		windows_sp2_vm	2.87	0.00	2.87	0.00	0.02

SCSI Reservation stats (new in 4.1)

ADAPTR	NPTH	CMDS/s	READS/s	WRITES/s	MBREAD/s	MBWRTN/s	RESV/s	CONS/s
vmhba0	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
vmhba1	2	4.65	2.71	1.55	0.01	0.00	0.19	0.00
vmhba2	10	4.07	0.00	4.07	0.00	0.03	0.00	0.00
vmhba3	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
vmhba32	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
vmhba34	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00

RESV/s : SCSI reservations per second CONS/s: SCSI reservation conflicts per second

VAAI (vStorage API for Array Integration) Stats (new in 4.1)

DEVICE	CLONE RD	CLONE WR	CLONE F	MBC RD/s M	BC WR/s	ATS	ATSF	ZERO	ZERO F	MBZERO/s
mpx.vmhba0:C0:T	0	0	0	0.00	0.00	0	0	0	0	0.00
mpx.vmhba1:C0:T	0	0	0	0.00	0.00	0	0	0	0	0.00
naa.60060160a91	18178	18178	18178	0.00	0.00	3552	0	102406	0	0.00
{NFS}build-tool	0	0	0	0.00	0.00	0	0	0	0	0.00

CLONE_RD, CLONE_WR: Number of Clone read/write requests

CLONE_F: Number of Failed clone operations

MBC_RD/s, MBC_WR/s – Clone read/write MBs/sec

ATS – Number of ATS commands

ATSF – Number of failed ATS commands

ZERO – Number of Zero requests

ZEROF – Number of failed zero requests

MBZERO/s – Megabytes Zeroed per second

VM disk screen

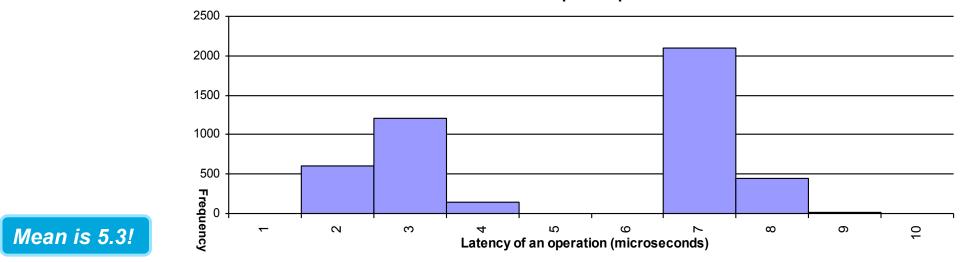
VM disk screen now reports stats using vScsistats (new in 4.1)

ID	GID	VMNAME	VSCSINAME	NDK	CMDS/s	READS/s	WRITES/s	MBREAD/s	MBWRTN/s	LAT/rd	LAT/wr
6242729	6242729	VMA 4.1	-	1	0.78	0.00	0.78	0.00	0.00	0.00	0.57
8314	6342310	Exchange2007	scsi0:0	()	24.68	0.20	24.49	0.01	0.15	6.37	0.59
8315	6342310	Exchange2007	scsi0:1	-	0.59	0.00	0.59	0.00	0.00	0.00	3.45
8316	6342310	Exchange2007	scsi0:2	8 <u>111</u> 5	0.59	0.00	0.59	0.00	0.00	0.00	0.36
8317	6342310	Exchange2007	scsi0:3	-	0.39	0.00	0.39	0.00	0.00	0.00	1.57
8318	6342310	Exchange2007	scsi0:4		0.39	0.00	0.39	0.00	0.00	0.00	0.28

ESX 3.x and 4.x provides this stats by grouping I/Os based on the world ids

• vSphere 4.1 enables latency information for NFS based storage

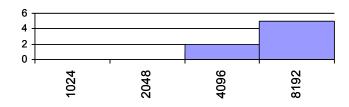
DEVICE	CMDS/s	READS/s	WRITES/s	MBREAD/s	MBWRTN/s	DAVG/cmd	KAVG/cmd	GAVG/cmd	QAVG/cmd
mpx.vmhba0:C0:T	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
naa.6000eb39974	1.63	0.00	1.63	0.00	0.01	1.38	0.02	1.40	0.01
naa.600508b1001	1.81	0.00	1.81	0.00	0.01	0.09	0.02	0.10	0.00
{NFS}cloud12Nfs	15113.93	15113.57	0.36	466.32	0.00	-	-	0.77	-
{NFS}nfsMount0	0.00	0.00	0.00	0.00	0.00	-	_	0.00	H -
{NFS}nfsMount1	0.00	0.00	0.00	0.00	0.00	-	-	0.00	
{NFS}nfsMount2	0.00	0.00	0.00	0.00	0.00	-	-	0.00	λ \
	/								

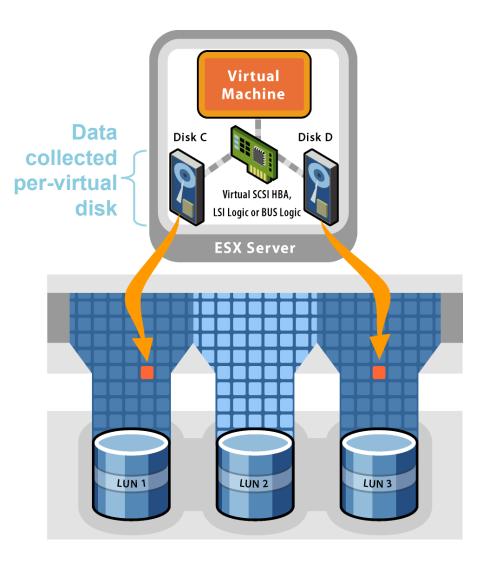

DAVG/cmd	KAVG/cmd	GAVG/c d
0.00	0.00	96.0
1.38	0.02	1.4
0.09	0.02	0.16
-		0.77
_	<u> </u>	0.00
-	-	0.00
-		0 00

vScsiStats

- Disk I/O characterization of applications is the first step in tuning disk subsystems; key questions:
 - I/O block size
 - Spatial locality
 - I/O interarrival period
 - Active queue depth
 - Latency
 - Read/Write Ratios
- Our technique allows transparent and online collection of essential workload characteristics
 - Applicable to arbitrary, unmodified operating systems running in virtual machines

- Histograms of observed data values can be much more informative than single numbers like mean, median, and standard deviations from the mean
 - E.g., multimodal behaviors are easily identified by plotting a histogram, but obfuscated by a mean
- Histograms can actually be calculated efficiently online
- Why take one number if you can have a distribution?



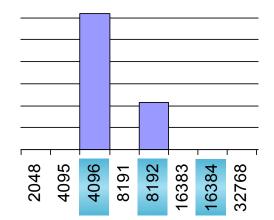

Made up Example

vmware[®]

Workload Characterization Technique

- The ESX disk I/O workload characterization is on a per-virtual disk basis
 - Allows us to separate out each different type of workload into its own container and observe trends
- Histograms only collected if enabled; no overhead otherwise
- Technique:
 - For each virtual machine I/O request in ESX, we insert some values into histograms
 - E.g., size of I/O request \rightarrow 4KB

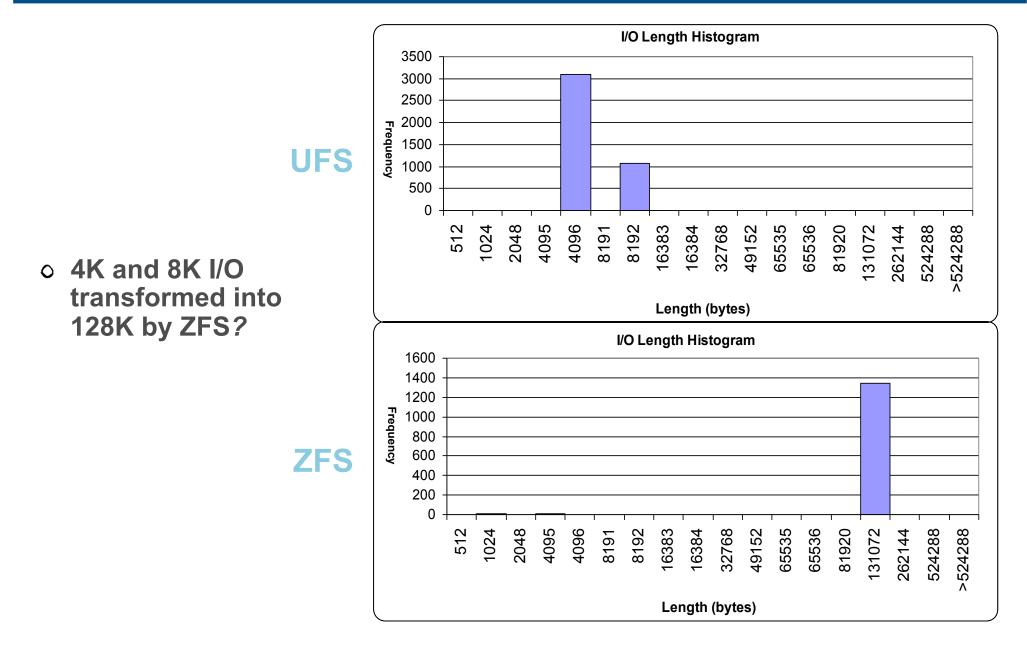
Workload Characterization Technique


Full List of Histograms

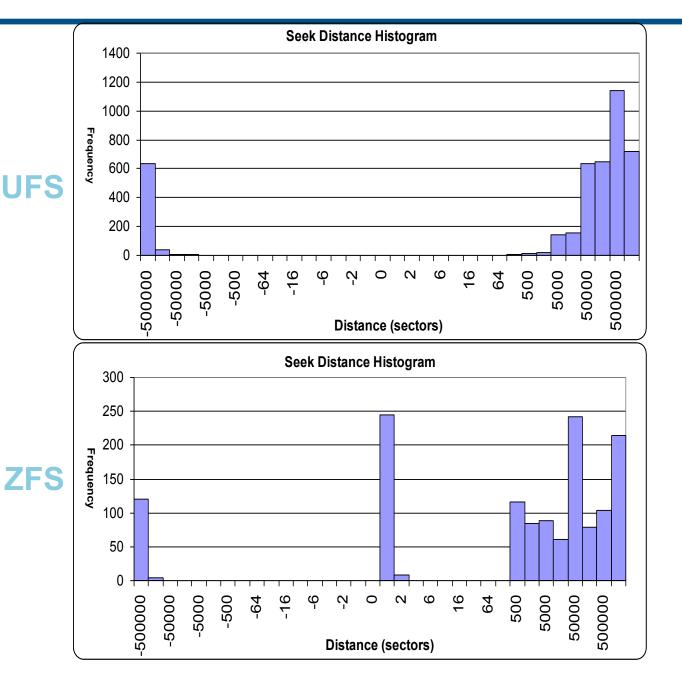
- Read/Write Distributions are available for our histograms
 - Overall Read/Write ratio?
 - Are Writes smaller or larger than Reads in this workload?
 - Are Reads more sequential than Writes?
 - Which type of I/O is incurring more latency?
- In reality, the problem is not knowing which question to ask
 - Collect data, see what you find

- I/O Size
 - All, Reads, Writes
- Seek Distance
 - All, Reads, Writes
- Seek Distance Shortest Among Last 16
- Outstanding IOs
 - All, Reads, Writes
- I/O Interarrival Times
 - All, Reads, Writes
- Latency
 - All, Reads, Write

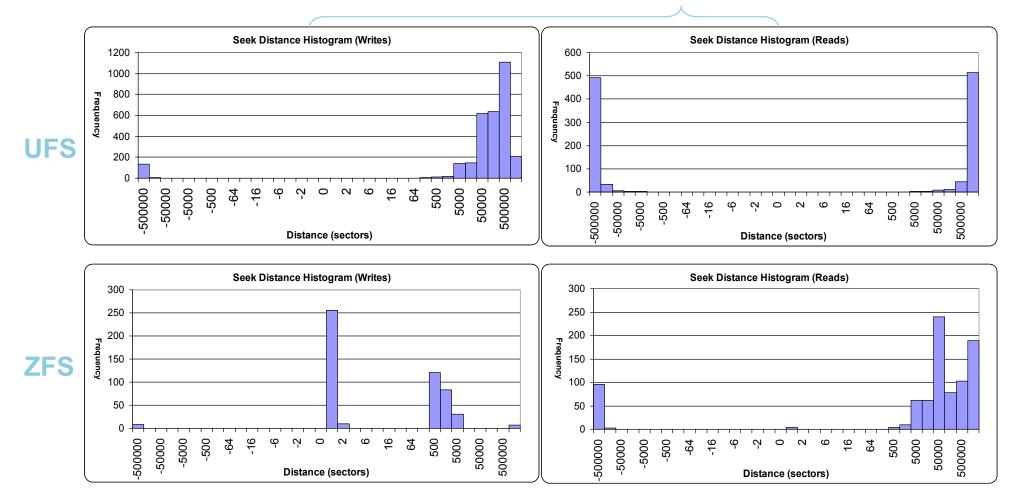
To make the histograms practical, bin sizes are on rather irregular scales


- E.g., the I/O length histogram bin ranges like this:
 - ..., 2048, 4095, 4096, 8191, 8192, ... rather odd: some buckets are big and others are as small as just 1
 - Certain block sizes are really special since the underlying storage subsystems may optimize for them; single those out from the start (else lose that precise information)
 - E.g., important to know if the I/O was 16KB or some other size in the interval (8KB,16KB)

- Filebench is a model-based workload generator for file systems developed by Sun Microsystems
 - Input to this program is a model file that specifies processes, threads in a workflow
- Filebench OLTP "personality" is a model to emulate an Oracle database server generating I/Os under an online transaction processing workload
 - Other personalities include fileserver, webserver, etc.


Used two different filesystems (UFS and ZFS)

- To study what effect a filesystem can have on I/O characteristics
- Ran filebench on Solaris 5.11 (build 55)



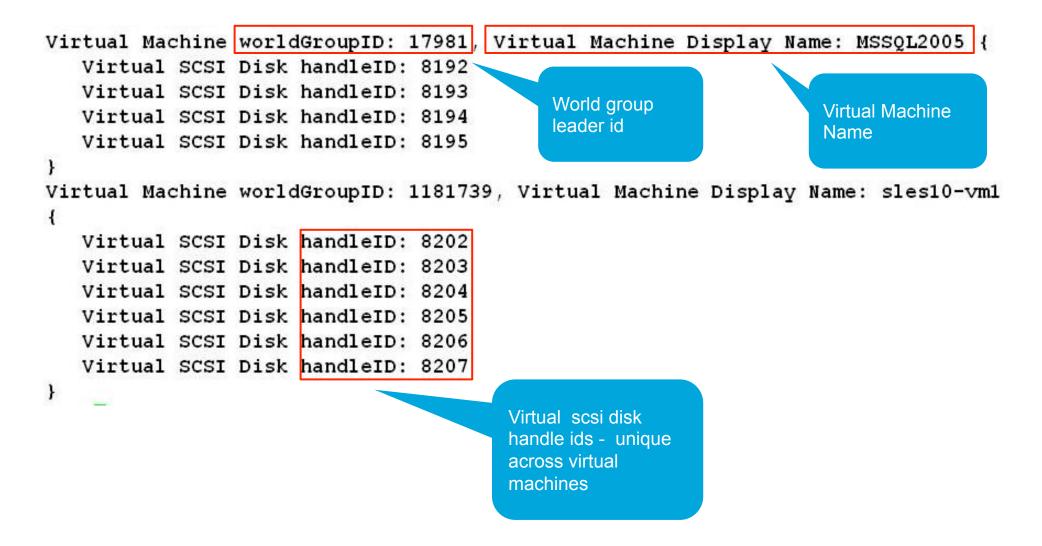
Seek Distance Filebench OLTP

- Seek distance: a measure of sequentiality versus randomness in a workload
- Somehow a random workload is transformed into a sequential one by ZFS!
- More details needed ...

Seek Distance Filebench OLTP—More Detailed

Split out reads & writes

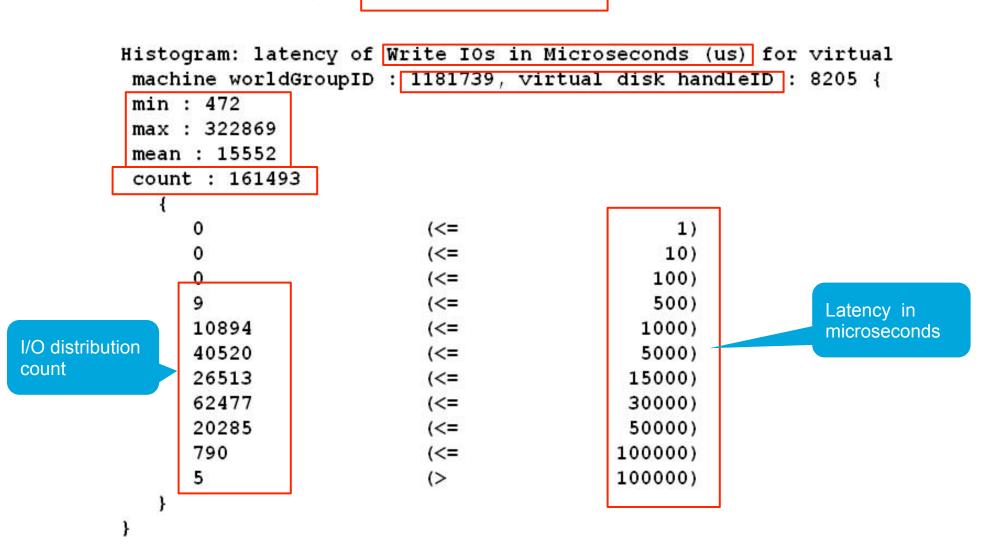
- Transformation from Random to Sequential: primarily for Writes
- Reads: Seek distance is reduced (look at histogram shape & scales)

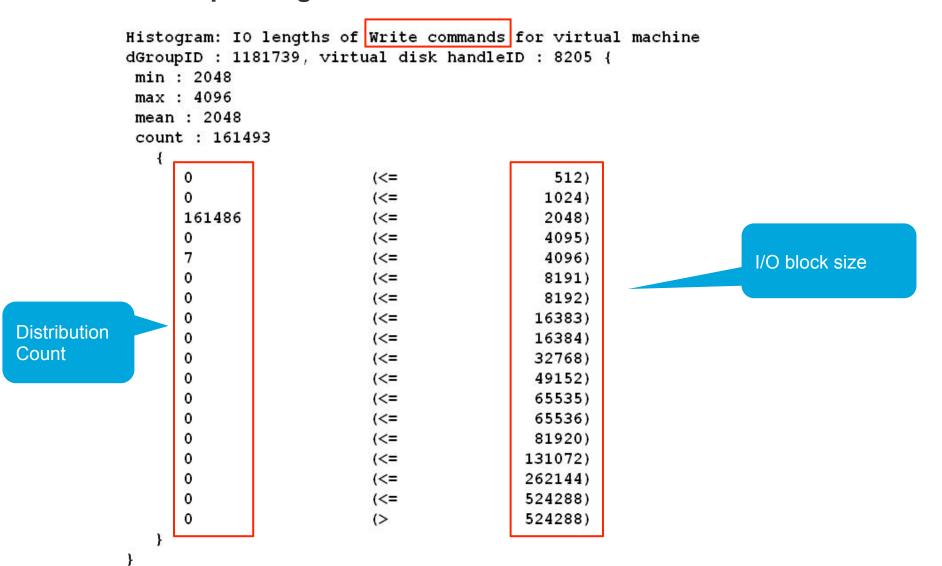

So, what have we learnt about Filebench OLTP?

- I/O is primarily 4K but 8K isn't uncommon (~30%)
- Access pattern is mostly random
 - Reads are entirely random
 - Writes do have a forward-leaning pattern
- ZFS is able to transform random Writes into sequential:
 - Aggressive I/O scheduling
 - Copy-on-write (COW) technique (blocks on disk not modified in place)
 - Changes to blocks from app writes are written to alternate locations
 - Stream otherwise random data writes to a sequential pattern on disk

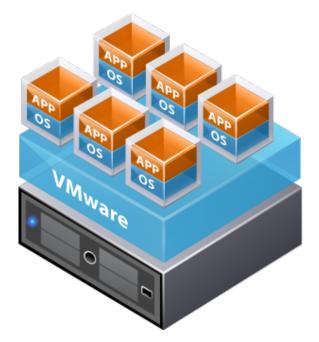
Performed this detailed analysis in just a few minutes

vscsiStats


#vscsiStats -I


vscsiStats – latency histogram

vscsiStats -p latency -w 118739 -i 8205



vscsiStats - iolength histogram

vscsiStats -p iolength -w 118739 -i 8205

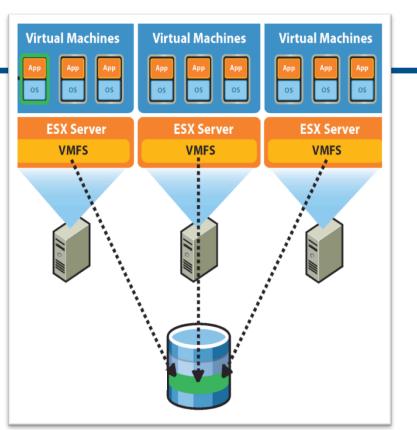
- The fundamental relationship between consumption and supply has not changed
 - Spindle count and RAID configuration still rule
 - But host demand is an aggregate of VMs
- What is the impact of virtual disk consolidation
 - Full isolation
 - Shared VMFS

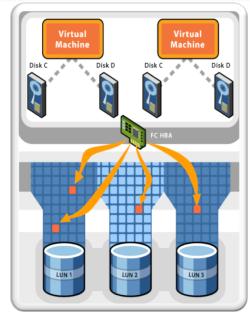
Differences in VMs

VMware deployments

- · Large set of physical machines consolidated
- Diverse set of applications

Workload characteristics

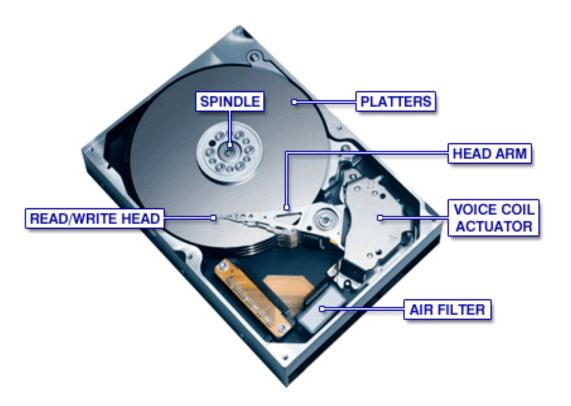

- Different IO patterns to the same volume, or
- IO from one app split to different volumes
- Provisioning operations along with applications (Create VM, Power On VM)


Hypervisor and the storage subsystem

- Clustered file system locking
- CPU and virtual device emulation can impact storage performance

System setup can affect performance

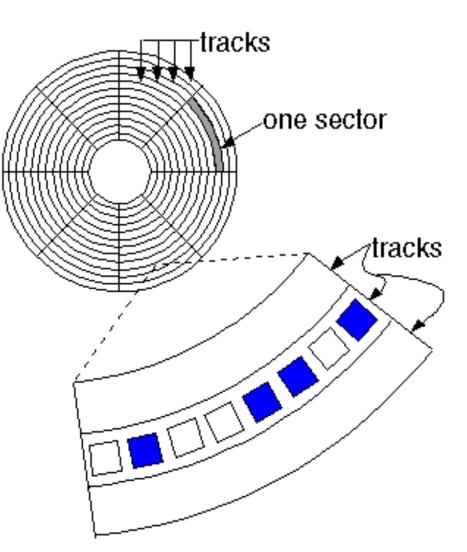
- Partition alignment affects performance.
- Raw Device Mapping or File system
- New Hardware Assist technology
- CPU and memory affinity settings


vmware[®]

Disk Fundamentals

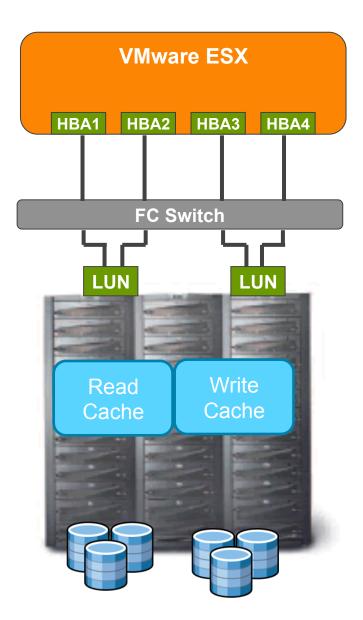
- Databases are mostly random I/O access patterns
- Accesses to disk are dominated by seek/rotate
 - 10k RPM Disks: 150 IOPS max, ~80 IOPS Nominal
 - 15k RPM Disks: 250 IOPS max, ~120 IOPS Nominal

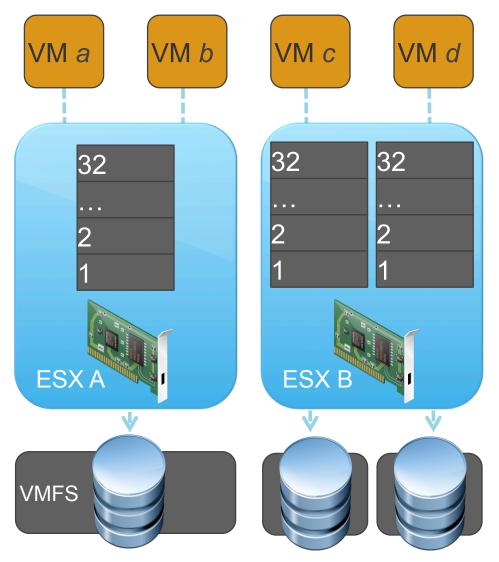
Database Storage Performance is controlled by two primary factors


- Size and configuration of cache(s)
- Number of physical disks at the back-end

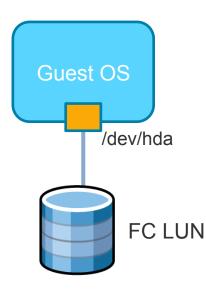
Disk Performance

 Higher sequential performance (bandwidth) on the outer tracks


From Computer Desktop Encyclopedia © 1998 The Computer Language Co. Inc.


Disk Arrays

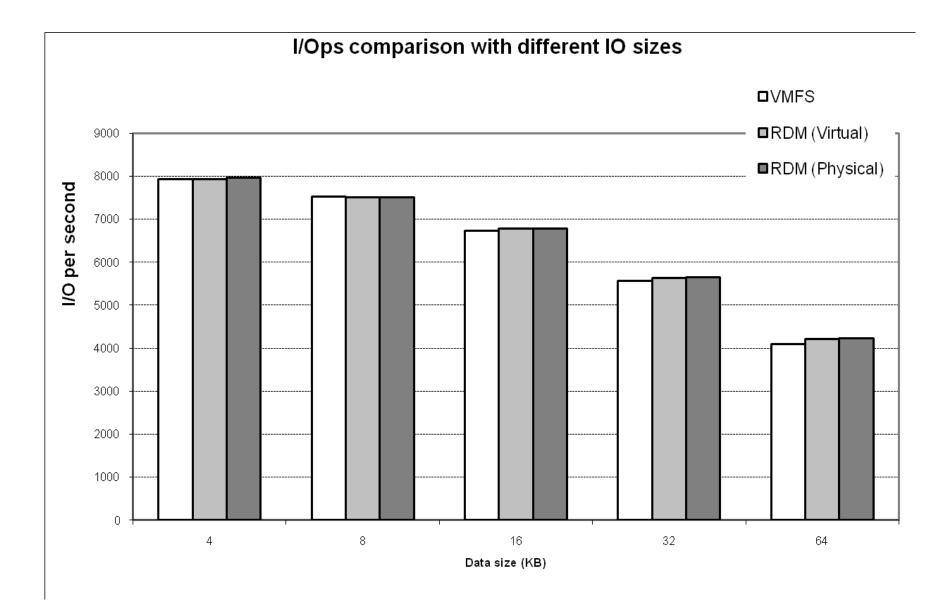
- Lowest level resource is disk
 - 150 IOPS, 70-150MByte/sec
- Disks are aggregated into LUNS
 - Increase performance and availability
- LUNS can be (should be) cached
 - Read caches or write caches
 - Write caches hide wait-for-write
- Disk arrays share FC Connections
 - Typically 200 or 400MBytes/sec

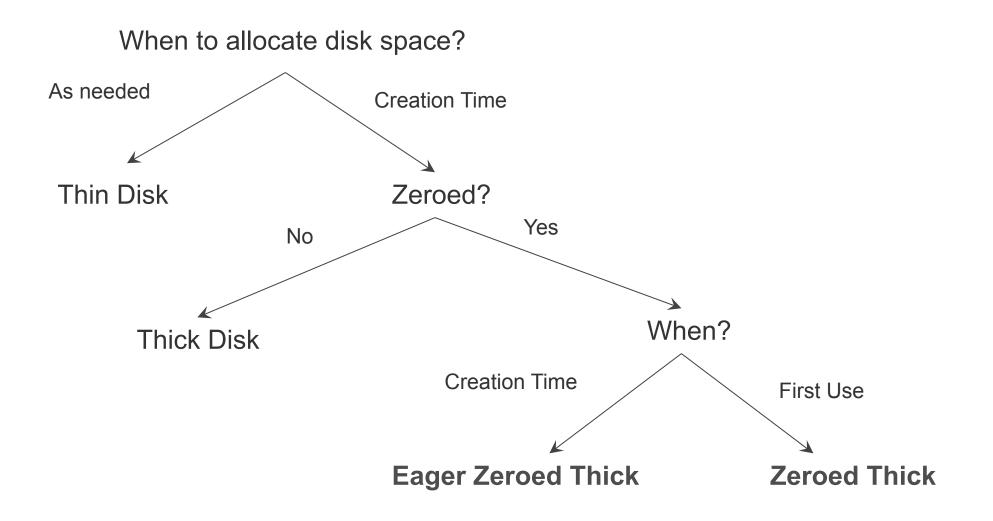


LUN Sizing and Its Impact On Load

- In example on the right, ESX B can generate twice as much IO as ESX A
- Improved aggregate throughput of multiple LUNs is the primary reason for thinking RDM is faster
- Implications for the array
 - Greater number of smaller LUNs increases burst intensity
 - Many HBA/LUN pairs could be used simultaneously
 - Smaller number of LUNs stabilizes demand
 - Fewer HBA/LUN pairs will be used concurrently

Storage – VMFS or RDM


Guest OS /dev/hda VMFS Vm1.vmdk vm2.vmdk FC or iSCSI LUN


RAW

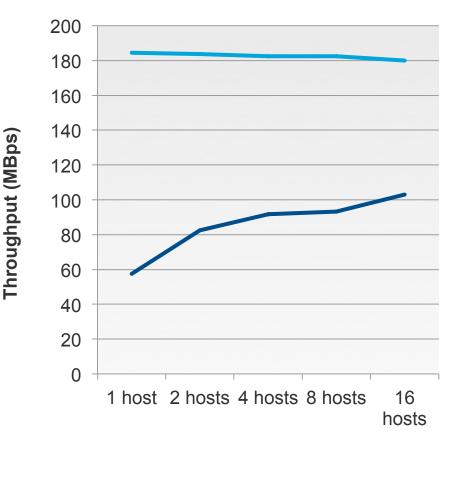
- RAW provides direct access to a LUN from within the VM
- Allows portability between physical and virtual
- RAW means more LUNs
 - More provisioning time
- Advanced features still work

- Easier provisioning
- Snapshots, clones possible
- Leverage templates and quick provisioning
- Scales better with Consolidated Backup
- Preferred Method

VMFS vs. RDM Performance

Creating VM: Disk Type?

Speed Vs Space

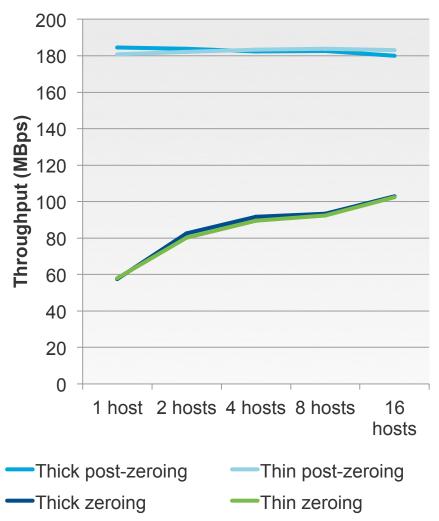

- Thin disk is space efficient but higher per IO overhead
- Thick disk has lower per IO overhead but consumes space
- Zeroed thick disk pays extra write cost at the first write
- Eager zeroes thick disk or thick disk gives best performance
- Use vmkfstool to create or convert

RDM Vs VMFS

- Physical RDM disables VMotion
- VMFS performance is close to the RDM

- Default VMDK allocation policy "lazy zeroes" 1M VMFS blocks on first write
- Writes on an untouched VMDK incur a penalty
- Difference usually not seen in production
 - But common with benchmarks
- Zero offload capability in VAAI improves zeroing in supported arrays

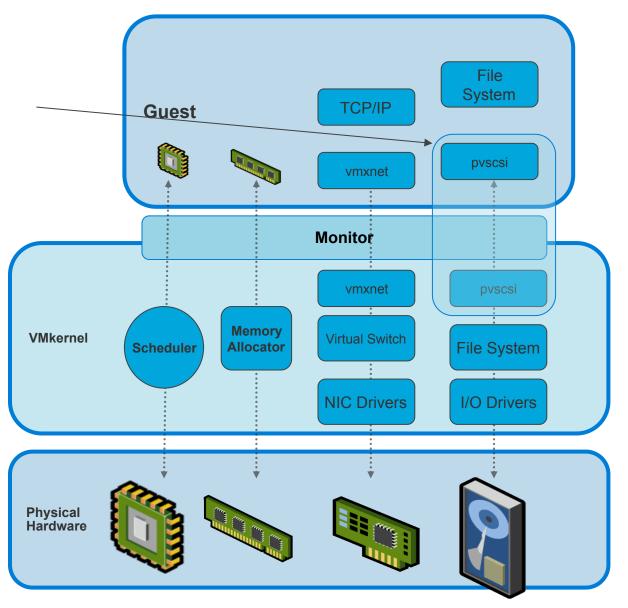
Effect of Zeroing on Storage Performance


"Post-zeroing"

-"Zeroing"

- vSphere introduced thin provisioned VMDKs
- In *theory*, LUN locking during VMDK growth might hurt performance
- In reality, zeroing more impactful than locking
- ATS and zero-offloading in VAAI enabled arrays will speed up "first-writes"

Thin Versus Thick Scalability

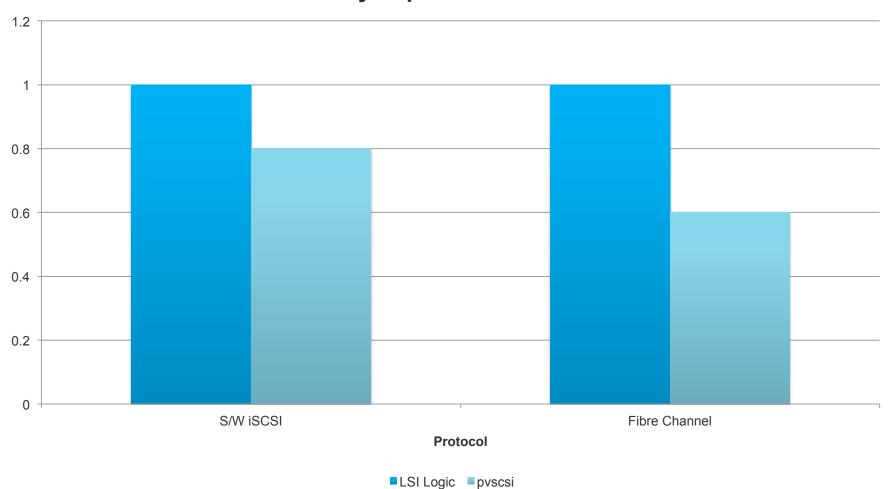

Device Paravirtualization places A high performance virtualization-Aware device driver into the guest

Paravirtualized drivers are more CPU efficient (less CPU overhead for virtualization)

Paravirtualized drivers can also take advantage of HW features, like partial offload (checksum, large-segment)

VMware ESX uses paravirtualized network drivers

vSphere 4 now provides pvscsi



PVSCSI Architecture

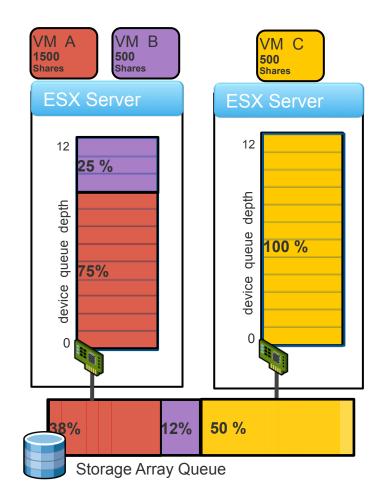
- PVSCSI looks like a PCI-E device to the guest OS
- Uses MSI or MSI-X interrupt delivery (instead of legacy INTx) to reduce the cost of interrupt virtualization
- Boot capable
- New Windows/Linux SCSI HBA drivers
- Windows driver uses the Storport driver model
- Exports itself as a Serial Attached SCSI adapter

SCSI Controller Type	
Current type: Paravirtual	Change Type
SCSI Bus Sharing Set a policy to allow view neously	l disks to be used `~+ual mach

PVSCSI Efficiency Improvements for 4K Block IOs

Microbenchmarks

- Iometer
- Aiostress
- Filebench
- Orion
- Sqliosim
- Jetstress


Macrobenchmarks

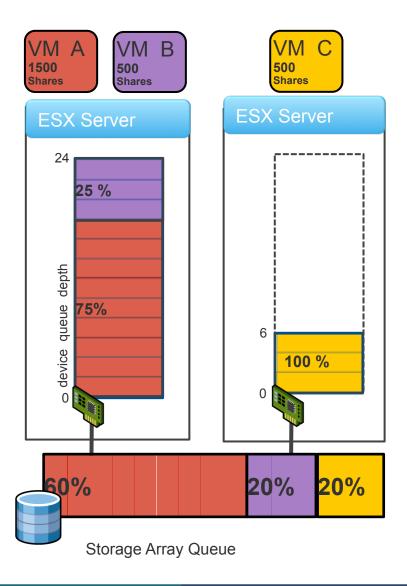
- > TPC-C/E
- > MS Exchange
- > Oracle
- > SQLserver
- > Etc...

Storage Contention Problems

- In vSphere 4, an isolated VM can dominate a shared LUN
 - IO shares determine access to LUN relative to other VMs on the same host
 - A VM can get uncontested access to the device queue negatively affecting VMs that share the LUN but are running on other ESX hosts
 - Regardless of shares, VMs on the same host contend for one queue
- Existing storage resource management controls only affects VMs on a single host

Without Storage IO Control Actual Disk Resources utilized by each VM are not in the correct ratio

Storage Contention Solution: Storage IO Control


- SIOC calculates data store latency to identify storage contention
 - Latency is normalized, averaged across virtual machines
 - IO size and IOPS included

SIOC enforces fairness when data store latency crosses threshold

- Default of 30 ms
- Sustained for four seconds
- Fairness enforced by limiting VMs access to queue slots
- Can have small detrimental effect on throughput at LUN

With Storage IO Control

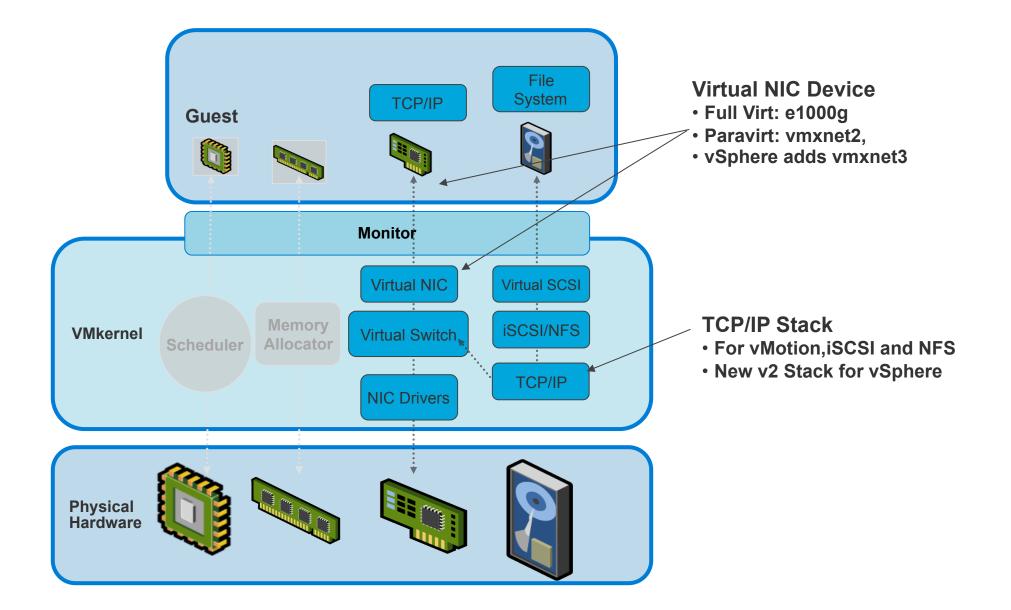
Actual disk resources utilized by each VM are in the correct ratio even across ESX Hosts

Notes and Caveats on SIOC

SIOC is not a storage panacea

- Important VMs can be protected
- Poorly performing storage remains poorly performing, and the infrastructure suffers!

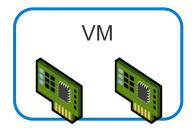
SIOC trades throughput for latency


- The feature is enabled when latency crosses a certain threshold, implying a storage bottleneck
- Throughput is throttled for less performance critical VMs to provide fast access to high priority VMs

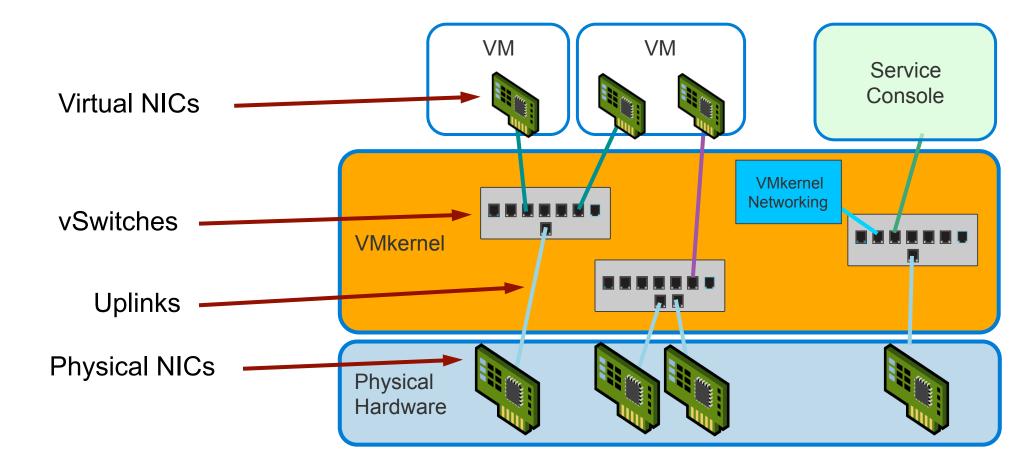
SIOC may make some of your happy application owners unhappy

- Your current configuration may allow storage hogs to lock their neighbors out of the array
- When you enable SIOC, these "bad neighbors" will be throttled

NETWORKING


VM Network I/O Virtualization

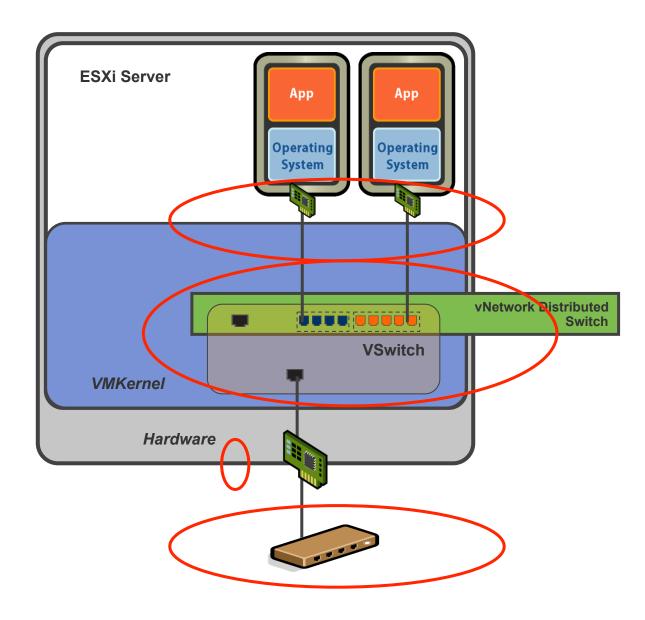
Guest OS sees a virtual NIC


- AMD Lance, Intel e1000, or VMware vmxnet
 - Virtual devices acting just like physical one (except vmxnet)
- Each virtual NIC has a unique MAC address
- Up to 4 virtual NICs per VM

Virtual NIC enhancements

- No physical crystal limiting transmit/receive
- Disallow promiscuous mode
- Disallow MAC address changes by the OS
- Disallow forged source MAC transmits

ESX Server Networking I/O


Troubleshooting Networking

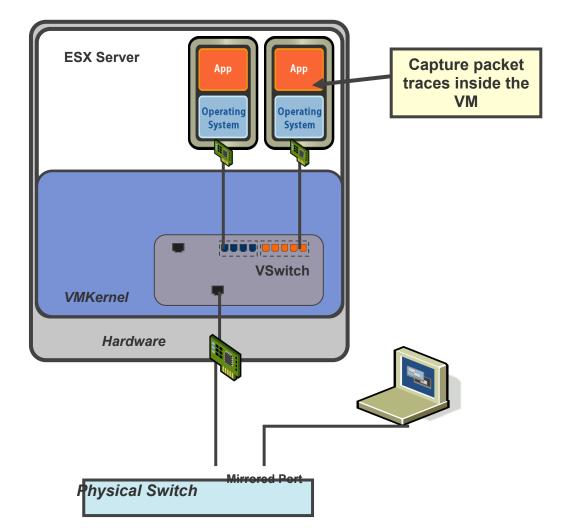
Troubleshoot one component at a time

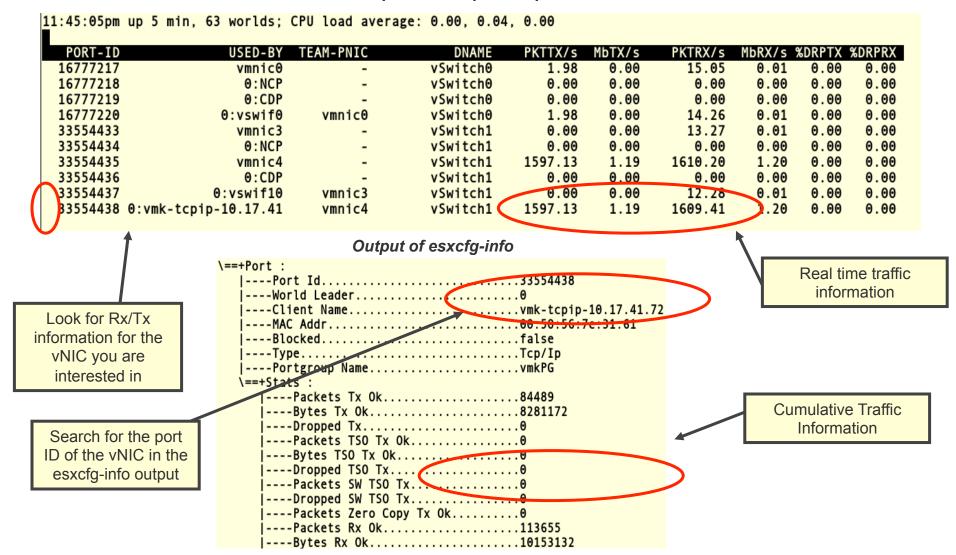
- Physical NICs
- vNetwork Distributed Switch
- Virtual NICs
- Physical Network

Tools for troubleshooting

- vSphere Client (aka VI)
- Command Line Utilities
 - vSphere CLI
- Third party tools
 - Ping and traceroute
 - Traffic sniffers and Protocol Analyzers
 - Wireshark
- Logs

Sniffing For Trouble


- Sniff for packets at different layers for isolation
 - Physical Switch Port Level (SPAN)
 - VM Level (Promiscuous mode)


Look for

- Lost Packets
- Large number of packet retransmissions
- Anomalies reported by protocol analyzers like Wireshark etc.

Look for patterns

- Are packets of a certain type causing problems?
- Are packets of a certain size causing problems?

Output of esxtop/resxtop

Check the physical NIC

- Check that the right uplinks are connected
 - Use vSphere client or esxcfg-vswitch --I
- Check the Rx/Tx counters of the physical nic using esxcfg-info or resxtop

١

- Check connected physical port
 - Use Network Hint or CDP

+Port :	
Port Id	54435
World Leader0	
Client Namevmn	ic4
MAC Addr	00:00:00:00:00
Blockedfals	se
TypePni	c
\==+Stats :	
Packets Tx 0k844	
Bytes Tx 0k828	1112
Dropped Tx	
Packets TSO Tx 0k	
Bytes TSO Tx Ok0	
Dropped TSO Tx0	
Packets SW TSO Tx	
Dropped SW TSO Tx0	
Packets Zero Copy Tx Ok	
Packets Rx 0k118	
Bytes Rx Ok105	38216
Dropped Rx	
Dropped TSO Rx	
Packets SW TSO Rx	
Dropped SW TSO Rx0	
Actions0	
Uplink Rx Packets0	
Pks Billed0	
Dropped Tx Due to Page Absent0	
Dropped Rx Due to Page Absent0	

Information about Uplink Port (vmnic4)

VI Client Networking Statistics

Mostly high-level statistics

- Bandwidth
 - KBps transmitted, received
 - Network usage (KBps): sum of TX, RX over all NICs
- Operations/s
 - Network packets received during sampling interval (real-time: 20s)
 - Network packets transmitted during sampling interval

Per-adapter and aggregated statistics

Esxtop Networking Statistics

Bandwidth

• Receive (MbRX/s), Transmit (MbRX/s)

Operations/s

• Receive (PKTRX/s), Transmit (PKTTX/s)

Configuration info

• Duplex (FDUPLX), speed (SPEED)

Errors

• Packets dropped during transmit (%DRPTX), receive (%DRPRX)

PORT	ID UPLI	NK U	P SPEED B	DUPLX	USED BY	DNAME	PKTTX/s	MbTX/s	PKTRX/s	MbRX/s
1677723	17	Y	Y 100	Ÿ	vmnic0	vSwitch0	0.00	0.00	0.00	0.00
1677723	18	N	<u> </u>	-	Û:NCP	vSwitch0	0.00	0.00	0.00	0.00
167772	19	N		-	0:vswif0	vSwitch0	0.00	0.00	0.00	0.00
1677722	21	N			1072:Windows 2003 SP	vSwitch0	0.00	0.00	0.00	0.00
1677722	23	N		-	1079 <mark>: SQ</mark> L2005	vSwitch0	0.00	0.00	0.00	0.00
3355443	33	Y	Y 100	Y	vmnic1	vSwitch1	0.00	0.00	0.00	0.00
3355443	34	N	- 🔲 -	-	S : NCP	vSwitch1	0.00	0.00	0.00	0.00
3355443	35	N		-	: CDP	vSwitch1	0.00	0.00	0.00	0.00
Service console	NIC		Virtual N	NICs	Physical NIC	PKTTX/s - Pac PKTRX/s - Pa MbTx/s - Trans MbRx/s - Rece	ckets rec smit Thro	eived /s	ec in Mbits/	

11:04:26am up 43 days 23:59, 61 worlds; CPU load average: 0.01, 0.01, 0.01

Port ID: every entity is attached to a port on the virtual switch DNAME - switch where the port belongs to

Multicast/Broadcast stats

Multicast/Broadcast stats are new for 4.1

_							
PORT-ID	USED-BY	TEAM-PNIC	DNAME	PKTTXMUL/s	PKTRXMUL/s	PKTTXBRD/s	PKTRXBRD/s
16777217	Management	n/a	vSwitch0	0.00	0.00	0.00	0.00
16777218	vmnic0		vSwitch0	0.00	0.39	0.00	0.00
16777219	∨mk0	vmnic0	vSwitch0	0.00	0.00	0.00	0.00
33554433	Management	n/a	vswitch global	0.00	0.00	0.00	0.00
33554434	vmnic2	S 	vswitch_global	0.00	0.58	0.00	0.00

PKTTXMUL/s – Multicast packets transmitted per second PKTRXMUL/s – Multicast packets received per second

PKTTXBRD/s – Broadcast packets transmitted per second PKTRXBRD/s – Broadcast packets received per second

Platform Optimization: Network

Use a network adapter that supports:

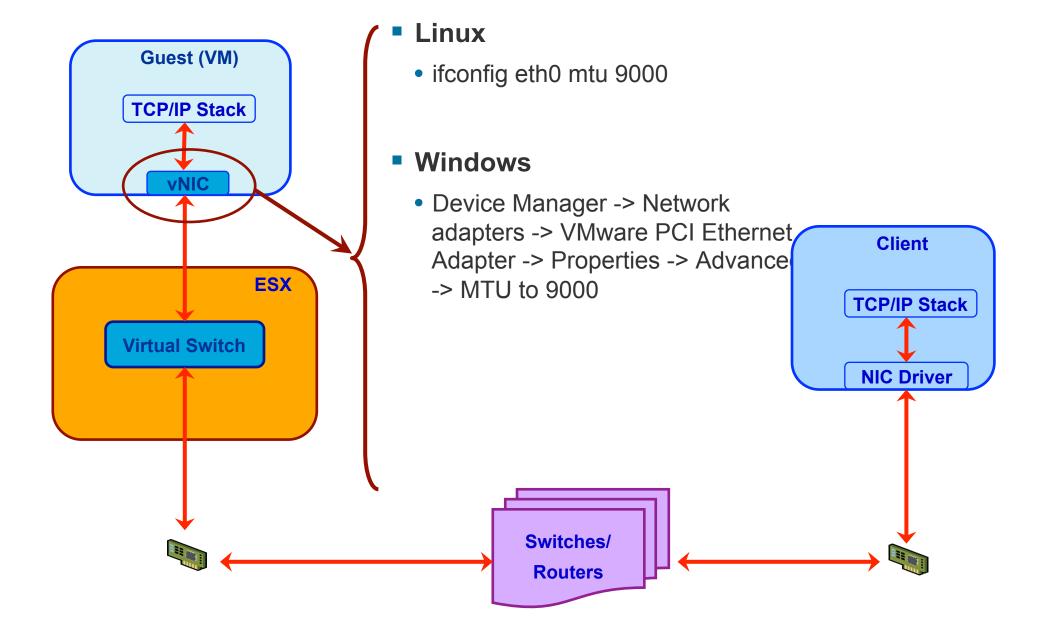
- Checksum offload, TCP segmentation offload (TSO), Jumbo frames (JF)
- Enable JF when hardware is available (default is off!)
- Capability to handle high memory DMA (64-bit DMA addresses)
- Capability to handle multiple scatter/gather elements per Tx frame

Check configuration

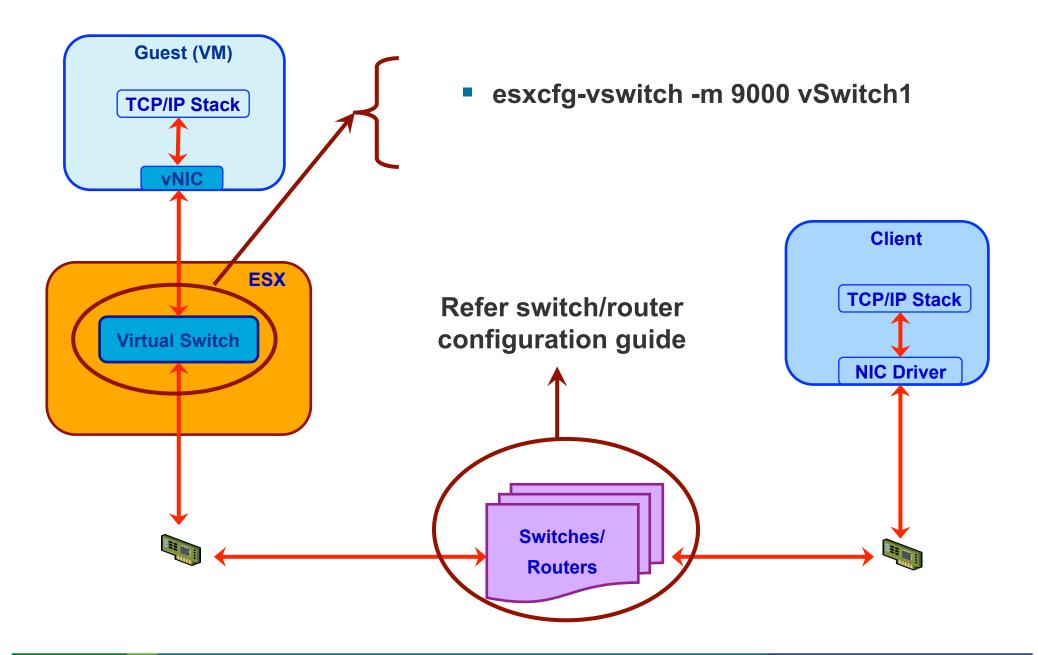
- Ensure host NICs are running with highest supported speed and full-duplex
- NIC teaming distributes networking load across multiple NICs
 - · Better throughput and allows passive failover

Use separate NICs to avoid traffic contention

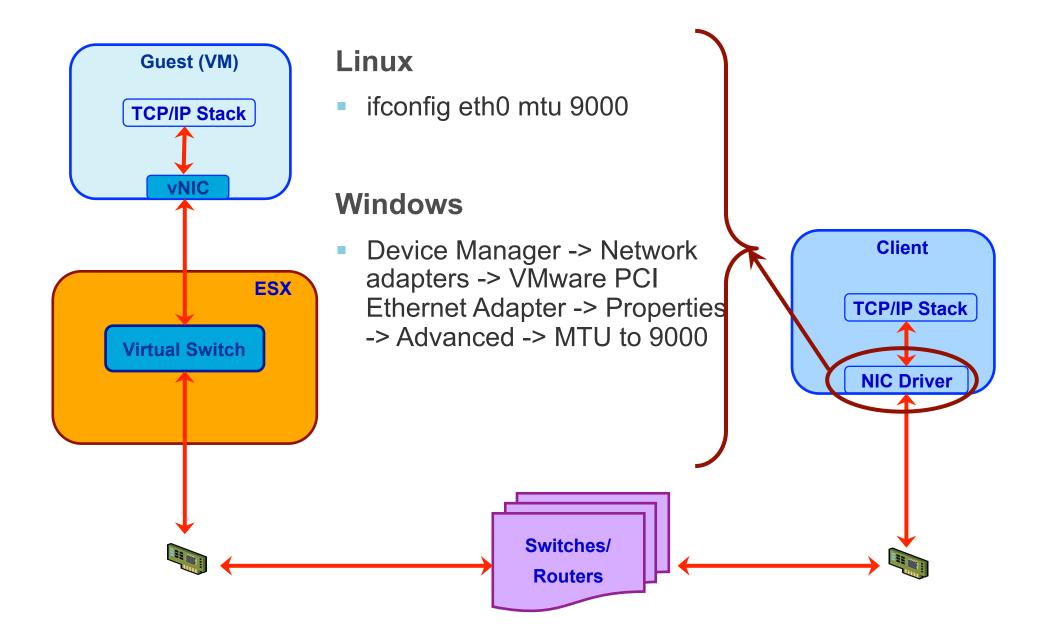
 For Console OS (host management traffic), VMKernel (vmotion, iSCSI, NFS traffic), and VMs


Jumbo Frames

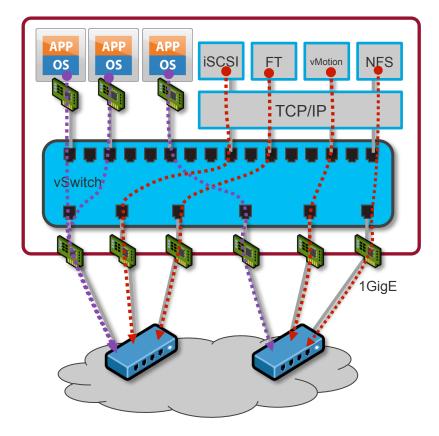
- Before transmitting, IP layer fragments data into MTU (Maximum Transmission Unit) sized packets
 - Ethernet MTU is 1500 bytes
 - Receive side reassembles the data


Jumbo Frames

- Ethernet frame with bigger MTU
- Typical MTU is 9000 bytes
- Reduces number of packets transmitted
- Reduces the CPU utilization on transmit and receive side

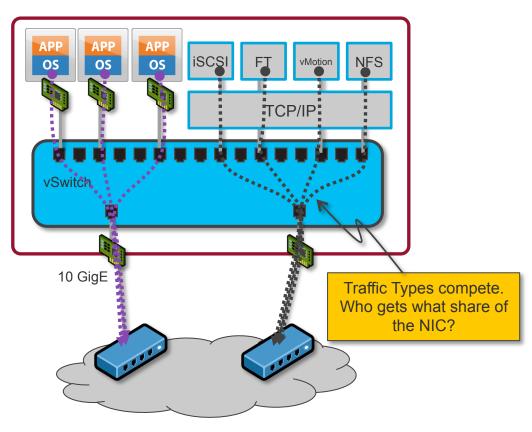

Jumbo Frames

Jumbo Frames



MTU Size

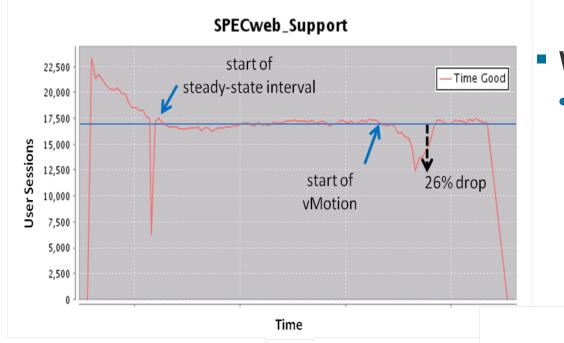
Verify it is not a jumbo frame related issue


- Verify that the vnic MTU is the same as the vswitch MTU
- Run ping –s <packet size> from the guest

Network Traffic Management – Emergence of 10 GigE

1GigE NICs

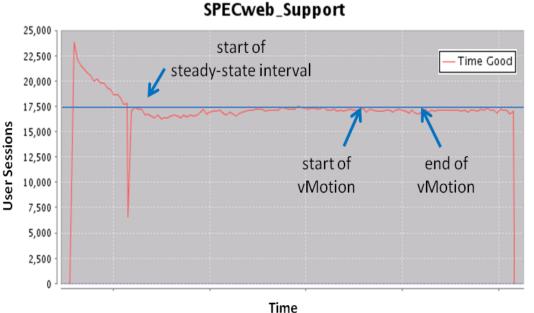
- Dedicated NICs for different traffic types
 e.g. vMotion, IP storage
- Bandwidth assured by dedicated NICs



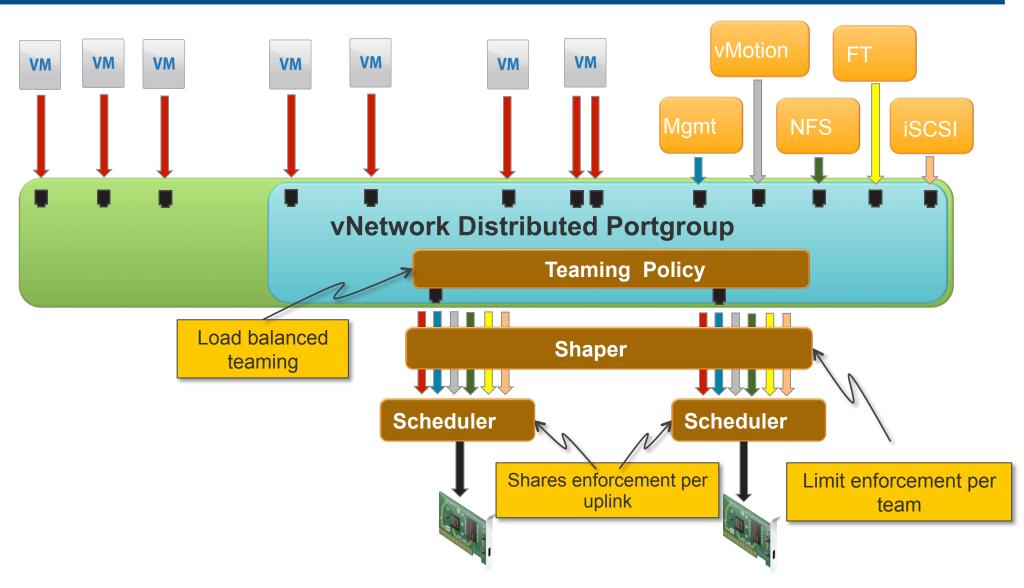
10 GigE NICs

- Traffic typically converged to two 10 GigE NICs
- Some traffic flows could dominate others through oversubscription

Network IO control – Protect your important bandwidth


Without Network IO Control

 VM traffic can be impacted by less performance-critical traffic such as vMotion


With Network IO Control

- VM traffic is protected and can maintain application SLAs
- vMotion is designated lower priority and can take longer

* Y-Axis shows number of User Sessions that meet SPECweb200 latency requirements

Network I/O Control Architecture

- Note: NetIOC is only supported with vNetwork Distributed Switch (vDS)
- Team: Group of NICs used for load balancing and fault tolerance

CONFIGURING WORKLOADS

	Workload Requires	vSphere 4
Oracle 11g	8vcpus for 95% of DBs 64GB for 95% of DBs 60k IOPS max for OLTP @ 8vcpus 77Mbits/sec for OLTP @ 8vcpus	8vcpus per VM 256GB per VM 120k IOPS per VM 9900Mbits/sec per VM
SQLserver	8vcpus for 95% of DBs 64GB @ 8vcpus 25kIOPS max for OLTP @ 8vcpus 115Mbits/sec for OLTP @ 8vcpus	8vcpus per VM 256GB per VM 120k IOPS per VM 9900Mbits/sec per VM
SAP SD	8vcpus for 90% of SAP Installs 24GB @ 8vcpus 1k IOPS @ 8vcpus 115Mbits/sec for OLTP @ 8vcpus	8vcpus per VM 256GB per VM 120k IOPS per VM 9900Mbits/sec per VM
Exchange	4cpus per VM, Multiple VMs 16GB @ 4vcpus 1000 IOPS for 2000 users 8Mbits/sec for 2000 users	8vcpus per VM 256GB per VM 120k IOPS per VM 9900Mbits/sec per VM

Databases: Top Ten Tuning Recommendations

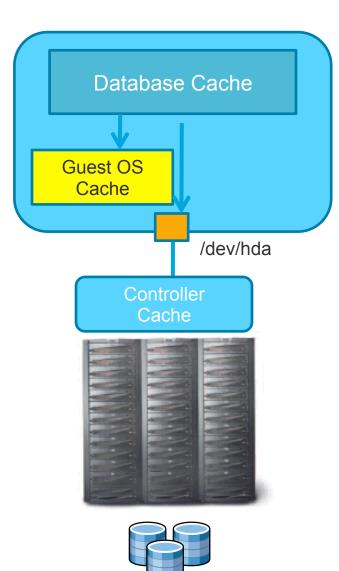
- 1. Optimize Storage Layout, # of Disk Spindles
- 2. Use 64-bit Database
- 3. Add enough memory to cache DB, reduce I/O
- 4. Optimize Storage Layout, # of Disk Spindles
- 5. Use Direct-IO high performance un-cached path in the Guest Operating System
- 6. Use Asynchronous I/O to reduce system calls
- 7. Optimize Storage Layout, # of Disk Spindles
- 8. Use Large MMU Pages
- 9. Use the latest H/W with AMD RVI or Intel EPT
- **10.**Optimize Storage Layout, # of Disk Spindles

Databases: Workload Considerations

OLTP

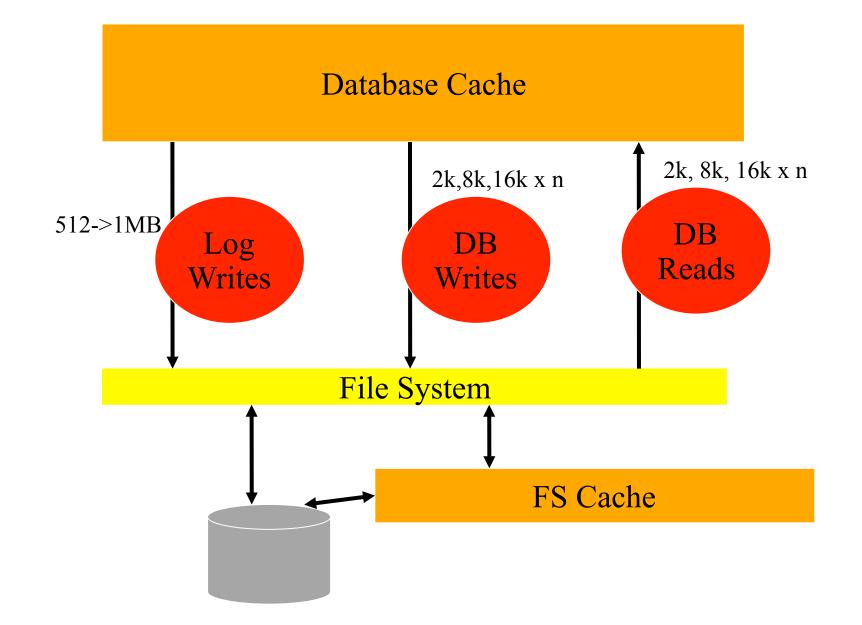
Short Transactions

- Limited number of standardized queries
- Small amounts of data accessed
- •Uses data from only one source
- I/O Profile
 - Small Synchronous reads/writes (2k->8k)
 - Heavy latency-sensitive log I/O
- Memory and I/O intensive

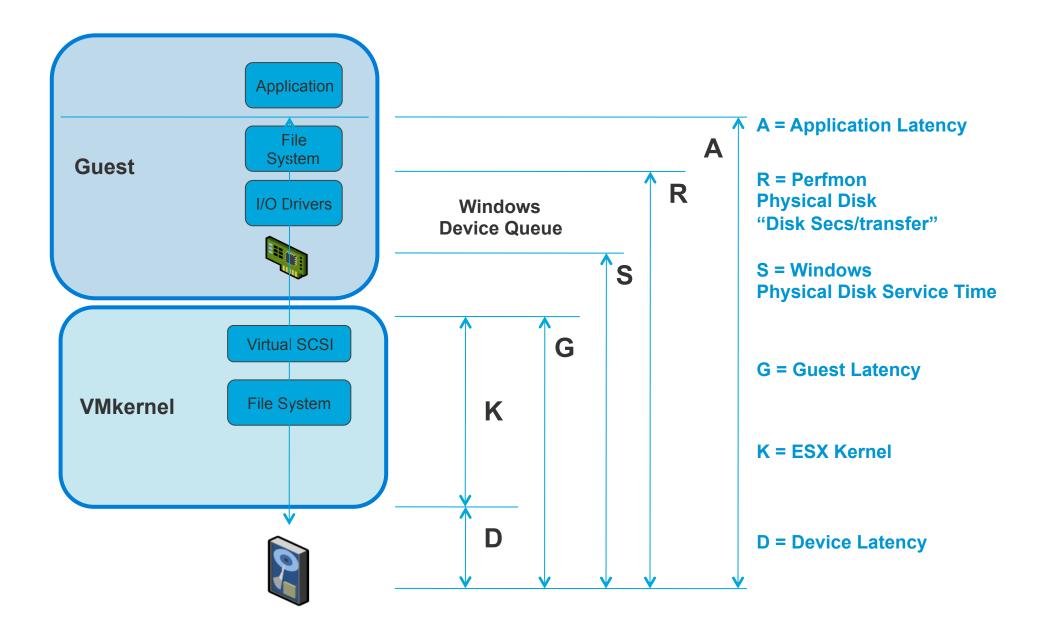

DSS

Long Transactions Complex queries Large amounts of data accessed Combines data from different sources

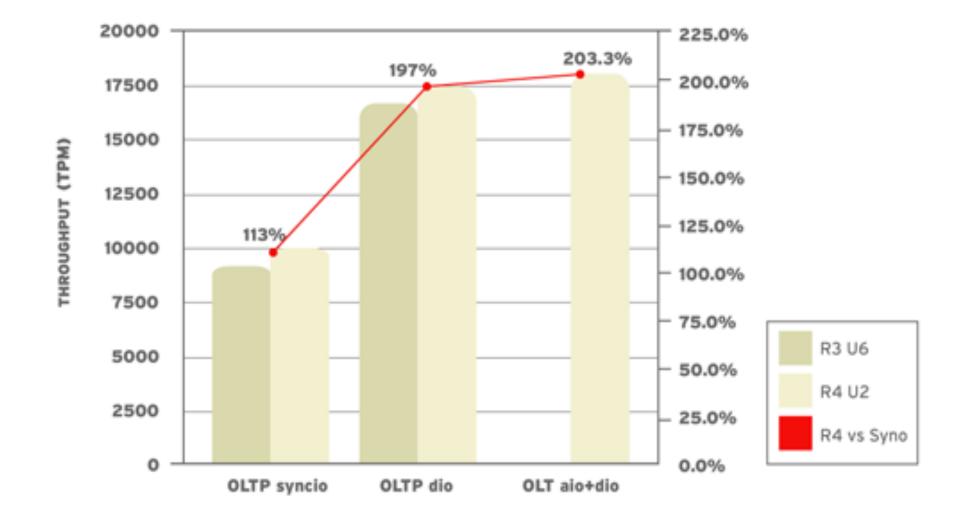
- Large, Sequential I/Os (up to 1MB)
- Extreme Bandwidth Required
- Heavy ready traffic against data volumes
- Little log traffic
- **CPU**, Memory and I/O intensive
- Indexing enables higher performance


Storage considerations

- VMFS or RDM
- Fibre Channel, NFS or iSCSI
- Partition Alignment
- Multiple storage paths
- OS/App, Data, Transaction Log and TempDB on separate physical spindles
- RAID 10 or RAID5 for Data, RAID 1 for logs
- Queue depth and Controller Cache Settings
- TempDB optimization



- In a recent study, we scaled up to 320,000 IOPS to an EMC array from a single ESX server.
 - o 8K Read/Write Mix
- Cache as much as possible in caches
- Q: What's the impact on the number of disks if we improve cache hit rates from 90% to 95%?
 - 10 in 100 => 5 in 100...
 - #of disks reduced by 2x!



- Disk latency issues are visible from Oracle stats
 - Enable statspack
 - Review top latency events

Top 5 Timed Events			% Total	
Event	Waits	Time (s)	Ela Time	
db file sequential read	2,598	7,146	48.54	
db file scattered read	25,519	3,246	22.04	
library cache load lock	673	1,363	9.26	
CPU time	2,154	934	7.83	
log file parallel write	19,157	837	5.68	

Oracle File System Sync vs DIO

Direct I/O

Guest-OS Level Option for Bypassing the guest cache

- Uncached access avoids multiple copies of data in memory
- Avoid read/modify/write module file system block size
- Bypasses many file-system level locks
- Enabling Direct I/O for Oracle and MySQL on Linux

```
# vi init.ora
filesystemio_options="setall"
Check:
# iostat 3
(Check for I/O size matching the
DB block size...)
```

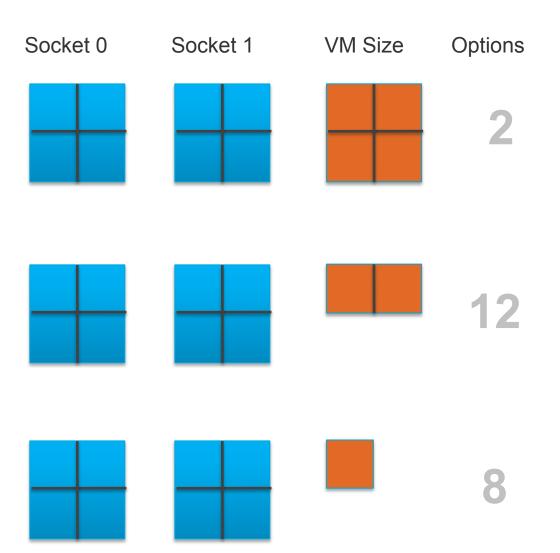
```
# vi my.cnf
innodb_flush_method to O_DIRECT
```

Check:

```
# iostat 3
(Check for I/O size matching the
DB block size...)
```


Asynchronous I/O

An API for single-threaded process to launch multiple outstanding I/Os


- Multi-threaded programs could just just multiple threads
- Oracle databases uses this extensively
- See aio_read(), aio_write() etc...

Enabling AIO on Linux

```
# rpm -Uvh aio.rpm
# vi init.ora
filesystemio_options="setall"
Check:
# ps -aef |grep dbwr
# strace -p <pid>
io_submit()... <- Check for io_submit in syscall trace</pre>
```

Picking the size of each VM

- vCPUs from one VM stay on one socket*
- With two quad-core sockets, there are only two positions for a 4-way VM
- 1- and 2-way VMs can be arranged many ways on quad core socket
- Newer ESX schedulers more efficiency use fewer options
 - Relaxed co-scheduling

Use Large Pages

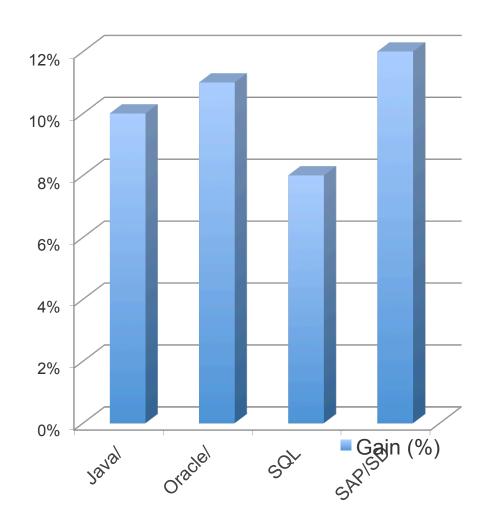
Guest-OS Level Option to use Large MMU Pages

- Maps the large SGA region with fewer TLB entries
- Reduces MMU overheads
- ESX 3.5 Uniquely Supports Large Pages!
- Enabling Large Pages on Linux

```
# vi /etc/sysctl.conf
(add the following lines:)
```

```
vm/nr_hugepages=2048
vm/hugetlb_shm_group=55
```

```
# cat /proc/vminfo |grep Huge
HugePages_Total: 1024
HugePages_Free: 940
Hugepagesize: 2048 kB
```

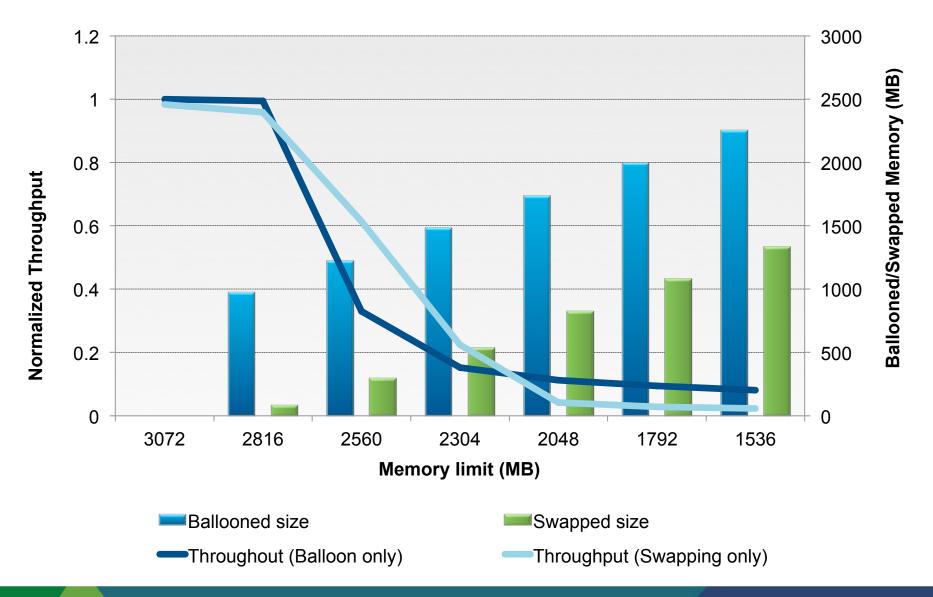


Large Pages

Increases TLB memory coverage

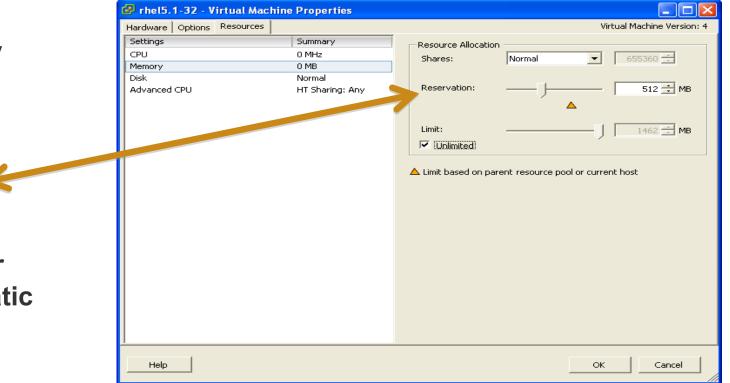
- Removes TLB misses, improves efficiency
- Improves performance of applications that are sensitive to TLB miss costs
- Configure OS and application to leverage large pages
 - LP will not be enabled by default

Performance Gains


Linux Versions

- Some older Linux versions have a 1Khz timer to optimize desktop-style applications
 - There is no reason to use such a high timer rate on server-class applications
 - The timer rate on 4vcpu Linux guests is over 70,000 per second!

Use RHEL >5.1 or latest tickless timer kernels


- Install 2.6.18-53.1.4 kernel or later
- Put divider=10 on the end of the kernel line in grub.conf and reboot, or default on tickless kernel
- All the RHEL clones (CentOS, Oracle EL, etc.) work the same way

vmware[®] s

- Calculate OS memory
- Estimate JVM needs
- Specify heap exactly
- Reservations =
 OS + JVM + heap
- Also applies to other applications with static memory needs
 - Oracle SGA

For More Information

- VMware's Performance Technology Pages
 - <u>http://vmware.com/technical-resources/performance</u>
- VMware's Performance Blog
 - http://blogs.vmware.com/performance
- Performance Community
 - http://communities.vmware.com/community/vmtn/general/performance
- VMware Performance Class
 - Check with VMware Education or VMware Authorized Training Center
- VMware Performance Service Offering
 - Ask VMware account team

VMware Performance for Gurus

Richard McDougall

CTO of Application Infrastructure, VMware

<u>rmc@vmware.com</u> twitter @richardmcdougll

