T)

mm||||||||||||

—-— !
Professional Expertise Distilled

VMware ThinApp 4.7
Essentials

I L " * 1.1 [[of o Ll > 4 5 I L
aarn howw o Alnlickivy anad articiantiv virfiializa vniir annlicarinne
Lecalll 110)L.':\v-'l J ./ \:1 UIGKA J Jr‘r cl iUl SHIUIC] l L \:r Vil Lt-.-J A Jl | [- \}‘f U/ '._.j. :I (= § 9 E\—'] 1 . L-“I LI Vil

aiitbls ThinAan A 7
with ThinApp 4.7

Peter Bjork [PACKT] enterprise ®

PUBLISHING

VMware ThinApp 4.7 Essentials

Learn how to quickly and efficiently virtualize your
applications with ThinApp 4.7

Peter Bjork

enterprise &

PUBLISHING

BIRMINGHAM - MUMBAI

VMware ThinApp 4.7 Essentials

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2012
Production Reference: 1161112

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-628-0
www . packtpub.com

Cover Image by Artie Ng (artherngeyahoo. com.au)

Credits

Author
Peter Bjork

Reviewers
Aaron Black

Adam Eckerle

Acquisition Editor
Andrew Duckworth

Lead Technical Editor
Arun Nadar

Technical Editors
Jalasha D’costa

Charmaine Pereira

Copy Editors
Brandt D'Mello

Alfida Paiva

Project Coordinator
Abhishek Kori

Proofreaders
Lydia May Morris
Stephen Silk

Indexer
Rekha Nair

Graphics
Valentina D’silva

Aditi Gajjar

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Peter Bjork has many years of ThinApp experience. He started out working with
Thinstall, and continued after VMware acquired the product in 2008, renaming

it ThinApp. Peter supports ThinApp in the EMEA region. As a teacher, Peter has
educated many ThinApp packagers around the world. Peter lives in Sweden with
his wife and two kids, a boy and a girl.

I would like to thank the people who have supported me throughout
the writing of this book. First and foremost, my thanks go out

to my wonderful wife, Lena. Without her help and support, this
book would never have been written. I know ThinApp to a depth
not many others do, but my writing skills are clearly insufficient.
Luckily, Lena has the gift of words, so with her support I managed
to write this book. To my two wonderful kids, Albin and Filippa,
who constantly remind me of what’s important in my life. I would
also like to thank my reviewers, Aaron Black and Adam Eckerle.
Their valuable input was important for this book. I also thank
PACKT Publishing for trusting in me to write this book. It's my first
book and the team: Andrew Duckworth, Abhishek Kori, and Arun
Nadar really helped me through the process. I must thank Jonathan
Clark for coming up with the great idea of Thinstall, and with that
created what became the better part of the my career. Last but not
least, my thoughts go to the family of late Ge van Geldorp. Ge was
an amazing developer and without his genius coding, ThinApp
would not be what it is today. Ge, you are missed every day.

About the Reviewers

Aaron Black is a senior product manager at VMware® in the End User Computing
business unit. He is currently responsible for ThinApp, ThinApp Factory, and the
Horizon integration with ThinApp. At VMware, he has worked in various positions
in the field as a Systems Engineer, a stint in technical marketing, and now product
management. His primary domain of knowledge revolves around all things that are
applications related. At previous companies, he worked as a Systems Engineer with
Citrix Systems, leading a technical corporate IT team at Sprint, and solutions design
for a platinum reseller of VMware and Citrix products.

Adam Eckerle is a Solutions Architect at Network Storage, Inc in Indianapolis,

IN, US (networkstorageinc.com). He has a B.S. degree in Computer Engineering
from Rose-Hulman Institute of Technology and has worked in Engineering and IT
for more than 10 years. His primary focus is Datacenter Virtualization around the
VMware vSphere platform. Other areas of focus are EMC storage platforms, Cisco
UCS x86 server virtualization, and Vblock solutions. Among Adam’s industry
certifications are Microsoft Certified IT Professional, VMware Certified Professional
(4 & 5), and Cisco Data Center Unified Computing Design Specialist.

I'd like to thank my wife, Alexis, and our two young sons, Drew and
Ethan, who have allowed me to follow my dreams and make every
day worth living.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www. Packt Pub . com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www . PacktPub . com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at servicee
packtpub. com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

@ PACKT! i£°

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book library.
Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print and bookmark content
* Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents

Preface 1
Chapter 1: Application Virtualization 5
Application virtualization 5
ThinApp overview 6
ThinApp architecture 7
Common ThinApp vocabulary 9
The capturing process 9
The capture machine 9
The project folder 9
The package 10
The data container 10
The entry point 10
Compiling or building your ThinApp package 10
The build machine 10
The ThinApp utilities folder 11
The ThinApp runtime 11
Read-Only data 11
Read and write data 11
Folder macros 11
The sandbox 12
Isolation modes 18
Merged 18
WriteCopy 19
Full 19
Example 1 21
Example 2 22

Example 3 23

Table of Contents

The virtual filesystem 25
The virtual registry 27
Application Linking (AppLink) 28
AppLink conflict resolution for isolation modes 30
Optional AppLink 31
Required AppLink 32
The ThinApp utilities folder and its content 33
Summary 39
Chapter 2: Application Packaging 41
Packaging 41
Running the Setup Capture wizard 42
The capture and build environment 54
Entry points and the data container 57
The project folder 61
The Package.ini file 64
Isolation mode considerations 7
Virtualizing Internet Explorer 6 74
The recommended ThinApp capture process 77
Some packaging tips 80
32-bit versus 64-bit 80
Services 81
Auto update 81
Save your project folders 81
Make sure you investigate the sandbox 81
When capturing, make sure you are capturing! 82
Make sure your application is 100 percent natively installed 82
Never start with AppLink 82
VB Scripting 82
Packaging applications with dependencies 86
Dependencies on runtimes 86
Dependencies on locally installed applications 87
Dependencies on another virtualized application 88
Summary 88
Chapter 3: Deployment of ThinApp Packages 89
Different deployment scenarios 89
Using streaming deployment 920
Using MSI to distribute packages 94
Using VMware Horizon Application Manager 98
Using VMware View 100

Lii]

Table of Contents

Using alternative media and methods 102
Using thinreg.exe to register your applications 103
Summary 109
Chapter 4: Updating and Tweaking Your ThinApp Project 111
Different categories of updates 111
Recapturing an application 112
Modifying the project folder 114
Sandbox merge 114
Updating the ThinApp runtime 126
Sandbox considerations for updated packages 128
Summary 129
Chapter 5: How to Distribute Updates 131
Different categories of updates 131
Using MSI to distribute updates 132
Using an in-place update method 134
Application Sync (AppSync) 139
Application Linking (AppLink) 153
Deploying updated packages using VMware Horizon
Application Manager 157
Summary 161
Chapter 6: Design and Implementation Considerations
using ThinApp 163
Protecting your packages 164
Default isolation modes 165
Sandbox considerations 166
Implementing ThinDirect 167
Designing for a physical client implementation 168
Designing for a virtual desktop infrastructure (VDI) implementation 171
Designing for a terminal server/Citrix XenApp implementation 174
Designing for a mixed environment 175
Sizing of your streaming file share 176
Summary 179
Chapter 7: Troubleshooting 181
The theory behind troubleshooting 181
Effective test procedures 183
The Dirty Test 183
The Washed Test 184
The Clean Test 184
The Production Test 185

[iii]

Table of Contents

Common troubleshooting tools 189
Process Explorer 189
Process Monitor 192
Dependency Walker 193
Microsoft Event Viewer 193
Error messages 194

ThinApp Log Monitor 194

Troubleshooting tips and tricks 199

Your everyday capturing process 201

Summary 202

Appendix: References 203

Folder macros 203

Package.ini parameters 206

Environment variables and ThinApp runtime switches 231
Changing the sandbox location 231
ThinApp runtime switches 232

Summary 233

Index 235

[iv]

Preface

VMware ThinApp 4.7 is an application virtualization solution which allows its
admins to package Windows applications so that they are portable.

"VMware ThinApp 4.7 Essentials" shows you how to create and deploy ThinApp
packages in order to improve the portability, manageability, and compatibility of
applications by encapsulating them from the underlying operating system on which
they are executed.

ThinApp eliminates application conflicts, reducing the need and cost of recoding
and regression testing.

No matter if you are completely new to VMware ThinApp or an experienced
ThinApp packager, this is the book for you. I've made an effort to make sure that
everyone can learn something in each chapter. This book will cover everything
needed to become a successful ThinApp packager. This book does not talk about
the competition. I wanted this book to be technically oriented and so very little,
if any, is of a non-technical nature.

What this book covers

Chapter 1, Application Virtualization, covers basic application virtualization concepts.
It also covers important concepts like isolation modes, the sandbox, and much more.

Chapter 2, Application Packaging, explains the whole packaging process. It takes
you through a simple packaging example, which you can easily perform yourself.
Entry points and the data container are explained as well as how your packaging
environment affects your packages..

Chapter 3, Deployment of ThinApp Packages, walks you through the different
methods for deployment as it's now time to deploy the package to your end users.
We cover ThinApp native methods of deployment as well as using VMware View
and VMware Horizon Application Manager.

Preface

Chapter 4, Updating and Tweaking Your ThinApp Project, covers how to maintain your
packages using different methods and helps you choose the appropriate method for
different types of updates as after a while, all applications must be updated one way
or another.

Chapter 5, How to Distribute Updates, covers how to deploy your newly created
updated package. ThinApp offers many different methods, so a good portion is
spent on helping you identify which methods to use for which update.

Chapter 6, Design and Implementation Considerations using ThinApp, outlines general
implementation guidelines. The chapter goes through things you need to be aware
of in order to successfully implement ThinApp in your environment.

Chapter 7, Troubleshooting, teaches you how to conduct efficient troubleshooting of
ThinApp packages, since sometimes you may face an issue while trying to package
a certain application. I have shared some tips and tricks that I've picked up from my
many years of ThinApp packaging.

Appendix, References, provides you with a complete Package.ini parameter reference
as well as all folder macros, and environment variables supported by ThinApp.

What you need for this book

If you want to perform the examples I use throughout this book yourself,
you will need a couple of applications. You will need the following:

* VMware ThinApp

You can download a free trial of VMware ThinApp from here:
http://www.vmware.com/go/trythinapp.

e VMware Workstation
You can download a free trial from: http://www.vmware.com/go/tryworkstation.

¢ One Microsoft Windows XP and one Windows 7 virtual machine.

* Installation media for the different applications that you want to package.
I use Mozilla Firefox for most of my examples. I personally prefer the old
Mozilla Firefox versions. You can download the old versions from here:
https://ftp.mozilla.org/pub/mozilla.org/firefox/releases/

Who this book is for

This book is for anyone who will work with ThinApp, or is interested in learning
everything there is to know about ThinApp. It doesn't matter if you've never
seen ThinApp before or have been using ThinApp for many years. I guarantee
that everyone will learn something by reading this book.

[2]

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: “Some folder macros share the same name
as Windows variables such as $AppData% pointing to the users’ roaming profile.”

A block of code is set as follows:

[BuildOptions]
OptionalAppLinks=C:\Plugins\LoadMeFirst.exe; C:\Plugins\LoadMeLast.exe

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[BuildOptions]
OptionalAppLinks=C:\Plugins\LoadMeFirst.exe; C:\Plugins\LoadMeLast.exe

Any command-line input or output is written as follows:

048200 00000000 00000200 Can’t load library MSVCP50.dll which is
implicitly loaded by C:\Application A\DLLIAP.dll, err=53

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: “Clicking
the Next button moves you to the next screen”.

Warnings or important notes appear in a box like this.
.

~\l
Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

[31]

Preface

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any

list of existing errata, under the Errata section of that title. Any existing errata

can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

[4]

mailto:copyright@packtpub.com

Application Virtualization

In this chapter we will cover a general overview of application virtualization

and ThinApp. We will start by exploring what application virtualization is and
why it is superior to local installations. We will then cover the architecture behind
ThinApp and how we can manipulate and customize ThinApp packages to suit
our specific requirements.

By the end of this chapter, you will have learned about:

* Application virtualization

* Why you should use application virtualization
* ThinApp architecture

* Common ThinApp vocabulary

* The sandbox

* Isolation modes

* Application linking with the help of AppLink

Application virtualization

Application virtualization encapsulates an application and all of its components
into a package that is easy to deploy and manage. Using virtualization allows you
to execute the application as if it was locally installed when it is not. Normally when
you install an application it will register DLL files, create registry keys, and copy
files into your operating system. This modifies your operating system and you will
always run the risk of overwriting something already installed and breaking an
existing application. By virtualizing the application, you will never install anything
on the client, you will simply execute the application. There is also a virtualization
layer hooking into the APIs of the application. When hooking the API for, let's say
Open File, it is possible for the virtualization layer to present a virtual environment
for the application, thus fooling the application into thinking it is already locally
installed and therefore allowing it to execute.

Application Virtualization

The benefits of using application virtualization are many. Your operating system
stays clean. By having clean machines, your clients will be more stable. A virtualized
application is much easier to deploy, maintain, and retire than a natively installed
one. With application virtualization, it is often possible to run two otherwise
conflicting applications simultaneously on the same machine. Not using application
virtualization makes it pretty much impossible to have Microsoft Office 2003 and
Microsoft Office 2010 installed on the same client and run both at the same time.

ThinApp overview

VMware ThinApp is a packaging format. Like MSI and other packaging formats,
ThinApp simplifies application deployment. ThinApp uses virtualization to package
your application, which lets you execute the packaged application without having
to install it. When using ThinApp, you simply need to have access to your package
in order to use the application, as compared to the legacy MSI format in which you
need to install and register your application on the local machine. As a side effect of
using virtualization, you can isolate the filesystem and registry components from
the locally installed applications as well as from other virtualized applications.

This allows you to run conflicting applications on the same machine. Since you will
never install anything locally, the use of an application will not alter your operating
system. Your client will be much cleaner, more stable, and will operate faster for a
longer time. ThinApp minimizes the constant reinstallation of the operating system
due to repetitive application installs, which leave residue and often create conflicts
that eventually leave the operating system in a degraded state necessitating a
complete system rebuild.

ThinApp has one very obvious advantage over other solutions out there. It is
agentless, meaning you need nothing locally installed in order to execute an
application packaged with the help of ThinApp. Being agentless greatly reduces
the administration overhead. When a new ThinApp version is released, you don't
have to touch any existing packages already deployed. Start using the new version
to capture new applications. You can happily deploy these next to an old ThinApp
package since there is no conflict between ThinApp versions running side-by-side.
Being agentless also lets you offer an application to a user bringing his or her own
device without the need to ever touch the device. You don't run the risk of being
accused of altering the user's machine.

[6]

Chapter 1

Out of the box, ThinApp is capable of virtualizing 60 - 80 percent of your
applications. Having more ThinApp knowledge and experience might allow you to
virtualize up to 85 - 90 percent. You will, most of the time, never achieve 100 percent
virtualization. This means you will, most of the time, have two packaging formats in
place - native installation (often MSI) and ThinApp. ThinApp supports virtualizing
Services, COM, and DCOM objects. ThinApp does not support virtualizing device
drivers, Network visible DCOM, Global Hook DLLs, and COM+. There might

be workarounds to these limitations. One of these could be to load what is not
supported outside the virtual environment. One of the main reasons to virtualize
an application is to keep your operating system clean. This is why ThinApp does
not make many changes to the operating system when registering a ThinApp
package. Registering a package will give you a certain level of shell integration,
such as shortcuts, file type registrations, and a few more, but not all. Context menus
are a typical example. This changed user experience might be a reason not to
virtualize an application, even though ThinApp can package it. For instance, 7-Zip
adds a context menu item so that when you right-click on a ZIP file in Windows
Explorer, you can perform zip/unzip operations without having to open the
application directly. A 7-Zip ThinApp package will happily perform zip/unzip
operations when launched directly, but the users will not have access to the
right-click context menu. Most of the times you can create context menus pointing
to a virtualized application but it is not something ThinApp creates automatically
for you when registering the package.

Even though you will probably not be able to reach 100 percent application
virtualization, ThinApp adds significant value to your application's deployment
and management infrastructure. Every application you manage to virtualize will
be easier to maintain and cheaper to support.

ThinApp architecture

Since it cannot be mentioned too many times, ThinApp is agentless. Nothing needs

to be installed on the client in order to run and use a ThinApped application. The
ThinApp runtime is built into each one of the ThinApp packages you create. ThinApp
does not create conflicts between different versions of ThinApp runtimes, so you can
run packages built using different ThinApp versions on one single machine.

[71

Application Virtualization

The ThinApp runtime manages file and registry access within the virtual
environment. With the help of isolation modes you can decide what may or may not
be modified on the native operating system. The ThinApp runtime loads processes
and manages memory. Because it is the ThinApp runtime that launches a process,
the runtime now monitors all API calls made by the process. The runtime is also able
to intercept the API calls and manipulate both the request and reply. This is referred
to as hooking the API calls. The ThinApp runtime hooks hundreds of Win32 APIs
in order to create the virtual environment. Let's say an application tries to open a file.
The ThinApp runtime sees this request, hooks it, and is now capable of passing a
virtualized file to the application, instead of serving the native file to the application.
The ThinApp runtime does not hook all possible Windows APIs, only the ones
needed to present a virtual environment to the application package. API calls to
hardware such as graphical drivers are not hooked.

A ThinApp package contains not only the ThinApp runtime, but also includes
a virtualized registry and filesystem. You as a packager decide the content of
the virtual environment during packaging. The virtual environment built into
the package is called the read-only version of the virtual environment. The end
user cannot modify the content within the package. Only you as a packager can
change the content.

Changes made by either the user or the application itself are often stored in the
sandbox. The sandbox content is a part of the whole virtual environment known
to the application.

) Mozilla Firefox
E-I’Eﬂmﬁ'lz“— File Edit ‘iew History Bookmarks Tools Help
- fa¥
o Y @) e
e Bark J Lﬁ; 7 Search = Folders . —
Open File | d |D:<|
Address |23 C:\Program Files i
A tame Laak ir: | [Program Files ~ | Qo T = E-

System Tasks (=) Common Files — (5 Common Files [Szerox
Hide the contents of DcomPlus Appicatians 5 () ComPlus Applications

this Folder [Dintermet Explorer MyRecent | LZ)Inkermet Explorer
Y Add or remove ChMessenger Documents |5 Messenger

programs [Zymicrosoft Frontpage _ (C) microsaft Frontpage
& Search For files or [C)Movie Maker ?[- () Mavie Maker

folders CMsN = E

Desktop i Mozilla Firefox
[C2)MSM Gaming Zone (aMsn
File and Folder Tasks 2 BNET.MEEEIHQ = L MS Gaming Zone
; (0nline Services _J [C)hetMesting
(=) Make anew Falder [0utlack Express - () Online Services
acuments

8 Publish this folder to (C)¥Mware v () 0utlook Express

the Web [CWindows Media Player () WMware
f? Share this Folder — [Ewindows NT |- ! L2 windows Media Player

[Dymerox ! L2 Windows NT
y Computer
Other Places
e LocalDisk () ‘g File name: | v o]
= :

[} My Documents My Metwark Files of bype: |AI\ Files w | [Cancel]

[8]

Chapter 1

The view of the environment of a package is a merge between the physical and the
virtualized. In the previous screenshot, Mozilla Firefox sees the content of native
C:\Program Files as well as the virtualized folder called Mozilla Firefox. The
Mozilla Firefox folder is not available to the operating system (Explorer window).

When the virtualized application is launched, the virtual environment is initiated
by the ThinApp runtime and presented to the executing process. The application
believes it is locally installed on the machine. The packaging process of ThinApp
does not alter the application's files in any way. The ThinApp runtime loads the
processes and by launching it, the ThinApp runtime can hook into the API calls
made by the processes and present the virtual environment.

Common ThinApp vocabulary

In order to have a meaningful discussion about ThinApp, we need to agree on
some common vocabulary. I prefer to give you this vocabulary earlier in the book
rather than later. If you have already used ThinApp, most of this will already be
known. If you are new to ThinApp, don't worry, as we will cover all of it in more
detail as the book progresses.

The capturing process

This is the whole process of capturing an application. You can run Setup Capture,
install your application, and save the capture into a project folder. The capture
process analyzes all changes made to your capture machine and stores those into
a project folder. These changes are what will become the virtual environment and
make the captured application believe it is locally installed on the target machine.

The capture machine

This is the machine on which you run the capture process. Most of the time it's
a virtual machine since that allows easy reversion to different machine states
(snapshots). After successfully capturing an application, you will revert to a
clean state before you capture a new application.

The project folder

This is the outcome of your capturing process. Now the real work as a packager
begins. It's the project folder that contains the virtualized environment such as
files and registry keys recorded during your capturing process.

[o]

Application Virtualization

The package

When you compile your project folder, the outcome will be the package.
The package is what your users consume in order to execute the captured
application. The package will normally be found in the bin folder within
your project folder. A package can be one single file or multiple files, one
being the data container and others being entry points.

The data container

The data container is the file containing your compiled project folder. It's the
container for the whole virtual environment and the ThinApp runtime.

The entry point

Entry points are the doorways for the user to access the virtualized application.

An entry point specifies what will be executed in the virtualized environment of
your data container. The target of your entry point may or may not be virtualized. It
is possible to have an entry point for a Java Runtime package launching your locally
installed Internet Explorer. Internet Explorer would see the virtualized environment
and therefore use the version of Java packaged. An entry point can also be a data
container. Otherwise, if it's only an entry point, the data container must be located in
the same folder as the entry point. An entry point can be used to any data container.
The entry point simply searches for the specified data container's name and will
happily use any data container. An entry point contains registration information
such as icon, file types, object types, protocols and where to create shortcuts.

Compiling or building your ThinApp package

The building process is the process of taking the content of your project folder and
compiling it into a virtual environment. This process can be issued from within
ThinApp's capturing tool, Setup Capture, or from within your project folder by
launching the build.bat batch file. Every time you change the content of your project
folder, you'll have to recompile it in order for the changes to be applied to the package.

The build machine

This is any machine you can use to compile your project. It may or may not be your
capture machine. You do not have to use a certain operating system or even a clean
machine in order to compile your package. Any machine should do the trick. The
build machine must have access to the ThinApp utilities folder and your project
folder in order to successfully compile your project.

[10]

Chapter 1

The ThinApp utilities folder

This is the folder created during the installation of VMware ThinApp. Most of the
time it's found in C: \Program Files\VMware\VMware ThinApp. Since ThinApp
utilities are virtualized, you can move this folder to any location. I personally store
the folder on a network share for easy access from all my different capture machines.

The ThinApp runtime

This package embedded runtime allows the virtual environment to be created.
The ThinApp runtime loads the virtualized application's processes and DLLs.
It hooks Windows APIs in order to present a virtualized environment to the
virtualized application.

Read-Only data

This is the virtual environment, filesystem, and registry, compiled into the ThinApp
package. Since the package is in a compiled format, no regular end user can open
this file and modify its content.

Read and write data

This is what we call the data stored in the sandbox. The sandbox is where ThinApp
stores changes made to the environment by the virtualized application or the end
user. Deleting the sandbox will revert the package to its read-only data state.

Folder macros

These are much like system variables in a Windows operating system, but these are
ThinApp-specific variables. Some folder macros share the same name as Windows
variables such as $AppData$% pointing to the users' roaming profile. But others

are different, for example $ProgramFilesDir% represents the system variable
$ProgramFiles%. When you use VBScripts within your packages, you must
understand that there is a difference between folder macros and system variables.
The use of folder macros allows package portability. When you launch a package
on an English OS, your $ProgramFilesDir% will be C:\Program Files, while on
a German OS it is the same folder macro pointing to C: \Programme. This way, the
application you virtualized will find its installation folder where it expects to find
it, no matter what language of OS it's running on. You can find a list of all folder
macros in References.

[11]

Application Virtualization

The sandbox

Many applications require the ability to write or modify data on the computer's
filesystem and registry. When this need arises, ThinApp writes this data to the
sandbox. This process is configurable and can be controlled through isolation modes.

The sandbox will store user settings so that these are preserved between application
launches. If you delete the sandbox, the package will revert to its vanilla state.

How big the sandbox will become depends on two factors: isolation modes and the
behavior of the application.

The sandbox is a normal folder storing complete, fully functional versions of
modified files. Let's say you run a virtualized application using . ini configuration
files. Changing the application's configuration would alter the . ini file, and in your
sandbox you would find the new version. It's fully functional and possible to open,
for example, in native Notepad. The files are stored in folder macros, representing
the path to the file. Since files are stored as native files and not in a binary blob, it's
easy to perform backups of your sandbox. You can do single file restores and your
antivirus software can scan its content without any problems.

* | 2) Identities
* IZ) Microsaft
=l 1) Thinstall
= |2y Mozilla Firefox (3.5.2)
= |0 %appDatade
= I2) Mozilla
=I |5} Firefox
= |2 Profiles
= |3 813uhvda.default
|2) baokmarkbackups
* |Z) %Llocal AppData®h
* |Z) “ProgramFilesDirs
I SKEL
) Cookies

places.sqlite-journal
prefs

search json

search sqlite

= A=)
'l;:
O Back ~ () 'ﬁ' pi) Search [~ Folders El'
Address |[25) CiDocuments and Settings\User\Application Datal ThinstalliMozilla Firefox (3.5, 20| %AppDatad:\MozillaiFirefox\Profilest813ubvBa. def. ¥ a o
Folders X Name Size | Type
@' Deskkop ~ | [Zbockmarkbackups File Folder
£ ,D My Documents E] certs 64 KB Data Base File
= _J My Computer content-prefs.sqlite 7KE SQLITE File
S 3w Floppy (a2 @ cookies. slite 2KE SQLITE Filz
=l = Local Disk (C:) farmhistary sqlite 4KB SQLITE File
=l |Z) Documents and Settings ﬁ] key3 16KE [Data Base File
|2 Al Users localstore rdf ZKE RDF File
= I5) User permissions, sqlite 2KE SQLITE File
= 123 Application Data places.sqlite 132KE SCLITE File

OKE
ZKB
1SKE
2KB

SOQLITE-JOURMAL File
J5cripk Script File
JSOM File

SQLITE File

The previous screenshot shows the sandbox contents stored as plain files in a path

represented by a folder macro.

[12]

Chapter 1

Modifications to the registry are also kept in the sandbox. In order to guarantee
integrity, the registry is stored in a transactional database format. This makes it a
little harder to investigate the contents of the registry changes stored in the sandbox,
but with the tool called vregtool.exe found in the ThinApp utilities folder, it's still
possible. It's important to maintain the integrity of the registry since the registry in
the sandbox also includes a file database, telling the ThinApp runtime where to find
each file.

The registry files are found in the root of the sandbox and are all called Registry.

& Mozilla Firefox (3.5.2)
File:

Edit Wiew Favorites Tools Help

- 69 O [o
@ Back. </ l.ﬁ 7 Search u_ Folders
Address |3 Ci\Documents and SettingsiUser\Application Data ThinstalliMozilla Firsfox (3.5.2) A | Go

Size | Type Date Maodified
File and Folder Tasks File Falder 5/21/201Z 5:25 PM
;j Make & new Falder [5)%Local AppDatat File Folder 5/21/2012 5:25 PM
.)) I %ProgramFilesDir%s File Folder 5/21/2012 5:25 PM
%] S\ﬂSh this folder o the [CsKEL Fils Folder 521/2012 5:24 PM
@ hare this Folder EI Registry rw, byvr 36KE TVR File 5/21/2012 5:25 PM
Registry v, byr ek 1KE LCKFile 5/21/2012 5:24 PM
Registry rw, by transact 36 KE TRANSACT File 5/21/2012 5:25 PM
Other Places a Reqistry.tag 16KE TLOG File 5/21/201Z 5:25 PM
Registry tHog.cache 128 KB CACHE File 5/21/2012 5:25 PM

I5) Thinstall

The previous screenshot is an example of sandbox contents.

The database format for storing the registry was introduced in ThinApp Version
4.0.4. With DisableTransactionRegistry=1 in your Package.ini you can still

use the legacy format, which uses a flat file with a backup of the last known good
state. It's not very likely that you will want to use the legacy format, but in some rare
implementations it has proven to speed up execution of the package, especially if the
user's sandbox is stored on a network share.

® Mozilla Firefox (3.5.2)

- Y O [o
@ Back. ‘o l.ﬁ P Search “. Folders
Address |3 CiiDocuments and SettingsiUser\application Dakal Thinst alliMozilla Firsfos (3.5.2) A | Go

Mame Size | Type Date Modified

File and Folder Tasks [C5)%tppData File Falder 5/21{2012 5:41 PM
~ “oLocal AppData®s File Fold 5/21/2012 5:41 PM

(9 Make a new folder D%eLocd DD_ 3 a. N !e il 21
-)) L2 %aProgramFilesDirs File: Folder 5/21/2012 5:41 PM
(2] S\ﬂSh this folder to the [C5KEL Fils Folder 521/2012 5:41 PM
. Registry . rw, b 36KE TVR File 5/21/2012 5:41 PM

fad Share this Folder -

Registry . rebvr ok 1KE LCKFile 5/21/2012 5:41 PM
Registry . bvr, backup 4KE BACKUP File 5/21/2012 5:41 PM

[13]

Application Virtualization

The previous screenshot is a sandbox using the legacy method of storing the registry.

The sandbox can be located anywhere as long as the end user has permission
to modify the location. The sandbox will be created and updated in the context
of the user.

You can specify the location of the sandbox using the parameter SandboxpPath=

in Package.ini (more information about Package. ini can be found in the next
chapter). If you do not specify sandboxPath=, the default location will be the user's
roaming profile, in a folder called Thinstall. You can override the sandbox location
using environment variables or by creating a folder called either the project's
sandbox name or simply Thinstall in the same folder as the package.

You can use SandboxPath= in Package. ini in different ways.

The following is how you store the sandbox in a location next to the package:

[BuildOptions]
SandboxPath=.

This is shown in the following screenshot:

r
' Package.ini - Notepad
File Edit Faormat Yiew Help

e ————— General PUrpose Parameters -—---------
sandboxPath=.

SandboxMame=mMozilla Firefox (3.5.9)
InventoryMame=Mozilla Firefox (3.5.5]

The following screenshot shows the result:

File Edit Wiew Favorites Tools Help ?

@Back - \) l’; pSearch [E“ Falders v

Address |[3) 20 ThinAppivMware Thindpp 4.7.1 6771781 CapturesiMozilla Firefos (3.5, 90\bin ~ | G0
Marme = Size Type Date Madified

File and Folder Tasks @ Mczila Firefox.exe 34,816 KB Application 5/15/2012 10:11 AM

[CMozilla Firefox (3.5.9) File Folder 5/15/2012 10:11 AM

(2] Make a new Folder

B Publish this Folder bo the
Web

More examples are given as follows:

[BuildOptions]
SandboxPath=C:\Sandboxes

[14]

Chapter 1

The following screenshot shows the result:

& Sandboxes

Edit Wiew Favorites Tools Help #

File

cBack < O @ pSearch E—‘;Folders v

Address |15 C\Sandboxes

— Mame = Size Type Date Modified
File and Folder Tasks &) [C)Mozila Firefox (3.5.9) File: Folder 5/15{2012 10:18 AM

fa Make a new folder

e Fublish this folder to the
Weh

[BuildOptions]
SandboxPath=\\cnb\Sandboxes

The following screenshot shows the result:

Sandboxes on cnb

File Edit Wiew Favorites Tools Help #

eBack @ (‘) @ pSearch EE“;Folders v

address | b YienbiSandboxes

— Mame = Size Type Date Modified
File and Folder Tasks &) () Mozilla Firefox (3.5.9) File Folder 5/15/2012 10:22 &M

fﬁ Make a new folder
e Fublish this folder to the

Web

Creating a folder called Thinstall next to the package will change the sandbox
location. This comes in handy especially during troubleshooting. By using a
Thinstall folder, you can override the content in your existing sandbox. The
Thinstall folder is shown in the following screenshot:

Edit Wiew Favorites Tools Help #

File:

o Back - o < @ p Search E“; Folders -
Address |03 24 ThinappivMuware Thindpp 4.7.1 677178 CapturesiMozilla FireFox (3.5.2)1bin N | Go
— Mame = Size Type Drate Modified
File and Folder Tasks)) Thinstall File Folder 5/2112012 5:49 PM
@ mozila Firefox 35,392 KB Application 5{21{2012 5141 PM

ﬁ Make a new folder
e Publish this Folder ta the
Wieh

[15]

Application Virtualization

Using environment variables to override a package sandbox location allows you to
use the same package in many different environments. Let's say you want to store
the sandbox in the default location on laptops, while you want to store them on a
network share on your Terminal servers. Using an environment variable on your
Terminal servers allows you to re-use the package without rebuilding it.

™ Sandboxes

File Edit Wiew Fawvorites Toadls Help

eBack - -'\) Lﬁ psaarch [Folders -

Address [CiSandboxes

MName Size Type Date Modified
==4)Mozl Firefox (3.5.2) File Folder 5/21)2012 6:12 PM

Environment Variables

Edit User Variable

Variable name: | THINSTALL_SANDBOX_DIR. |
Wariable value: | CiiSandboxes ‘

‘® Sandboxes

Flle Edt Wew Favorites Tools Help

Qo - @ - F Oseacn [o |-

Address |[53) CiSandboxes

- Mame =~ Size Type Date Modified
Environment Variables | Il)%AppData® File Folder 5{21/2012 6:07 PM
[)%Local AppData®s File Folder S21/2012 6:07 PM
S —— S — (C2)%ProgramFilesDir File Folder S121/2012 6:07 PM
Edit User Variable [(C5KEL File Folder Sf21[2012 6:07 FM
o Reegistry. v, bvr 36KB TYRFile 5(21/2012 6:07 P
Registry.rw.bvr.lck 1KE LK File 5/21/2012 6:07 PM

ST | Moalla Frfox (3.5.2) SaNDBOR IR | Registry. rw.bvr transact 36KE TRANSACT File 5{21/2012 6:07 PM
Varisblevae: | Cisandboes | Registry.tog 16KE TLOGFil 51212012 617 P
Registry.Hog, cache 128 KB CACHE File 51212012 617 P

The environment variable $SandboxName SANDBOX_ DIR$ redirects a specific
package's sandbox location. Please note the variable value specifies the root
of your sandbox folder.

ThinApp searches for the sandbox in a specific order. ThinApp starts by looking
for the environment variable, $SandboxName SANDBOX_ DIR% followed by
$THINSTALL SANDBOX DIRS. If no environment variable is found, ThinApp

will look for the following folders and store the sandbox in the following locations:

[16]

Chapter 1

LOCATION OF PACKAGE\SandboxName.ComputerName
Forexanqﬂe,C:\Program Files\Firefox\Mozilla Firefox 3.5.2.My_
Computer

LOCATION OF PACKAGE\SandboxName

Forexanqﬂe,c:\Program Files\Firefox\Mozilla Firefox 3.5

LOCATION OF PACKAGE\Thinstall\SandboxName.ComputerName

Forexanqﬂe,c:\Program Files\Firefox\Thinstall\Mozilla Firefox
3.5.2.My Computer

LOCATION OF PACKAGE\Thinstall\SandboxName

Forexanqﬂe,C:\Program Files\Firefox\Thinstall\Mozilla Firefox
3.5.2

SandboxPath In Package.ini\SandboxName.ComputerName

Forexanqﬂe,H:\Sandboxes\Mozilla Firefox 3.5.2.My Computer
SandboxPath In Package.ini\SandboxName

For example, H: \Sandboxes\Mozilla Firefox 3.5.2

If ThinApp fails to find $sandboxName SANDBOX_DIR$%, $THINSTALL_ SANDBOX DIR%,
a Thinstall folder next to itself, or SandboxPath= in Package. ini, then ThinApp
will create the sandbox in the default location, that is, in the user's roaming profile
(¥AppData%).

The search order for the sandbox in $AppData$ is:

$AppData%\Thinstall\SandboxName.ComputerName

For example, C:\Documents and Settings\User\Application Data\
Thinstall\Mozilla Firefox 3.5.2.My_ Computer

$AppData%\Thinstall\SandboxName

Forexanqﬂe,c:\Documents and Settings\User\Application Data\
Thinstall\Mozilla Firefox 3.5.2

[17]

Application Virtualization

You can change the name of the sandbox. The default name will be taken
from Inventory name specified during the capturing process, as shown in
the following screenshot:

I Setup Capture - Project Settings

|rrveentony name

The inventon name iz uzed by inventory tracking utilties for package identification.

[rrventony name; | Mozila Firefox [3.5.9)

Using the parameter sandboxName= in Package . ini enables you to set the
sandbox name.

Isolation modes

Isolation modes are by far the most important thing to fully understand when
it comes to ThinApp. Most of the troubleshooting you will face is related to
isolation modes in one way or another. Isolation modes are the packager's
method of specifying what level of interaction the package is allowed to have
with the underlying operating system.

You can specify different isolation modes on a per directory or registry sub-tree
basis. Any child will inherit its parent isolation mode if not overridden.

ThinApp offers three different isolation modes.

Merged

Merged allows the virtualized application to interact with local files, folders, and
registry keys. The package can read local elements and is able to modify local
elements. Any new element will be created on the local system. If any of the
virtualized elements are modified, the modifications will be stored in the sandbox.

[18]

Chapter 1

Merged mostly mimics the behavior of a natively installed application. The actions
of the package are still subject to the privileges of the user running the application.
If the user is not allowed to modify a location, the standard operating system dialog
box will be displayed saying so.

WriteCopy

WriteCopy will allow the package to read any local elements, but if modified, the
modification will end up in the sandbox and not the local system. If you create a new
file or registry key in a WriteCopy location, it will be sandboxed. Modifications made
to virtualized elements will be sandboxed.

WriteCopy will protect your local system from being modified by a virtualized
application. WriteCopy is often used to allow applications demanding higher
privileges to be able to executed by a standard user. The application thinks it is
capable of modifying ¢: \windows but all those operations end up in the sandbox.

Full

Full isolation mode will keep the virtualized application from accessing anything
locally on the underlying operating system. Physical elements are hidden from the
virtualized application. If you fully isolate a folder, only the folder's virtualized
content will be available. New elements or modifications of a virtualized element
will end up in the sandbox.

Full is mostly used to protect the virtualized application from seeing conflicting
elements present on the local machine. Take for example, your virtualized Microsoft
Office 2010 having Microsoft Office 2003 locally installed. If you don't protect the
virtualized Office from seeing the old local installation of Office, the virtualized
Office 2010 will start to self-repair.

To summarize the differences between the isolation modes, refer to the table
given as follows:

Isolation mode System elements Virtual elements

Merged mode Application can read and Modifications will be
modify content. sandboxed.

WriteCopy mode Application can read Modifications will be
content. Modifications sandboxed.

will be sandboxed.

Full mode Application cannot Modifications will be
read content. sandboxed.

[19]

Application Virtualization

You specify different isolation modes for folders using a configuration file named
##Attributes.ini located in each folder, as shown in the following screenshot:

& %ProgramFilesDir%

File Edit ‘iew Favortes Tools

Help

cBack < Q @ pSearch [E Faolders v

3
iE3

File and Folder Tasks

(29 Make a new Folder

e Fublish this Folder to the
‘Weh

Other Places

|5 Mozilla Firefox (3.5.2)
B My Docurnents

address |23 2AThinAppWMware Thindpp 4.7.1 677178\CapturesiMozila Firefax (3.5.2)\%ProaramFilesDir%

Mame =
[S)Mozila FireFox
[g attributes ini

" ##Attributes.ini - Notepad

File Edt Format Wiew Help

Date Modified
5222012 3:07 PM
S/15/2012 3:41 PM

Size Type
File Falder

1KE Configuration Settings

[Isolation]

DirectorylsolationMode=writeCopy

The previous screenshot is an example of WriteCopy specified in the

%ProgramFilesDir% fo

Ider.

In the virtual registry you specify isolation modes in front of the registry sub-tree.

™ Mozilla Firefox (3.5.2)

File Edit Wiew Favorites Tool

Q- O 3 0

s Help

Search [E" Folders v

N
i3

File and Folder Tasks

@ Renamne this File
a Move this fils
D opy khis file
B Publish this file to the Web
@ E-mail this file

iy Prirtt this file

¥ Delete this file

Other Places

L) Capbures
My Documents
|3 Shared Documents
g My Computer

address |23 20 Thindppl¥Mware Thindpp 47,1 677178\ CapturesiMazila Firefox (3.5.2)

Mame
[%AppData%
B%Cnmmnn AppData®s
|5 %Comman Desktop%
B%Cnmmnn Programs®s
|C) %Desktop¥s
15) %Local AppDatatis
[0 %Petsonalz
E{l“fongram Files Cammon®s
| PragramFilesDirs.
Ehn.v‘oSystemRthD.r‘o
ﬁ%systemsystem%
C)kin
[bin.old
[EBSupport
=] .D5_store
[Flbuild.bat

[Z] HKEY_CURRENT_USER.bxt
m HEEY 1o Al MATCHIME bk

Size | Type Date Modified
File: Folder 5/22(2012 3:07 PM
File Folder 5/z2{2012 3:07 PM
File Falder 5/2212012 3:07 PM
File Folder 5/z2{2012 3:07 PM

. HKEY_CURRENT_USER.txt - Notepad

File Edit Format ‘Wew Help

isolation_writecogy HKEY_CURRENT_USER

dsolation_writecogy HKEY_CURRENT_USERMNSoftware

dsolation_writecogy HKEY_CURRENT_USERMNSoftwarenClass

dsolation_full HKEY_CURRENT_USERMNSoftwareNClassesh.
KEJEEEZ—JF"\ refoxHTML#2 300

dsolation_full HKEY_CURREWT_USERMNSoftwarehwClasses™.

value=
REG_SZ~FirefoxHTML#£2300

Let's have a look at some isolation mode examples to help you fully understand

isolation modes.

[20]

Chapter 1

Example 1

On your physical machine you have a file called File.txt within C:\Temp folder.

You have the representation of C:\Temp within your project folder where
you specify either Merged or WriteCopy as an isolation mode, as shown in
the following screenshot:

Edit “iew Favorites Tools Help #

File

eBack @ O @ pSearch [E Folders v

address |29 Z:\ThindppiWhware Thindpp 4.7, 1 677178\ CapturesiMozilla FirefFox (3.5, 20 %Drive_C%\ Temp v| Go
Mame Size | Tvpe Drate Modified
B##Attr\butes 1KE Configuration Settings 5f26/2012 7:54 PM

[##Attributes - Notepad

File Edit Format Wew Help

[;so'l ation] i
DirectoryIsolationMode=Merged

File and Folder Tasks €3

Iﬂ Rename this File
a M Ehis File
Capy this file
e Publish this file to the Web
() E-mail this file

iz Prink this il

Run your virtualized application (in this example, Mozilla Firefox) and browse
to C:\ Temp. The application can see the local File. txt file, it can open it and
read its content.

") Mozilla Firefox

File Edit Vew History Bookmarks Tools Help
= x 5t I: Search Bookmarks and History
File Edit ‘View Favorites Tools Help o P
J Open File |l||§‘
@Eack - Q @ pSearch rE" Fold — |@ Toma v‘ o= E
Address |23 CiTemp [Z) File bt}
. Mame = it
File and Folder Tasks &) 2] Filetxt My Recent
ol I
(7 Wake & new Falder oeuments
& Publish this folder to the
web
{d Share this Folder Desktop

Other Places

My Documents

g Local Disk (i)
(53 My Documents
() shared Documents
g My Computer My Computer

@

g My Metwork Places

‘Tg File: hame: ‘ 3 ‘ [oeen]

Details \ My Metwork Files of tupe: ‘A\IFi\es "‘ [Cancel J

[21]

Application Virtualization

Merged and WriteCopy allows for the virtual environment to read and access native
files and registry keys.

Example 2

In the same scenario as the previous example, on your native machine you have
C:\Temp\File.txt.

Within your project folder you've specified Full as the isolation mode in the
C:\Temp folder.

File Edit Wiew Favorites Tools Help

eBack - Q @ pSearch FE_’“ Folders v

fddress |23 Z:\ ThinApp|¥Mware Thindpp 4.7.1 677178\ Captures\Mozila Firefox (3.5,27,% Drive_Co%| Temp

. Mame & Size | Tvpe
File and Folder Tasks [gartributes 1KE Configurat

(23 Make a new folder

@ Publish this Folder ko the
Wieh File Edit Format Yiew Help

[IsoTation] .
DirectorylsolationMode=Full

[##Attributes - Notepad

Other Places

When you run your virtualized Mozilla Firefox and browse to ¢ : \Temp, it looks
empty, as shown in the following screenshot:

[22]

Chapter 1

Fil= Edit Fawvorites Tools Help

eEack - o @ pSearch E‘ Folders

Wigt

Address £ C:\Temp

Mame &

A [Z] Filer bt

File and Folder Tasks

ﬁ Make a new folder

e Publish this Folder to the
ek

{2 share this Folder

Other Places

wgn Local Disk {C:)
E My Documents
|23 Shared Documents
a My Computer
g My Metwork Places

Details

") Mozilla Firefox

File Edit

Wiews History Bookmarks

Tools Help

X @ |

C

Open File

Look in: ‘ =3 Temp

v @@ >@E

My Recent
Documents

My Documents

My Computer

File: name:

My Metwark | Files of type:

| v

[Cancel JJ

DOpen I

[41 Fies |

The Full isolation mode hides any native files or registry keys.

Example 3

You are using WriteCopy or Full as your isolation mode on ¢: \Temp. From within
your virtualized application you save a file into ¢: \Temp. The file will be sandboxed
and your native machine is kept clean. Your virtualized application sees the file as

being located in C: \ Temp.

File Edit View Favorites Tools Help

eEack © o l} psaarch EFolders

") Mozilla Firefox

Edit Wiew History

Eile Bookmarks

Toals Help

X @

[&

Search Bookmarks and Histary

Open File

| unt

Address |23 C:\Temp

File and Folder Tasks @
(29 Make & new folder

&N Publish this Folder ta the
web

File Edit Tools

oBack - O l} pSearch E‘ Folders v

View Favorites Help

Lok in' | 5 Temp

¥ 02 E

\ﬂ index

My Recent
Documents

Aiddress |5 CiyDocuments and Settings\User|Application DataThinstallMozila Firefox (3.5 2)\Yedrive_C%\Temp

- Mame =
File and Folder Tasks @ aindex
‘a Make a new Folder

& Publish this Folder to the
wieh

=

Size Type
1KB HTML Document

Date Modified
5/26/2012 823 PM

Open |

[23]

Application Virtualization

WriteCopy or Full will place new files in the sandbox and keep your physical
machine clean. Note that there are different associations for the . htm1 file between
the native environment and the virtualized one. We will discuss the file type
registrations later in Chapter 3, Deployment of ThinApp Packages.

No matter which one of the isolation modes you use, if a virtual file or registry
key is modified, the modification will be stored in the sandbox.

When does a file end up in the sandbox? An application can access a file using one
of two methods. It can be read-only, which means no modifications can be made to
the file and the ThinApp runtime simply passes the file to the application. But if the
application opens a file for writing operations, depending on the isolation mode, the
ThinApp runtime will first copy the file into the sandbox and then pass the file to the
application. This way ThinApp can guarantee that any writing operation needed can
be done immediately to the file. This also means you might end up getting files in
your sandbox that have not been modified by either the application or the user. It's
not very common but nevertheless something you need to be aware of.

During the capture process, you're asked what default directory isolation mode

you want to use. This is of very little technical importance and is mostly a policy
decision. I tend to use WriteCopy as my default isolation mode during packaging
and tweaking of the project. This way I know that all I do will be sandboxed. Later,
when I compile my production version, I change to Merged as the default directory
isolation mode. This way, users are less likely to run into the problem of storing a file
somewhere without being able to find the file later on since it has been sandboxed.
The default isolation mode is specified within your package. ini file using the
following parameter:

[Isolation]
DirectoryIsolationMode=

It's important to point out that you are only asked about the default directory isolation
mode and not your default registry isolation mode. The default isolation mode for
your registry is always WriteCopy but you can change it within Package . ini.

[Isolation]
RegistryIsolationMode=Merged

As a result of the above, the default isolation mode for the registry would be Merged
instead of WriteCopy.

[24]

Chapter 1

r:_ Setup Capture - Isolation
X

File zyztem izolation mode fwhat are izolation modes #):

(%) Full write access to non-system directories [Merged izolation mode)

The application can read files from and write directly to the local machine.
R ecommended for %Windows Logo Cerdified applications like Microsoft Office.

Changes to filez in application data, spstem, and program file directories will be stared in
the sandbo.

() Restricted wite access [wiiteCopy izolation mods)

Prevents the application from writing directly to most directones. Recommended for
legacy or untrusted applications.

Changez to files outside of the Desktop and by Documents directones will be stored in
the zandbox.

[< Back ”_ Mext »] [Cancel]

During the capture process you are asked about which default directory isolation
mode to use, as shown in the previous screenshot.

The virtual filesystem

ThinApp packagers are working with three different virtual filesystems. The first
one is the project folder content. Here, a packager can change the . ini files, replace
the old .d11 files with new updated ones, and delete or add any files and folders
needed. The second virtual filesystem is created when compiling the project; an exact
copy of the filesystem found in the project folder will be compiled into the package
as a read-only version of the virtual filesystem. There is no way an end user can
modify the content of the package. When using the application, a third version of

the filesystem is created in the sandbox: the read and write version of the filesystem.

[25]

Application Virtualization

The complete filesystem known to the virtualized application is a combination of the
native (physical) filesystem on the machine, the read-only virtual filesystem stored
in the package, and the read and write version stored in the sandbox. If there is a
conflict between the native filesystem and the virtual one, the virtual environment
will win and the virtual file will be the one presented to the application. If there is a
conflict between the sandbox content and the read-only filesystem, then the sandbox
content will win.

All folders in the root of the project folder (excluding support and bin folders)

are in a variable format, for example, $AppData%. These variables are called folder
macros and are similar to variables used in the operating system. Folder macros
point to predefined locations. These locations may vary depending on the language
of the operating system or which version of the Windows operating system you're
running the package on. Some folder macros may use the same names as the ones
in the operating system but they are different from one another. Especially when
using VBScripts built into the packages, it is important to understand that there

is a difference. It's the folder macros that allow a package to be portable between
different operating systems.

~

& Mozilla Firefox (3.5.2)

@Back @ J l.ﬁ pSearch u_ Folders v

Address |23 2:\ThinAppi¥Mware Thindpp 4.7.1 677178\ Captures\Mazilla Firefox (3.5.2) V| Go

Mame Size Type Date Modified
File and Folder Tasks [snppData®s File Falder S{zzfz012 3:07 PM
'L’; N — (B3 % Comman AppData F?Ie Folder 5/22/2012 3:07 PM
(53 % Common Deskkop%e File Folder 5/22{2012 3:07 PM
Copy the selected items [% Commen Programs®s File Foldsr S(22{2012 3:07 PM
(Z) E-mail the selected items B % Deskiop% File: Folder 5/22{2012 3:07 PM
)(Delate the selected items B % Drive_C% File Falder 5/26/2012 7:54 PM
(B3 %Local AppData®s File Folder 5/22{201Z2 3:07 PM
£ %Personalss File Folder 5f22/2012 3:07 PM
Other Places (£ %5Program Files Commons File Folder 5fz2f2012 3:07 PM
(53 % ProgramFilesDir File Falder C/24/2012 2:26 PM
) Eplivies [0 5SystemRoot % File Folder S(z2/2012 5:07 FM
Loy
[My Documents (L)% SystemTystemn File Falder Sz2f2012 3:07 FM
I shared Documents S)bin File Falder 5{26/2012 8113 PM
i My Camputer L3 5uppart File Falder 52212012 3:07 PM

& My Network Places [Fbuild.bat 3KB MS-DOS Batch File S(15{2012 3:41 PM
Ej HKEY_CURREMT_USER. Exk 14 KB Text Docurnent 5/16/2012 12:18 PM
Ej HEEY_LOCAL_MACHIME. kxk 29KE Text Document 5/16/2012 12:18 PM

Details E] HKEY_USERS.kxt 1KE Text Document 5/15/2012 3141 PM
3Package.ini IKB Configuration Settings 5/21/201Z2 6:07 PM

The previous screenshot shows a project folder showing some folder macros.

Chapter 1

%AppData¥ refers to the user's roaming profile, which is mostly used to save user
settings. Executing a ThinApp package on a Windows XP machine, the $AppData%
will refer to C: \Documents and Settings\UserName\Application Data.
Executing the same package on a Windows 7 machine, $AppData% will refer to
C:\Users\UserName\AppData\Roaming. Since ThinApp uses $AppData$%, the

user settings will follow the user no matter which OS the package is executed on.

A list of all folder macros can be found in References at the end of this book.

The virtual registry

The virtual registry exists in three versions as well. Within the project folder you
will find the virtual registry represented by three clear text files, HKEY_CURRENT_
USER.txt, HKEY_LOCAL_MACHINE.txt, and HKEY_USERS.txt.

-

® Mozilla Firefox (3.5.2)

@ Back - J lﬁ p Search u_ -~ Folders v
address (I3 2 ThinAppiWiware ThinApp 4.7.1 677178\ CapturesiMozilla Firefox {3.5.2) A | Go

Mame Size
File and Folder Tasks IC5) %AppDatats

- ; ol Apphatat:
@ Maove the selected items IR IO
[C5) %=Common Desktop®s

Copy the selected items [5)9%Common Programs
@ Publish the selected items () %Deskkope

tn th? \':Eb et [C)9%Drive_C%
D E-mail the selected items [=)%Local AppData®s
¥ Delete the selected items [%Personalds
| %:Frogram Files Comman®s
|C5) %ProgramFilesDirss
[C5) %SystemRont %
3 Captures [C5) %aSystemSystems
S)bin

&]Support

Other Places

@ My Docurnents

|5) Shared Documents [Flbuid.bat 3KEB
iJ My Computer [E) HKEY_CURRENT_USER txt 14 KB
& 1y Network Places [E] HKEY _LOCAL_MACHINE bxt 29KE
[Z] HKEY _USERS.txt 1KB
b Package.ini IKB

Details

Tvpe

File: Folder

File: Folder

File: Folder

File: Folder

File: Folder

File: Folder

File: Folder

File: Folder

File Folder

File: Folder

File: Folder

File: Folder

File: Folder

File: Folder
M3-DOS Batch File
Text Document
Text Document
Text Document
Configuration Settings

Date Maodified
5{z2i2012 3:07 PM
5{zzi2012 3:07 PM
5{zzi2012 3:07 PM
5{zzi2012 3:07 PM
5/22/2012 3:07 PM
5/26/2012 7:54 PM
5{zzi2012 3:07 PM
5{zzi2012 3:07 PM
5/22{2012 3:07 PM
Sz4/2012 2126 PM
5{zzi2012 3:07 PM
5{zzi2012 3:07 PM
S/z6/2012 §:13 PM
5{zzi2012 3:07 PM
S/15/2012 341 PM
S/16/2012 12:18 PM
5/16/2012 12:18 PM
S/15/2012 341 PM
5/21/2012 6:07 PM

When you run build.bat the content of these registry files are compiled into the
package as read-only versions. When you use the package, the read and write

version is created in the sandbox.

[27]

Application Virtualization

You may ask yourself where HKEY_CLASSES_ROOT is. HKEY_CLASSES_ROOT
is a merged view of HKEY LOCAL MACHINE\Software\Classes and HKEY CURRENT
USER\Software\Classes. HKEY_CLASSES_ROOT will be created dynamically
during the launch of your package, in a similar way to how the Windows OS
generates HKEY_CLASSES_ROOT at boot time.

The file database is included in the virtual registry. You can see it while running
regedit.exe within your virtual environment.

= 2 My Computer Mame Type Data
(0 HKEY_CLASSES_ROOT (Default) REG_SZ {value not set)
(2] HEEY_CURRENT_USER
=23 HKEY_LOCAL_MACHINE
= FS
[%AppDatas
[C #%.Common AppData®s
3 %Comman Deskkop¥a
(2 % Common Programs3s
(] %sDesktops
[“drive_C%
(Z *local AppDatas
[#Personal®e
[:| %=Program Files Common
{2 “&ProgramFilesDirs
1 %SystemRook%
{2 %SystemSystems
[Z HARDWARE
=
(2 sECURITY
(2 Software
(2 svstem
[C1 HKEY_USERS
(C3 HEEY_CURRENT _COMFIG

[
|»

My ComputeriHKEY _LOCAL_MACHINEFS

The ThinApp filesystem database can be viewed when running Registry Editor
within the virtualized environment.

Application Linking (AppLink)

By default, two virtualized applications are isolated from each other. Application
One cannot see files or registry entries virtualized in Application Two's package.

The ThinApp feature AppLink lets packagers allow full integration between two or
more packages. AppLinking packages will effectively merge the different virtualized
environments into one big environment. ThinApp supports up to 250 packages
linked together but in reality you will never AppLink that many packages together.

[28]

Chapter 1

There will be a penalty in the startup time for each AppLink and pretty soon your
implementation will become too complicated to maintain and manage. Try to limit
the amount of AppLinks between five to ten.

AppLink will allow you to package your main application into one package and any
dependencies as AppLink. This allows for a more modular design of your desktop
environment. A typical use case is a packaged browser and Java, .NET, Active X,
Flash as AppLink packages. AppLink is not limited to dependencies. A packaged
Microsoft Office and an application tightly integrating with Office can be AppLinked
together. This way it will look like both the applications are locally installed on the
client, and full integration between applications is possible.

The package your end users launch first is called the parent package. Any AppLink
packages are referred to as child packages. There is no difference between a parent
and child package. Both are valid, normal ThinApp packages. A package being a
child when Application A is launched can just as easily be a parent when you launch
it separately. Adobe Acrobat Reader is an excellent example. It can be launched as a
separate application but is often a child to your packaged Internet Explorer.

Let's say you packaged Internet Explorer and Adobe Acrobat Reader in two different
packages. If you associate . pdf files to your Acrobat Reader Package you will be able
to click on a link to a . pdf file from within your virtualized Internet Explorer and a
separate Acrobat Reader window will be used to display the Acrobat document. If
you want Internet Explorer (IE) to use the embedded Acrobat Reader within the IE
window you must AppLink the two packages together. This way Internet Explorer
will see Adobe Acrobat Reader as locally installed. The registry keys identifying the
embedded functionality in IE will be present in the virtual environment.

When you launch a parent package, its virtual environment will load first, and then
the child packages' environments will be merged into the active environment. This
happens every time you launch the parent package. If you change the content of a
child package the new updated environment will be merged upon the next launch
of the parent package. This allows individual updates of your packages. The load
order is either alphabetic or in the order specified within package. ini.

The following is an example of an alphabetic load order:

[BuildOptions]
OptionalAppLinks=C:\Plugins*.exe

The following is an example of a predefined load order:

[BuildOptions]
OptionalAppLinks=C:\Plugins\LoadMeFirst.exe; C:\Plugins\LoadMeLast.exe

[29]

Application Virtualization

When you configure AppLink, it is important to understand that you have to point
to a data container. It is the virtual environment stored in the data container you
want to merge into your running environment. So if your AppLink package uses

a separate data container, make sure you refer to the correct file extension, that is,
FileName.dat.

ThinApp supports one parent package being AppLinked to up to 250 child packages.
ThinApp also supports many parent packages AppLinking to one child package. A
child package can have its own AppLink, and nested loading of AppLinks is fully
supported. This means you could end up launching one parent package, AppLinking
to one child package that loads one or more child packages of its own. Pretty soon
you risk losing the complete overview of where files and registries are located and
which isolation mode is active. A file or a registry key may exist in more than one
package in your AppLink chain. In order to resolve these conflicts, the ThinApp
runtime will use "last loaded". This means if you have C:\Temp\File.txt in your
parent package and in your child package, the version in your child package will

be used. Parent environments are always loaded first and then child environments
are loaded in either alphabetic order or in the load order specified within your
Package. ini file. What about isolation modes? Here the ThinApp runtime uses a
different method, wherein the most restrictive mode will win. This means if your
parent package has Merged on the folder c: \Temp, then make sure not to use

any other isolation modes in any of your child packages. Remember that nested
packages will be part of the whole AppLink chain as well. Now it's getting clearer
why I recommend using only a small number of AppLink packages in a desktop
environment design.

An AppLink package is only loaded once per execution. If you have a complex
AppLink chain referring to the same child package multiple times, the child
package will be merged only once, the first time it is referred to.

AppLink conflict resolution for isolation

modes
* WriteCopy versus Merged, WriteCopy will win
» WriteCopy versus Full, Full will win

AppLink will discard any sandboxes existing for the child package. Let's say you
AppLink to Adobe Acrobat Reader. This package might have been used separately
and therefore has the user settings stored within its sandbox. Now, when you
execute the parent package, the parent sandbox is the only one in use and any
settings stored within the Adobe Acrobat's sandbox will not be part of the

running environment.

[30]

Chapter 1

If your child packages have any virtualized services or VBScripts, they will be active
when using AppLink. Bear in mind that, starting services may be a time consuming
task. AppLinking to a package starting services might therefore add extra time to the
launch time.

ThinApp supports the following two flavors of AppLink:

* Optional AppLink
* Required AppLink.

Optional AppLink

When using the dynamic AppLink called optionalAppLinks in Package.ini,
the package will AppLink to any package available. If no AppLink can be found,
the package will happily launch anyway.

Using Optional AppLink offers a true dynamic design of your applications. You
don't even have to know upon packaging if you need to AppLink or not. Simply
activate OptionalAppLinks and you can always add functionality to your package
later on.

The following are example configurations:

[BuildOptions]
OptionalAppLinks=plugins*.exe

The result of this configuration is that, any package located in the folder called
plugins relative to the parent package itself will be added.

[BuildOptions]
OptionalAppLinks=plugins*.exe; plugins*.dat

The result of this configuration is that, any package located in the plugins folder
relative to the parent package will be AppLinked, including separate data containers.

[BuildOptions]
OptionalAppLinks=\\ServerName\ShareName\MyAppLinks\Java.dat

The result of this configuration is that the Java package located on a network share
will be AppLinked.

[BuildOptions]
OptionalAppLinks=C:\Program Files\Java 1.6 (VMware ThinApp) *.exe; C:\
Program Files\Flash (VMware ThinApp) *.exe

[31]

Application Virtualization

The result of this configuration is that, if available, a virtualized Java and locally
deployed Flash clients will be AppLinked. This is a very common AppLink
configuration used when you deploy ThinApps with the help of MSI and existing
deployment tools. We will get back to some different deployment scenarios later.

[BuildOptions]
OptionalAppLinks=%HOMEPATHS**.exe

This configuration shows that, AppLink supports environment variables and
wildcard searches. This example will search one folder deep in the users $HOMEPATH%
for child packages called * . exe.

[BuildOptions]
OptionalAppLinks=\\ServerName\ShareName***.dat

In this configuration, ThinApp will search two folders deep for child packages
named *.dat. For example, both \ \ ServerName\ShareName\AppLinks\Java\
java.dat and \\ServerName\ShareName\AppLinks\Flash\Flash.dat will
be AppLinked.

Required AppLink

Required AppLink, called RequiredAppLinks in Package . ini, will deny execution
of the package if the AppLink cannot be found. When you use a required AppLink,
make sure you specify the whole filename of your child packages. You should not
use the wildcard (*) since this will effectively disable the required rule set, that is,
deny usage of the parent package if AppLink packages are not available.

[BuildOptions]
RequiredAppLinks=C:\Program Files\Java 1.6 (VMware ThinApp)\java.exe;
C:\Program Files\Flash (VMware ThinApp)\flash.exe

This configuration means that the Java and Flash packages will be AppLinked. If
they are not accessible, the user will be denied the ability to run the parent package.

[BuildOptions]
RequiredAppLinks=\\ServerName\ShareName\java.exe

This configuration means that the Java package located on a network share will be
AppLinked. If the Java package is not accessible, the user will be denied the ability
to run the parent package.

[32]

Chapter 1

The ThinApp utilities folder and its
content

The ThinApp utilities folder is installed in C: \Program Files\VMware\VMware
ThinApp by default. Only the ThinApp packagers need access to the ThinApp
utilities folder - end users never need access to it. If desired, you can move this
folder to a network share and run all the tools from there. The ThinApp utilities are
virtualized using ThinApp so the folder is just as portable as any ThinApp package.
Placing the folder on a network share makes it easier to access the tools from any
machine. Often when packaging, you are using virtual machines and reverting the
virtual machines to clean states between each capture. Having the ThinApp utilities
folder on a network share will make them easier to maintain. Changing the version
of ThinApp used does not require a new snapshot of your virtual machine. Another
benefit is that all your packager colleagues can share one and the same ThinApp
utilities folder and settings.

™ VMware ThinApp EJE Er

File Edit ‘iews Fawvorites Tools Help

@Back @ -J l.@ pSearch H__ Faolders v

Address |22 C\Program Files\YMwareivMware Thindpp

v|G0

Mame Size | Type Date Modified

File and Folder Tasks Flappsync.exe 147 KB Application /2312012 11:13 PM
:j Make & new Falder 3Capture.ini 2KB Configuration Settings 5/23/2012 10:57 PM
- _) Edll_dump.exe 27 KB Application Slzsfz01z 1116 PM
%] E\t‘:gs" this folder to the ELILA. 212KB Rich TextDocument 5/23(2012 10:57 PM
@ hare this Folder 22 log_monitor.exe 28 KB Application 5/23/2012 11:16 PM
3L0gFiIter.ini 1 KB Configuration Settings 5/23/2012 10:57 PM

Iogging.dll 2,061 KB Application Extension 5/23/2012 11:13 PM

Other Places E] open_source_licenses, bxt 92 KE Text Document 5/z3/2012 10:57 PM
7 relink.exe 306 KB Application 5/23/2012 11:16 PM

) ¥Mware Esbmerge.exe 27 KB Application 5/23/2012 11:16 PM

My Documents

|5) Shared Documents
d Iy Compuker
\d My Mebwork Flaces

Details

_.‘ Setup Capture.exe 186,695 KE Application

Esnapshot.exe 27 KB Application

Bsnapshot.ini 11 KB Configuration Settings

ﬁltemplate.msi 32 KB Windows Installer P...
EThinAppConverter.exe 27 KB Application

3ThinnppConverter.ini 4 KB Configuration Settings
ThinDirect, adm 60 KE ADM File

ThinDirect. msi 1,264 KB Windows Installer P...

Ethinreg.exe 963 KB Application

o7 tink.exe 306 KB Application
o wftool exe 306 KB Application
i lic 1KE LIC File

" wregtoal.exe 306 KB Application

5(23/2012 11:16 PM
5(23(2012 11:16 PM
5/23/2012 10:57 PM
5(23(2012 10:57 PM
5(23(2012 11:16 PM
5{23{2012 11:13 PM
5(23(2012 10:57 PM
5/23/2012 11:14 PM
5(23(2012 11:13 PM
5(23(2012 11:16 PM
5{23{2012 11:16 PM
5[31/2012 §:42 PM
5/23/2012 11:16 PM

Default location of the ThinApp utilities Folder.

[33]

Application Virtualization

If you don't place the ThinApp utilities folder in the default location, you should
make sure that you specify an environment variable called THINSTALL_BIN
pointing to the ThinApp utilities folder. This way the build.bat file will find
the location of the tools needed while building your project folder. Using the
THINSTALL_BIN environment variable allows you to have multiple versions
of the ThinApp utilities folder present. You can switch between active folders
by simply changing the value of the environment variable.

& VMware ThinApp 4.7.1 677178
File Edit “iew Favortes Tools Help

eBack - O @ pSearch FC Folders v

System Properties

Address |I25) Z:ThindppivMiware Thindpp 4.7.1 677178
Mame =~
@Captures
EnppSync

|3 Capture
i

dll_durmp

File and Folder Tasks

(29 Make anew folder
&3 Publish this folder ta the
Web

|3 LogFilker
@ logging. dll
[£] open_source_licenses

Other Places

Thindpp

B My Diocurnents
|3 Shared Documents
a My Computer

.'3 My Mebwark Places

7 relink
Esbmerge

.n‘ Setup Capture
Esnapshot
|3 snapshot

Environment Variables

User vatiables for User

Edit System Variable

Yariable name: [THINSTALL_FIN |]
- Delete

Variable value: | 2:\Thindppi¥Mware Thindpp 4.7.1 677175 |

Wariable Yalue

TEMP Ci\Documents and SettingsiUseriLaocal ...
TMP C\Dacuments and SettingsiUserilocal ...

g

ﬁ'tamplate
[% ThinApp
™ ThinfppConverter
|3 ThinAppConverter
5 ThinDirect
ThinDireck, adm
[Mthinreq

7 ik,
i

e lic

Details >4

TEMP CWINDOW S| TEMP

THINSTALL_BIN Z\Thindppl¥YMware Thindpp 4.7.1 677...

TMP CWINDOWS| TEMP :l
windir CWINDOWS |

[mew J[Edt][opelete |

¥ wregrool 306 KB

Application 4/23/2012 10:12 AM

Specify the location of your ThinApp utilities folder with the help of the
THINSTALL_BIN environment variable, as shown in the previous screenshot.

[34]

Chapter 1

Let's have a look at some of the files you'll find within the ThinApp utilities folder.
Most of them will be discussed in much more detail later in this book. The following
are the files present:

AppSync.exe

AppSync is one of the built-in update mechanisms within ThinApp. We
will cover AppSync more in depth later in this book. Running AppSync.exe
allows you to specify a package to AppSync and an AppSync URL, where
the update is located, providing a more dynamic method of updating the
deployed ThinApp packages than the AppSync you can configure using
package.ini.

log monitor.exe

The log monitor is a trace tool used to troubleshoot ThinApp packages.

Capture.ini and LogFilter.ini

These are filter files used to filter what is captured while running the
log monitor.

relink.exe

Relink is used to inject a new runtime, certain settings, and a license key
into an existing package without the need to completely rebuild the whole
project folder.

sbmerge.exe

Sbmerge stands for sandbox merge. It is a tool used by packagers to merge
the content of a sandbox into an existing project folder. It is a great tool used
to apply changes and updates to a project. Running sbmerge . exe without
any switches will display the help file.

Setup Capture.exe

Setup Capture is the tool used to capture an application installation and
create a project folder. Within Setup Capture you can specify your license
key and if you want to change the license key or "licensed to" name, you
must change these within Setup Capture and then rebuild your project
or run relink on the packages.

[35]

Application Virtualization

You change the license key and "Licensed to" information by launching
Setup Capture, clicking on the top-left corner and choosing License,

as shown in the following screenshot:

-~ Setup Capture - Welcome
Move

- Minimize

X Close Alt+F4

License. ..

eline of the system
ahout Setup Capure

S application

@ Postscan Identify changes using the baseline
{ﬂr Configure Configure project settings

“‘%ﬂ Build Build the virtual application

ThinApp Community
See how ather IT Professionals are revolutionizing
the way they deploy software using VYiMware ThinApp.

Jain the community

Yergion 4.7.1-677178

Cancel

You are now shown the Enter License Key dialog box, as in the

following screenshot:

Enter License Key

Enter pour 25 character licenze key and license name

X]

Licenze Key: |

License display name: |Y0urC0mpanyNamE:|

0K

Caricel

Type in your license key and licensed display name. Click on OK and
then Cancel in the Setup Capture main window. You have now successfully
updated the license information. Simply rebuild your project to update your

packages or run relink.exe.

[36]

Chapter 1

snapshot .exe

This is the ThinApp snapshot tool. Running snapshot . exe from a command
prompt allows you to capture an installation and create a project folder
without running Setup Capture. Running snapshot . exe without any
switches will give you the full help file. The following procedure will

create a project folder using snapshot . exe:

1. Run the command snapshot.exe c:\PreScan.snapshot.
2. Install the application.

3. Run snapshot.exe c:\PostScan.snapshot.

4

Run snapshot.exe c:\PreScan.snapshot -SuggestName c:\
PostScan.snapshot.

5. Run the command snapshot.exe c:\PreScan.snapshot -Diff
c:\PostScan.snapshot c¢:\ProjectFolder.

6. Run snapshot.exe c:\PreScan.snapshot -SuggestProject c:\
PostScan.snapshot c:\OutputTemplate.ini.

7. Run snapshot.exe c:\OutputTemplate.ini -GenerateProject
c:\ProjectFolder.

snapshot.ini

Snapshot . ini is the exclusion list used by Setup Capture and snapshot . exe.
Here you can specify parts of the operating system that should not be scanned
during the capturing process. The defaults are implemented to keep your
project from capturing unnecessary content. It's not recommended to have an
antivirus software installed on your capturing machine, but if policy dictates
that you must, you can use the snapshot . ini file to exclude locations for the
antivirus log files and such. This keeps the changes from being a part of the
captured environment and thereby polluting your project folder.

template.msi

ThinApp can generate an MSI file to simplify the deployment of the ThinApp
packages. Using an MSI file will allow the use of any existing deployment
tool to distribute ThinApp packages. The MSI files that ThinApp generates
are supported by any tool supporting MSI files but are not normal MSI files.
ThinApp supports MSI files greater than 2 GB without the use of CAB files.
This is accomplished with the help of virtualization within the MSI itself.
You cannot use tools such as Orca to modify the MSI properties, since it

will destroy the content of the MSI when saved. In order to change the MSI
that ThinApp generates, you have to tweak the template.msi file instead.
Changes applied to the template.msi (using Orca or any other tool) file will
be incorporated into the MSI files that ThinApp generates.

[37]

Application Virtualization

ThinApp.ini

ThinApp.ini contains the Setup Capture user settings, for example,
the options to build or skip build at the end of the capture process.

ThinAppConverter.exe and ThinAppConverter.ini

ThinApp Converter is a tool introduced in Version 4.6. With the help of
ThinApp Converter and its configuration file ThinAppConverter.ini, you
can automate the capturing process. This was an early version of automation
and is more or less replaced with the tool called ThinApp Factory. ThinApp
Converter drives the capture process by running virtual machines hosted on
ESX or VMware Workstation. ThinAppConverter.ini is pretty much the
only documentation available for this tool. There are third-party tools using
ThinApp Converter to automatically convert installers into ThinApp project
format. Quest ChangeBASE is one such tool using ThinApp Converter.

ThinDirect.msi and ThinDirect .adm

ThinDirect is a browser helper you install locally on your client. It

will add itself as a browser helper to your local Internet Explorer and
allows for automated redirection of URLs to specific packaged browsers.
ThinDirect.msi is the standalone installer you use to deploy the browser
helper. ThinDirect.admis used to add Group Policy Management to
your ThinDirect implementation. ThinDirect .adm includes five different
browsers and 25 different URLs for each one. You can change the amount
of supported browsers or URLs simply by editing the file in a text editor.

thinreg.exe

Thinreg.exe is a standalone tool that you can copy to any location. Most

of the other tools in the ThinApp utilities must reside within the ThinApp
utilities folder to function. Thinreg. exe is used to register a package on a
client machine, offering the look and feel of a locally-installed application. By
registering a package, you can add shortcuts onto your desktop or the Start
menu and you can register file extensions, protocols, and object types to a
package. Run thinreg.exe without any arguments for the help file.

tlink.exe,vftool.exe,andxvregtool.exe

tlink.exe, vftool.exe, and vregtool.exe are all used to compile your
project folder into a virtualized package. Build.bat calls these files.
Vregtool.exe can also be used to investigate the registry changes located
in the sandbox. Running vregtool . exe without any switches will show
you the help file.

[38]

Chapter 1

Summary

In this chapter we learned the basics of application virtualization, isolation modes,
the sandbox, application linking, and we looked at the ThinApp utilities folder.

In the next chapter we will cover the packaging process in more detail.

[39]

Application Packaging

In this chapter we will cover the packaging process. We'll discuss packaging's
best practices the, packaging environment, entry points, the data container,
and Package.ini.

By the end of this chapter, you will have learned about:

* How to capture an application

* Entry points and the data container

* How your packaging environment affects your packages
* Packaging Internet Explorer

* VBScript support within ThinApp

* Package.ini

Packaging

Packaging an application means collecting all of the required files and registry

keys in one easy-to-deploy container. Different packaging formats have different
containers. The most common method, MSI, has been around for ages. When you
deploy a legacy MSI package, the application's files will be copied onto the local hard
disk. Components such as DLLs will be registered, and the registry will be modified.
Most modern applications are already packaged on delivery. MSI is very common
but different formats exist that use . exe files as their container. Most enterprises
repackage their applications. In this way settings can be customized and features
can be turned on or off. Even though there are software vendors that use application
virtualization, a clear majority of them use legacy, natively installed packaging
formats as their installers.

Application Packaging

Application virtualization captures all changes made by a legacy installer. When
you execute the virtualized package, the application thinks it is locally installed but
all changes made by the installer are actually virtualized and only available within
the virtual environment. Application virtualization means you can never install the
application - you simply execute the application. The fact that you don't have to
install the application has many advantages, but it also comes with a few challenges.
We will cover as much as possible of both in this book, to make sure you avoid the
most common traps.

Running the Setup Capture wizard

Let's capture our first application together. The first couple of applications you
capture should be easy ones. There's no point starting with the toughest possible
application. One of the easiest applications to start with is Mozilla Firefox. If you
do not currently own ThinApp, you can download a fully functional trial version
from VMware's home page, http://www.vmware.com/thinapp. The trial version
will generate time-bombed packages but the project folders it creates are fully
functional and a simple rebuild, using a licensed copy of ThinApp, will produce
unlimited packages. The following steps will help you capture our first application:

1. Have a virtual machine available as your capturing environment. Personally
I use VMware Fusion but any virtualization solution should work. Boot your
capturing machine. I'm using Windows XP in this example but you should
be able to run through the example using Windows 7 as well. Before doing
anything else make sure you have a clean snapshot of your virtual machine.
This way you are able to revert into a clean state after installation and
capture of the application.

2. Start Setup Capture. (Setup Capture.exe found in the ThinApp
Utilities folder).

3. Click on Next.
Click on Prescan> to start your pre-installation snapshot.

5. When the pre-installation snapshot is created, it is time to install your
application. This is shown in the following screenshot:

[42]

Chapter 2

- Setup Capture - Install Application

Install the Application Mowl

Inztall the application that you want o vitualize before taking a

postzcan of the system. Ve

Y'au can minimize this windaw while vou install the application. |

Far mawimurn application portability acrosz machines, install the
application to a path which will not wan across target machines. Far
example, uge an 8.3 DOS directory name at the root of C:.

Learn more.

[f the ingtaller needs ta reboaot after installation, do g0, Setup Capture
will regtart after rebooting.

Make any configuration changes to the application that pou want ta

=

apply to all uzers.

[|nternet Explorer...]

Find the best practices for virtualizing this application:
Whdware Thindpp Cornrmunity

< Back ” Fostzcan » l

Cancel

6. Minimize the Setup Capture wizard.
7. Start the Mozilla Firefox setup.
8. Run through the installation of your application.

[43]

Application Packaging

9. If the application does not register its license during the first launch, it's
recommended to always launch the application at least once. This way you
can make sure that the native installation you are about to capture works
as expected. Mozilla Firefox does not register any licenses during the first
launch so I should launch it at least once.

Import Wizard

Import Settings and Data

Import Options, Bookmarks, History, Passwords and other data from:
() Microsoft Internet Explorer
(%) Don't import anything

< Back L Mext = J [Zancel

[44]

Chapter 2

10. By launching the application, you can complete the initial application setup.

°) Mozilla Firefox Start Page - Mozilla Firefox

File Edit Wiew Histary Bookmarks

Tools Help

n' c M fmr 'w http:/fstart.mozila. orgfen-L5)

@ Most Yisited |j Getting Started |51 | Latest Headlines

J w Mozilla Firefox Start Page

[+]

Home Page: | hitkpsf fes, vrnveare, com/thinapp

[Use Current Page] [Use Bookmark,] [Eestore to Default]

Dowrloads
Show the Downloads window when downloading a File

[Close it when all downloads are finished

(3 Save files to Downloads

() Always ask me where ko save files

| [Browse...]

add-ons
Change options For your add-ons

Manage Add-ons...

Options |§|
e D=‘ 3
U 3 & o a &
IMain Tabs Content Applications Privacy Security Adwvanced
Startup
‘When Firefox starts: |Sh0w my home page v|

L QK J [Cancel] [Help

]

11. Customize the application to fit your organization. All modifications will
be captured and preserved by ThinApp.

12. Close Mozilla Firefox.

13. Go back to the Setup Capture wizard.

[45]

Application Packaging

14. Click on Postscan>.

Setup Capture - Postscan

Fostscanning. .

The Setup Capture wizard rescanz the registry, file system, and ather
environment attributes to azzess the difference between thiz zcan and
the initial zzan.

Scanning location
HEEY_LOCAL MACHINEAS oftware\Classestnterface’ {31 3801 DF-B22F-4D42-B1B8-483C0CFE103E

The postscan operation can take a while depending on how much has
been changed.

[46]

Chapter 2

-~ Setup Capture - Entry Points

X =l

Thig iz the list of the executable files created when inztalling the application. Select which zhould be
available az entry paoints to start the virtual application. hat are entry poinks?

Mame Target

@ tozilla Firefox exe EProgramFilezDirz M ozilla Firefox'firefox, exe

F @ tozilla Firefox [Safe Mode).ese "%ProgramFilesDirziMozilla Firefoxb\firefos. exe” -safe-mode

i @ firefox. exe ZProgramFilesDirz\Mozila Firefoxhfirefos. exe

i updater. exe EProgramFilezDirksM ozilla Firefoxwupdater. exe

F crazhreporter, exe EZProaramFilesDirs\Mozilla Fireforhcrazhreporter. exe

i @ helper exe ZProgramFilesDirr\Mozila Firefoxhuninstallhelper. exe

< | 3
[] Show entry points used for debugging [_ Select All] [Select MHane]

[< Back “. st >] [Cancel l

When the post-installation scan is finished, you are presented with a list

of all new executable, batch files and control panel objects. The objects
with shortcuts are the ones that are activated by default. In the previous
screenshot, I disabled the Mozilla Firefox (Safe Mode) entry point because
I do not need it. ThinApp supports hardcoded switches as well as passing
switches into the virtual environment. If you launch an entry point with a
switch, the ThinApp runtime will take the switch and pass it onto the
target executable.

15. Uncheck the Mozilla Firefox (Safe Mode).exe entry point.
16. Click on Next.

Next you can activate management using VMware Horizon Application
Manager. You can find more on Horizon's capabilities of managing ThinApp
packages in Chapter 3, Deployment of ThinApp Packages.

[47]

Application Packaging

17. Leave Manage with VMware Horizon Application Manager unchecked.
18. Click on Next.

You can protect your packages using Active Directory Groups. You can
change this later in Package . ini within your project folder. More on
protecting your packages can be found in Chapter 6, Design and Implementation
Considerations using ThinApp, in the Protecting your packages section.

19. Leave the default option of Everyone and click on Next.

» -
Setup Capture - Isolation

0y 86

File zpstem izolation mode Mwhat are izolation modes?):

() Full wiite access to non-system directories [Merged izolation mode)

The application can read files from and write directly to the local machine.
Fecommended far Windows Logo Certified applications like Microsoft Office.

Changes to files in application data, system, and program file directonies will be shared in
the zandbos.

(%) Restricted write access [wiiteCopy isolation mods)

Frevents the application from writing directly to most directories. Becommended for
legacy ar untrusted applications.

Changes to files outzide of the Desktop and My Documents directaries will be stared in
the sandbox.

[< Back ” MHext >] Cancel

The default filesystem isolation mode you choose is of very little technical
importance. If your application requires a specific isolation mode on a certain
location, then you should specify this in your project folder and not rely

on the default setting. More details on isolation modes can be found in the
Isolation Modes section in Chapter 1, Application Virtualization. The default
filesystem isolation mode is only used when no isolation mode has been
specified. Note that the question only concerns the filesystem. The default
isolation mode for the registry is always WriteCopy. When packaging an
application, I always choose WriteCopy as my default isolation mode. This
way I'm sure to capture all the changes made by the package in my sandbox.

[48]

Chapter 2

I would probably run the package a couple of times and I would want to
get to know the application and what it modifies. Using WriteCopy as my
default isolation mode, I can investigate the sandbox to learn what the
application modifies. When I'm ready to build my production version of
the package, I'm likely to choose Merged as my default filesystem isolation
mode. That way I don't run the risk of users storing their documents on a
location that is sandboxed by mistake. Imagine the frustration an end user
experiences when saving a document into the root of C: and not finding it
there because it got sandboxed.

20. Choose the WriteCopy isolation mode and click on Next.

Sa Setup Capture - Sandbox

Sandbox location

The zandbox stores user configurations and data for the application. What is the zandbox?
(%) User profile [%appD ata#hT hiretall)

) Same directary as the application [use with USE and portable media

() Custom location or network drive: | | Browze...

[< Back l[Mext >] [Cancel]

If my production environment uses a different sandbox location than
the default, I will change this at the end of packaging an application.
When conducting tests, I prefer to keep the sandbox on the local
machine for easy access.

[49]

Application Packaging

21.

22.

23.

Leave the Sandbox location option at User profile and click on Next.

ThinApp packages can deliver reports to a VMware server. This way
VMware can not only learn about the applications that generate support calls
but also see which applications are successfully running virtualized with the
help of ThinApp. The reports are made completely anonymously.

Click on Next.

When Setup Capture recognizes that you are capturing a browser, it will ask
if you would like to specify ThinDirect URLs. Here you can list URLs that
should be handled by this virtualized browser. Find more on ThinDirect in
the Virtualizing Internet Explorer 6 section of this chapter.

Leave the ThinDirect list empty and click on Next.

A~ Setup Capture - Project Settings

|Fveentary name

Praoject lacation

The inventor name iz used by inventary tracking wtilities for package identification.

Irwenton name: | Mozila Fiefox [3.5.2) ‘

EAThindppiWhware Thindpp 4.7.1 6771 78\Capturezshb ozilla Firefox [3.5.2] ‘ [Br.;.wge___ J

[< Back.]L Mest = J

[50]

Chapter 2

Next you're asked about Inventory name and where to store your

project folder. Choose a suitable name. The Inventory name will be used

to prepopulate parameters such as SandboxName in Package.ini. All
parameters can of course be changed later on. Please be aware of the path
length of your project location. It's often wise to choose a much shorter path
than in my previous example. It all depends on the folder structure of the
application you are capturing. Many times you will hit the built-in character
length limitation within the operating system. A good practice is to store
your project folders in the root of a network share. Another method of
getting a short path is to use SUBST to map a folder as a drive letter.

24. Click on Next.

A~ Setup Capture - Package Settings

Frimany data container
The primary data container iz the file that holdz the virtual application data. Learn more.

() Usze one of the entry paints; | Muozilla Firefox. exe w |

() Use separate DAT file; |h-1|:|2illa Firefow [2.5.2).dat |

k5| package generation

An k5] file iz a Windows installation package that places the application in the Program
Filez directary, registers file azzociations and creates shortcuts,

[] Generate M5 package: |M|:|2illa Firefox [3.5.2].mzi |

Compreszion

Compreszion decreazes the zize of the executable package. YWiware doez not recommend
compreszion for test builds becauze it increazes the build time.

[] Compress vitual package

[< Back]L Save > J

[51]

Application Packaging

25.

26.

The next step is where you decide where to store your virtual environment.
The virtual environment container is called a data container. The data
container can either be a separate file or an entry point. You can choose
among the active entry points. You can easily change the data container and
its name within the Package. ini file. More information can be found in the
section called Entry points and the data container later in this chapter. You can
choose to generate an MSI file for easy deployment of your package using
existing deployment tools. You can also choose to compress the files within
your package. Both of these options add to your build time so if I wanted

to use either one I wouldn't switch them on until later when I build my
production package.

Click on Save.

Your project folder is now created. You have the option to view your project
folder and/or the package. ini file before building.

Click on Build to compile your project folder into a package.

L
E

Open folder containing project executables after clicking Finish

Setup Capture - Build Project

Euilding Project. .

Build time depends on the zize of the application and the project options. It may take several minutes.

Biuild ootk

Adding ilezh1Tihi2e) defaultspermizzionz. zqlite 2048 bytes [100%)
Adding WProfilesh11iHiZe). defaulthplaces. zglite 172032 butes [100%)
Adding #4171 ki2ej. defaulthplaces. sqlite-journal 0 bytes [05%)]

Adding \Profilesh171ikize). defaultpluginreg.dat 1108 betes [100%)
Adding refoxhProfilest 1 1iki2e).defaultprefe.js 1601 bytes (100%)
Adding oxProfilezi TihiZe) defaulthzearch.jzon 11415 betes [100%)
Adding \Profilesh11ihi2e). defaulthsearch. sglite 2048 bytes [100%]
Adding eforhProfilesy11ihi2e). defaultsecmod.db 16384 bytes |

2

]

[52]

Chapter 2

Building your package may take a while. The time it takes depends on the
size of your project folder and if you use compression or not.

A~ Setup Capture - Build Project

Euilding Project. ..

Build time depends on the zize of the application and the project options. [t may take several minutes.

Build output

YWidware Thindpp Buntime Linker Werzsion 4.7 1-677178, Built Apr & 2012 |
Copyright 2006-2011, YMware, Inc. all rights reserved.
E nterprize Edition, icenzed to Wkware Inc.
bozilla Firafom. exe:

Copying file data.. 24% 851 2k./34880k

SUCCESS: Mozilla Firefox. exe, size=236800k

Build complete =

Open folder containing project executables after chcking Finish

Help [< Back]L Firizh J Canicel

27. Click on Finish to close Setup Capture and open the bin folder containing
the package you just created.

Congratulations! You have created your first ThinApp package. In order to test your
package, make sure you have saved the project folder outside your virtual machine.
Revert to a clean snapshot of your virtual machine and run the package. Packaged
Mozilla Firefox should run on pretty much any Windows version, ranging from
Windows XP to Windows 7. 32-bit or 64-bit shouldn't matter.

[53]

Application Packaging

The capture and build environment

You cannot write a book about a packaging format without discussing the
environment used to create the packages. The environment you use to capture
an installation is of great importance.

ThinApp uses a method of snapshotting when capturing an application installation.
This means you create a snapshot (Pre-Installation Snapshot) of the current state

of the machine. After modifying the environment, you create another snapshot, the
Post-Installation Snapshot. The differences between the two snapshots represent the
changes made by the installer. This should be all the information you need in order
to run the application. Many packaging products use snapshotting as a method of
capturing changes. The alternative would be to try to hook into the installer itself.
Both methods have their pros and cons. Using snapshot is much more flexible.

You don't even have to run an installer. You can copy files and create registry

keys manually and it will all be captured. But, your starting point will decide

the outcome.

If your machine already contains the Java Runtime Environment (JRE) and the
application you are capturing requires Java, then you will not be able to capture
the JRE. Since it was already there when you ran the pre-install snapshot, it will not
be a part of the captured differences. This means your package would require Java
installed or it will fail to run. The package will not be self-contained.

The other method, monitoring the installer, will be more independent of the
capturing environment but will not support all the installer formats and will not
support manual tweaking during capture. Nothing is black or white. Snapshotting
can be made a little more independent of the capture environment. When an installer
discovers components already installed, it can register itself to the same components.
ThinApp will recognize this, investigate which files are related to a component, and
mark them as needed to be included in the package. But this is not a bulletproof
method. So the general rule is to make sure your environment allows ThinApp to
capture all required dependencies of the application.

ThinApp packages are able to support multiple operating systems with one
single package. This is a great feature and really helps in lowering the overall
administration of maintaining an application. The possibility of running the same
package on your Windows XP clients, Windows 7 machines, and your XenApp
servers is unique. Most other packaging formats require you to maintain one
package per environment.

[54]

Chapter 2

The easiest method to package an application is to capture it on the platform where it
will run. Normally you can achieve an out of the box success rate of 60 - 80 percent.
This means you have not tweaked the project in any way. The package might not be
ready for production but it will run on a clean machine not having the application
locally installed.

If you want to support multiple operating systems you should choose the lowest
platform you need to support. Most of the time this would be Windows XP. From
ThinApp's point of view, Windows XP and Windows Server 2003 are of the same
generation and Windows 7 and Windows 2008 R2 are of the same generation.

Most installers are environment aware. They will investigate the targeting platform
and if it discovers a Windows 7 operating system, it knows that some files are
already present in the same or newer version than required. Installing on a Windows
XP with no service pack would force those required files to be installed locally, and
therefore captured by the capturing process. Having these files captured from an
installation made on Windows XP rarely conflicts the running of the application on
Windows 7 and helps you achieve multiple OS support.

Creating a package for one single operating system is of course the easiest task.
Creating a package supporting multiple operating systems, all being 32-bit systems is
a little harder. How hard depends on the application. Creating a package supporting
many different OS and both 32-bit and 64-bit versions is the hardest. But it is doable.
It just requires a little extra packaging effort. Some applications cannot run on a
64-bit OS, but most applications offer some kind of work around. If the application
contains 16-bit code, then it's impossible to make it run on a 64-bit environment.
64-bit environments cannot handle 16-bit code. Your only workaround for those
scenarios is whole machine virtualization technologies. VMware Workstation,
VMware View, Citrix XenDesktop, Microsoft Med-V, and many others offer you

the capability to access a virtualized 32-bit operating system on your 64-bit machine.

In general, you should use an environment that is as clean as possible. This will
guarantee that all your packages include as many dependencies as possible, making
them portable and robust. But it's not written in stone. If you are capturing an add-on
to Microsoft Office, then Microsoft Office has to be locally installed in your capturing
environment or the add-on installer would fail to run. You must design your capture
environment to allow flexibility. Sometimes you capture on Windows XP, the next
application might be captured on Windows 7 64-bit. The next day you'll capture on

a machine having JRE installed, or Microsoft Office. The use of virtual machines is a
must. Physical machines are supported but the hours spent on reverting to a clean
state to start the capture of the next application makes it virtually useless.

[55]

Application Packaging

My capture environment is my MacBook Pro running VMware Fusion and several
virtual machines such as Windows XP, Windows Vista, Windows 7, Windows 2003
Server, and of course Windows Server 2008. All VMs have several snapshots (states
of the virtual machine) so I can easily jump back and forth between clean, Microsoft
Office-installed and different service packs and browsers. Yes, it will require some
serious disk space. I'm always low on free disk space. No matter how big the disks
you buy are, your project folders and virtual machines will eat it all. have two
disks in my MacBook. One SSD disk, where I keep most of my virtual machines,
and one traditional hard disk where I keep all my project folders. The best capture
environments I've ever seen have been hosted on VMware vSphere and ESX.

Using server hardware to run client operating systems make them fast as

lightning. Snapshotting of your VMs take seconds, as well as reverting snapshots.

Access to the virtual machines hosted on VMware ESX can be achieved using a
console within the vSphere client or basic RDP. The only downside I can see to using
an ESX environment is that you cannot do packaging offline, while traveling.

The next logical question is if my capture machine should be a domain member or
standalone, this depends, I always prefer to capture on standalone machines. This way
I know that group policies will not mess with my capture process. No restrictions will
be blocking me from doing what I need to do. But again, sometimes you can simply
not capture an application without having access to a backend infrastructure. Then
your capture machine must be on the corporate network and most of the time it means
that it has to be a domain member. If possible, try putting the machine in a special
Organizational Unit (OU) where you limit the amount of restrictions.

If at all possible, make sure you don't have antivirus installed on your capturing
environment. I know that some enterprises have strict policies forcing even
packaging machines to be protected by antivirus. But be careful. There is no way
of telling what your antivirus may decide to do to your application's installation
and the whole capture process. Most installer manuals clearly state to disable any
antivirus during installation. They do that for a reason. Antivirus scanning logs and
all that follows will also pollute your project folder. It will probably not break your
package but I am a strong believer in delivering clean and optimized packages.

So having an antivirus means you will have to spend some time cleaning up your
project folders. Alternatively, you can include areas where the antivirus changes
content in snapshot . ini, the Setup Capture exclusion list.

[56]

Chapter 2

Entry points and the data container

An entry point is the doorway into the virtual environment for the end users. An
entry point specifies what will be launched within the virtual environment. Mostly
an entry point points to an executable, for example, winword. exe. But an entry point
doesn't have to point to an executable. You can point an entry point to whatever kind
of file you want, as long as the file type has a file association made to it. Whatever

is associated to the file type will be launched within the virtual environment. If no
file type association exists, you will get the standard operating system dialog box,
asking you which application to open the file with. The name of the entry point must
use an . exe extension. When the user double-clicks on an entry point, we are asking
the operating system to execute the ThinApp runtime. Entry points are managed in
Package.ini. You'll find them at the end of the Package. ini file.

The data container is the file where ThinApp stores the whole virtual environment
and the ThinApp runtime. There can only be one data container per project. The
content in the data container is an exact copy of the representation of the virtual
environment found in your project folder. The data in the data container is in
read-only format. It's the packagers who change the content by rebuilding the
project. An end user cannot change the content of the data container. An entry
point can be a data container. Setup Capture will recommend not using an entry
point as a data container if Setup Capture believes that the package will be large
(200 MB-300 MB). The reason for this is that the icon of the entry point may take up
to 20 minutes to be displayed. This is a feature of the operating system and there's
nothing you can do about it. It's therefore better to store the data container in a
separate file and keep your entry points small. Make sure the icons are displayed
quickly. Setup Capture will force you to use a separate data container when the size
is calculated to be larger than 1.5 GB. Windows has a size limitation for executable
files. Windows will deny executing a . exe file larger than 2 GB.

The name of the data container can be anything. You will not have to name it with
the .dat extension. It doesn't have to have a file extension at all. If you're using a
separate data container, you must keep the data container in the same folder as
your entry points.

[57]

Application Packaging

Let's take a closer look at the data container and entry point section of package. ini.
You'll find the data container and entry points at the end of the Package. ini file.
The following is an example Package. ini file from a virtualized Mozilla Firefox:

[Mozilla Firefox.exe]
Source=%ProgramFilesDir%\Mozilla Firefox\firefox.exe

;ChangeReadOnlyData to bin\Package.ro.tvr to build with old
versions(4.6.0 or earlier) of tools

ReadOnlyData=Package.ro.tvr
WorkingDirectory=%ProgramFilesDir%\Mozilla Firefox
FileTypes=.htm.html.shtml.xht.xhtml
Protocols=FirefoxURL; ftp;http;https

Shortcuts=%Desktop%; $Programs%\Mozilla Firefox;%AppData%\Microsoft\
Internet Explorer\Quick Launch

[Mozilla Firefox (Safe Mode) .exe]

Disabled=1

Source=%ProgramFilesDir%\Mozilla Firefox\firefox.exe

Shortcut=Mozilla Firefox.exe
WorkingDirectory=%ProgramFilesDir%\Mozilla Firefox
CommandLine="%ProgramFilesDir%\Mozilla Firefox\firefox.exe" -safe-mode
Shortcuts=%Programs%\Mozilla Firefox

A step-by-step explanation for the parameters is given as follows:

[Mozilla Firefox.exe]

Within [] is the name of the entry point. This is the name the end user
will see. Make sure to use .exe as your file extension.

Source=%ProgramFilesDir%\Mozilla Firefox\firefox.exe

The source parameter points to the target of the entry point, that is, what will
be launched when the user clicks on the entry point. The source can either be
a virtualized or physical file. The target will be launched within the virtual
environment no matter where it lives.

ReadOnlyData=Package.ro.tvr

The rReadOnlyData indicates this entry point is in fact a data container
as well.

[58]

Chapter 2

WorkingDirectory=%ProgramFilesDir%\Mozilla Firefox

This specifies the working directory for the executable launched. This is
often a very important parameter. If you do not specify a working directory,
the active working directory will be the location of your package. A lot of
software depends on having their working directory set to the application's
own folder in the program files directory.

FileTypes=.htm.html.shtml.xht.xhtml

This is used when registering the entry point. It specifies which file
extensions should be associated with this entry point. The previous
example registers .htm, .html, and so on to the virtualized Mozilla Firefox.

Protocols=FirefoxURL; ftp;http;https

This is used when registering the entry point. It specifies which protocols
should be associated with this entry point. The previous example registers
http, https, and so on to the virtualized Mozilla Firefox.

Shortcuts=%Desktop$%; $Programs%\Mozilla Firefox

The parameter Shortcuts is also used when registering your entry points. The
Shortcuts parameter decides where shortcuts will be created. The previous
example creates shortcuts to virtualized Mozilla Firefox on the Start menu in a
folder called Mozilla Firefox, as well as a shortcut on the user's desktop.

[Mozilla Firefox (Safe Mode) .exel
Disabled=1

Disabled means this entry point will not be created during the build of
your project.

Source=%ProgramFilesDir%\Mozilla Firefox\firefox.exe
Shortcut=Mozilla Firefox.exe

Shortcut tells this entry point what its data container is named. If you
change the data container's name you will have to change the Shortcut
parameter on all entry points using the data container.

WorkingDirectory=%ProgramFilesDir%\Mozilla Firefox
CommandLine="%ProgramFilesDir%\Mozilla Firefox\firefox.exe" -safe-mode

CommandLine will allow you to specify hardcoded parameters to the
executable. It's the native parameters supported by the virtualized
application that you use.

Shortcuts=%Programs%\Mozilla Firefox

[59]

Application Packaging

There are many more parameters related to entry points. The following are some
more examples with descriptions:

[Microsoft Office Enterprise 2007.dat]
Source=%ProgramFilesDir%$\Microsoft Office\Officel2\OSA.EXE
;ChangeReadOnlyData to bin\Package.ro.tvr to build with old
versions(4.6.0 or earlier) of tools

ReadOnlyData=Package.ro.tvr
MetaDataContainerOnly=1

MetaDataContainer indicates that this is a separate data container.

[Microsoft Office Excel 2007.exe]
Source=%ProgramFilesDir%\Microsoft Office\Officel2\EXCEL.EXE
Shortcut=Microsoft Office Enterprise 2007.dat

FileTypes=.csv.dqy.iqy.slk.xla.xlam.xlk.x1]l.xlm.xls.xlsb.xlshtml.xlsm.
xlsx.x1lt.xlthtml.xltm.xltx.x1lw

Comment=Perform calculations, analyze information, and visualize data
in spreadsheets by using Microsoft Office Excel.

comment allows you to specify text to be displayed when hovering your
mouse over the shortcut to the entry point.

ObjectTypes=Excel.Addin;Excel.AddInMacroEnabled;Excel.
Application;Excel.Application.12;Excel.Backup;Excel.Chart;Excel.
Chart.8;Excel.CSV;Excel .Macrosheet ;Excel.Sheet;Excel.Sheet.12;Excel.
Sheet.8;Excel.SheetBinaryMacroEnabled; Excel.SheetBinaryMacroEnab
led.12;Excel.SheetMacroEnabled;Excel.SheetMacroEnabled.12;Excel.
SLK;Excel.Template;Excel.Template.8;Excel.TemplateMacroEnabled;Excel.
Workspace; Excel .XLL

This specifies the object types which will be registered to the entry point
when registered.

Shortcuts=%Programs%\Microsoft Office
StatusBarDisplayName=WordProcessor

Users can change the name displayed in the ThinApp splash screen. In this
example, WordProcessor will be displayed as the title.

Icon=%ProgramFilesDir%\Microsoft Office\Officel2\EXCEL.ico

Icon allows you to specify an icon for your entry point. Most of the times
ThinApp will display the correct icon without this parameter. You can
point to an executable to use its built-in icons as well. You can specify a

different icon set by applying 1 or 2 and so on to the icon path, for example,
Icon=%ProgramFilesDir%\Microsoft Office\Officel2\EXCEL.EXE,1

[60]

Chapter 2

The most common entry points should be either cmd. exe or regedit.exe. You'll
find them in all Package. ini files but they are disabled by default. Since cmd.

exe and regedit . exe most likely weren't modified during Setup Capture, they

are not part of the virtual environment. So the source will be the native cmd. exe

and regedit .exe. These two entry points are the packagers' best friends. Using
these entry points allows a packager to investigate the environment known to the
virtualized application. What you can see using cmd . exe or regedit . exe is what the
application sees. This is a great help when troubleshooting.

If you package an add-on to a natively installed application, the typical example is
packaging JRE and you want the local Internet Explorer to be able to use it. Creating
an entry point within your Java package using native Internet Explorer as a source,
is a perfect method of dealing with it. Now you can offer a separate shortcut to the
user, allowing users to choose when to use native Java or when to use virtualized
Java. ThinApp's isolation will allow virtualization of one Java version running

on a machine with another version natively installed. The only problem with this
approach is how you educate your users when to use which shortcut. ThinDirect,
discussed later in this chapter, in the Virtualizing Internet Explorer 6 section, will
allow you to automatically point the user to the right browser. There are many use
cases for launching something natively within a virtualized environment. You may
face troublesome Excel add-ons. Virtualizing them will protect against conflicts, but
you must launch native Excel within the environment of the add-on for it to work.
Here you could use the fact that many Excel add-ons use .x1a files as the typical
entry point to the add-on. Create your entry point using the .x1a file as source and
you will be able to launch any Excel version that is natively installed. When you use
a non executable as your entry point source, remember that the name of your entry
point must still be . exe. The following is an example of an entry point using a text
file as source:

[ReadMe . exe]
Source=%Drive C%\Temp\readme.txt
ReadOnlyData=Package.ro.tvr

Running ReadMe . exe will launch whatever is associated to handle . txt files.
The application will run within the virtualized environment of the package.

The project folder

The project folder is where the packager spends most of his or her time. The
capturing process is just a means to create the project folder. You could just as easily
create your own project folder from scratch. I admit, to manually create a project
folder representing a Microsoft Office installation would be far from easy but in
theory it can be done. There is some default content in all project folders. Let's
capture nothing and investigate what these are.

[61]

Application Packaging

During Setup Capture, to speed things up, disable the majority of the search
locations. This way pre and post scans will take close to no time at all.

1.
2.

Run Setup Capture.

In the Ready to Prescan step, click on Advanced Scan Locations....

following screenshot:

Exclude all but one location from the scanning, as shown in the

-" Setup Capture - Ready to P

What iz a prescan?
Setup Capture zcans the initial state
registry files to create a baseline of

Use a clean Windows system
A clean Windows system does nat ©
zoftware bepond the operating systen
components. Whware recommends
maching created with Wiware YWork:

Why use a clean Windows sys
“t'our application installer might skip fi
are already prezent on your machine.
during deplayment.

Advanced Scan Locations [XJ

File system basze directories to scan

Foot Path “olume Label
(=
1=+ Shared Folders

File System
NTFS
HGFS

Registry hives to scan
[CIHKEY_LOCAL_MACHINE

[JHKEY_UUSERS
HKEY_CURREMNT_LSER

o]

[Cancel

[Advanced Scan Locations... l

< Back ” Prescan »]

[Cancel]

Since we want to capture nothing, there is no point in scanning all locations.
Normally you don't have to modify the advanced scan locations.

After pressing Prescan, wait for Postscan to become available and click on it

when possible, without modifying anything in your capturing environment.

the wizard.

Accept CMD.EXE as your entry point and accept all defaults throughout

[62]

Chapter 2

Your project folder will look like the following screenshot:

eBack < _) l.ﬁ ;j Search i Folders v

Address |25 Z:\ ThindppiyYMware Thindpp 4.7.1 677178 Capturesicrmd V| Go
Mame Size | Twpe Date Modified

File and Folder Tasks [y tppData® File: Folder 6112012 5:51 PM
J Make & new folder | %Comman AppData F?Ie Folder B/11/201Z §:51 PM
-)) L) ¥aDesklopa File: Folder 6/11f2012 §:51 PM
%] E\ﬂSh this folder to the [C3)%Local AppData®s File: Falder 6/11(2012 &:51 PM
) %Personal® File Folder 6/11/2012 5:51 PM

|1 %Program Files Common® File: Falder B/11/2012 5:51 PM

Other Places |3 %eProgramFilesDir File Folder 6/11}2012 8:51 PM
[%5y skemPooks Filz Folder 6/11/2012 §:51 PM

[Captures [C5) % SystemSysteme File: Falder 6/11/2012 &:51 PM
[} My Documerts [Cbin File Folder 6/11/2012 &:52 PM
[C3) Shared Docurents |3 5upport File Folder 6/11f201Z §:51 PM
i My Computer Elbuid 3KE MS-DOSBatchFile /112012 51 PM
[Z] HKEY_CURRENT_USER 1KE Text Document 6112012 &:51 PM

‘ﬂ My Metwork Places

}Package 6KE Configuration Settings 6/11/2012 &:51 PM

Details

The project folder of a capturing, bearing no changes, will still create folder macros
and default isolation modes.

Let's explore the defaults prepopulated by the Setup Capture wizard. This is the
minimum project folder content that the Setup Capture will ever generate. As a
packager you are expected to clean up unnecessary folders from the project folder,
so your final project folder may very well contain a smaller number of folder macros.
Folder macros are ThinApp's variables. $ProgramFilesDir% will be translated

to C:\Program Files on an English Windows installation but the same package
running on a Swedish OS the $ProgramFilesDir% will point to ¢: \Program. Folder
macros are the key to ThinApp packages' portability.

If we explore the filesystem part of the project folder, we'll see the default isolation
modes prepopulated by Setup Capture. These are applied as defaults no matter
what default filesystem isolation mode you choose during the Setup Capture
wizard. This confuses some people. I'm often told that a certain package is using
WriteCopy or Merged as the isolation mode. Well that's just the default used when
no other isolation mode is specified. A proper project folder should have isolation
modes specified on all locations of importance, basically making the default isolation
mode of no importance. The prepopulated isolation modes are there to make sure
most applications run out of the box ThinApped. You are expected to change these
to suit your application and environment.

[63]

Application Packaging

Let's look at some examples of default isolation modes.

* 3AppData$, the location where most applications store user settings, is
by default using WriteCopy. This is to make sure that you sandbox all
user settings.

* 3SystemRoot% and %SystemSystem% have WriteCopy as their default
isolation modes, allowing a virtualized application to see the operating system
files without allowing it to modify C: \Windows and C:\Windows\System32.

* %SystemSystem%\spool representing C:\Windows\System32\Spool
has Merged as its default. This way print jobs will be spooled to the
native location, allowing the printer to pick up the print job.

* 3Desktop$% (user's desktop folder) and $Personal% (user's document folder)
have Merged by default.

When ThinApp generates the project folder, it uses the following logic to decide
which isolation mode to prepopulate other locations with. The same logic is used
within the registry as well.

* Modified locations will get WriteCopy as the isolation mode
* New locations will get Full as their isolation mode

The Package.ini file

Package.ini, found in the root of the project folder, is the project wide settings file.
Here you can apply configuration changes that will be applied to the whole project.
Many parameters are prepopulated in Package.ini. Some are default ThinApp
values and some are from your choices made during Setup Capture. I prefer to
change very few of the defaults in Setup Capture. I'd rather change my project
settings within the pPackage. ini file directly. There are quite a few package.

ini parameters you can use, though not all of them are listed in package.ini by
default. I will explain the parameters that are included by default. A complete list
of Package. ini parameters are found in References of this book. Package. ini is
structured in different sections. [Buildoptions] is the section where you'll find
most of the parameters. This section's parameters will be applied project wide,

that is, to all of your entry points within the project. [FileList], [Compression],
and [Isolation] parameters act as the ones under [BuildOptions]but are in
different sections for backward compatibility reasons. You must place a parameter
in its correct section. Luckily, a clear majority of the parameters will live under
[Buildoptions]. Then you have entry point-specific sections, [EntryPointName.
exe]. These sections' parameters are only applied to that particular entry point.
Only a very few parameters can be used both in [Buildoptions] and under
[EntryPointName.exe]. Most default parameters are commented out in the
Package. ini file. You can activate the parameter simply by deleting the semicolon
in front of the parameter, saving your package. ini file, and rebuilding your project.

[64]

Chapter 2

Let's have a look at the Package. ini file in our Mozilla Firefox project folder.
Some parts of the file I will cover later in this book. MSI parameters are discussed
in the section Using MSI to distribute packages in Chapter 3, Deployment of ThinApp
Packages and AppSync is covered in the section Application Sync (AppSync) in
Chapter 5, How to Distribute Updates.

[Compression]
CompressionType=None

CompressionType must be located under [Compression]. It supports two
values, None or Fast. The None value offers no compression of the files
within your package. Fast will, since Version 4.5 of ThinApp, by default
only compress non executables and DLLs. For performance reasons,
ThinApp will leave executables and DLLs uncompressed. You can

change this behavior using OptimizeFor=Disk.

[Isolation]
DirectoryIsolationMode=WriteCopy

DirectoryIsolationMode specifies the isolation mode used on the
filesystem if no other isolation mode has been specified for that
particular location.

[BuildOptions]

This indicates the start of the build options section.

AccessDeniedMsg=You are not currently authorized to run this
application. Please contact your administrator.

This is the message displayed to the user if they try to run a ThinApp
package using Active Directory group membership for protection, and
the user is not a member of the correct group. It works together with the
PermittedGroups parameter.

CapturedUsingVersion=4.7.1-677178

This identifies which version of ThinApp was used to capture this project.
OutDir=bin

This is where the output of your build process will be.

SandboxName=Mozilla Firefox (3.5.2)

This is the name of the sandbox used. All entry points within a project share
the same sandbox. They are all running within the same virtual environment.
Each project must have their own sandbox. You should have one sandbox per
user and package. You cannot have two active users or packages sharing the
same sandbox. The sandbox will be locked by the first user/package launched.

[65]

Application Packaging

InventoryName=Mozilla Firefox (3.5.2)

This is the name of the package. It will be displayed in numerous locations,
for example, in Add and Remove programs. It will be picked up by inventory
tools and is used to prepopulate the Package.ini parameters using the
name of the package, for example, sandboxName and MSIFilename.

InventoryIcon=%ProgramFilesDir%\Mozilla Firefox\firefox.exe, 0

This specifies which icon will be displayed in the application store of
VMware Horizon Application Manager.

;PermittedGroups=Administrators;Remote Desktop Users

This is used to lock down the package so that only members of listed Active
Directory groups are allowed to execute the entry points of this project. You
can use PermittedGroups on a per entry point basis as well. The machine
where you run build.bat must be a domain member in order to pull the
Security Identifier (SID) of the group. The package will contain the SID of
the groups, so when executing it on clients no query will go to the domain
controllers, but the locally cached credentials will be used to authorize

the user. Instead of entering a group name you can provide the SID of the
group. This allows you to build on a machine not being a member of the
domain. Using SIDs allows for a package to support multiple domains with
no trusts between the domains. This parameter works together with the
AccessDeniedMsg parameter.

;RemoveSandboxOnExit=1

This activates the possibility for your package to delete the sandbox when the
user shuts down the application.

;RemoveSandboxOnStart=1

This allows you to delete the sandbox on each launch of an application.

; SandboxNetworkDrives=1

[66]

Chapter 2

; SandboxRemovableDisk=1

By default, removable disks and network drives are not sandboxed. Activate
it to change the behavior.

;VirtualizeExternalOutOfProcessCOM=0

By default, child processes are loaded within the virtual environment of

the package calling the child process. There are different methods of calling
another process. One is to use COM. VirtualizeExternalOutOfProcessCOM
specifies if a process called via COM should be loaded within the

virtualized environment (default) or not. This parameter together with
ChildProcessEnvironmentExceptions is often used in order to support
integration between virtualized application and natively installed
applications.

;OptionalAppLinks=plugins*.exe
;RequiredAppLinks=\\server\share*.exe;c:\abs\path\file.exe

AppLink parameters were discussed in Chapter 1, Application Virtualization,
in the Application Linking (AppLink) section.

VirtualDrives=Drive=c, Serial=647c¢820d, Type=FIXED
;VirtualDrives=Drive=a, Serial=00e20ba8, Type=REMOVABLE; Drive=c,
Serial=647c820d, Type=FIXED; Drive=d, Serial=647c¢820d, Type=CDROM

ThinApp can virtualize drives. By default c: will be active as a virtual drive.
This allows ThinApp to present the same C: serial number to the application
no matter on which machine the package executes. By default package. ini is
prepopulated with all of the local drives of your capturing environment, but
disabled out. Make sure you only have one active virtualDrives parameter
in your pPackage. ini file. Minimum required values for virtualDrives are
Drive and Type. You do not have to specify a serial number. If you want to
virtualize a CD-ROM and add some files on the virtual CD-ROM, you will
have to specify the virtual drive in Package. ini first.

[67]

Application Packaging

VirtualDrives=Drive=c, Serial=647c820d, Type=FIXED; Drive=X,
Type=CDROM

Then you must create the folder macro (¥Drive_x%) representing the virtual
drive within your project folder. $Drive_x% is shown in the project folder in
the following screenshot:

= Mozilla Firefox (3.5.2)

File Edit Miew Faworites Tools Help

eﬁack - O @ pSearch EE_L‘ Folders v

Address |23 23\ Thindppi¥Mware Thindpp 4.7, 1 677178 CapturesiMozilla Firefos

- Mane

File and Folder Tasks) %AppData

)% Common AppDatads
I % Common Deskkop®e

Eﬂ Make a new Folder
@ Fublish this Falder ko the

weh)% Comman Programss
I %Deskkop
) %eDrive_x%
Other Places = [Ch%%Local AppData®s
I %%Personal
[a Captures [ﬁ%F‘ngram Files Commaona
My Documenks I5) %PrograrmFilesDirs
[Shared Documents) %SystemRoot:
a My Computer [El%S';.fstemS';.-'stem“fo
g My Mebwork Places (bin
[ﬁSuppnrt
E}Package.ini
Details Fbuild.bat

|E=j HEEY_CURREMT _USER. txt
E] HEEY _LOCAL_MACHIME. Exk
=| HKEY _USERS kxt

[68]

Chapter 2

Drive_X is the folder macro representing your virtual drive using X: as the
drive letter.

T My Computer ") Mozilla Firefox

File Edt Wiew Favortes Tools Help Fle Edt Wiew History Bookmarks Tools Help

@Eack - J Lﬁ: pSear:h [Folders | [i3]~

Address | o My Computer

QOpen File

o|®

Name Look jn ‘ :i My Computer Vl Q 2 = E-

System Tasks Files Stored on This Computer 3% Floppy (A7)

[e Local Disk (C1)

MyRecent | LbDVD Drive (4}

Documents | 4D Drive (%:)

2 5hared Folders an ‘wrware-host' (Z:)

Hard Disk Drives 5
[[5hared Documents

|5 vmmare's Documents

Yfiew system information {53 5hared Dacuments
) Add or remove programs [C3)vmware's Dacuments
[change a setting
Other Places S Local Disk (C:) Desktop

3 My Hetwork Places Devices with Removable Storage

[My Documents
[Sharsd Documents

3 Floppy (A1)

2L DVD Drive (D1) My Documents

B Control Pansl
Network Drives
Details ¥ 5hared Folders on ‘vmware-host’ (Z:) Wy Computer
My Computer
System Foldsr (F e ‘ - ‘ [open |
My Netwark | Files of type |8l Files v [cancal |

The virtualized X: is only present in the virtualized environment.

;VirtualComputerName=CNB

You can virtualize the computer name within your virtual environment.
Package. ini will save the computer name from your capturing
environment. Some applications will use the computer name and therefore
break portability. Another method of allowing portability for such an
application is to name your capture machine LocALHOST. This way, all
application references to the computer name will use LOCALHOST.

AnsiCodePage=1252

LocaleIdentifier=1033

You can specify the specific regional settings within the virtual environment.
This helps deal with applications changing their behavior depending on
which region the operating system has.

;Wow64=0

Wowé64 can sometimes help a 32-bit application to run on a 64-bit operating
system. More on capturing on 32-bit and running on a 64-bit OS is available
in the Some packaging tips section in this chapter.

[69]

Application Packaging

; LoadDotNetFromSystem=Win7

If you captured the NET Framework on a Windows XP machine, you can, by
activating this parameter, tell the ThinApp runtime to discard the virtualized
.NET Framework and use the system one instead when running on Windows
7. This would allow your package to contain an older version of .NET. The
old version would be used on Windows XP but not on Windows 7 (Windows
7 cannot use older versions of .NET).

QualityReportingEnabled=1

This parameter allows the package to report successful executions to a
VMware server for quality assurance. You can disable this feature with
the value o.

; IgnoreDDEMessages=1

By activating this parameter, the packaged application will not receive any
DDE messages from the operating system. This can help you run multiple
instances of the same application.Often DDE is used to keep new instances
of already loaded applications from loading. This is to preserve memory on
the clients. But DDE is often a bad thing if you want to run multiple versions
of an application, for example, one instance of Excel Version 2003 and at the
same time Excel 2007.

jom-m--—- Horizon Parameters ----------
;AppID=genid
;NotificationDLLs=HorizonPlugin.dll

These two parameters will enable the VMware Horizon Application
Manager management of the package. Add these two parameters to enable
Horizon management in projects captured using old versions of ThinApp.
Learn more on Horizon management of ThinApps later in this book.

[EntryPointName.exe]Or [DataContainerName.dat]

This indicates the start of the entry point section. Entry points were discussed
earlier in this chapter in the Entry points and the data container section.

[70]

Chapter 2

Isolation mode considerations

You can change isolation modes for folders by modifying the ##Attributes.ini
file within it. This is shown in the following screenshot:

File Edit View Favorites Tools Help

eBack < "\) Lﬁ pSearch H:" Folders v

address (3 2 ThinAppiWMware Thindpp 4.7.1 677173 CapturesiMozilla Firefox (3.5.2)4%Drive_C%:\Temp
Mame = Size | Type Date Modified
3##nttributes 1KE Configuration Settings S/26/2012 8112 PM

File and Folder Tasks

Iﬂ Rename this File

[Move this file [##Attributes - Notepad

D Copy this file Filz Edit Format View Help

8 Publish this File to the Web [Isolation] .
pirectoryIsolationmode=Full

() E-mail this File

iy Print this fils

¥ Celete this file

If the folder within your project folder does not contain a ##Attributes. ini file,
simply create one using Notepad or copy one from another folder.

You can change isolation modes on a per-registry sub tree basis using the
isolation _merged, isolation writecopy, Or isolation full parameter
in front of the registry location, as shown in the following screenshot:

. HKEY_LOCAL_MACHINE - Notepad
File Edit Format View Help

Jsolation_writecopy HKEY_LOCAL_MACHIME
isolation_writecopy HKEY_LOCAL_MACHIMEMNSOTtware
isolation_writecopy HKEY_LOCAL_MACHINENWSoftwarenClasses

iSDT%tiDn_writecopy HKEY_LOCAL_MACHINENSoftwarenClassesh. shtml
value=

REG_SZ~shtm1file#2300

value=Content TXpe

REG_SZ~text Html#2300

iSDW%tiDn_Fu1T HEEY _LOCAL_MACHIMEMNSOf twaresClasses™,. xht
value=

REG_SZ~xhtfile#2300

value=Content Type

REG_SZ~applicationsxhtmT+xm1#2300

isolation_full HKEY_LOCAL_MACHIMEWSoftwarevClassesh. xhtml
values=
REG_SZ~xhtm]fiTe#2300
value=Content Type
REG_SZ~applicationsxhtmT+xm1#2300

[71]

Application Packaging

When you package an application it is important to find out which isolation modes
are required within the project to get the behavior you want from your package.

A packager must test run the package and explore the sandbox. This allows the
packager to get to know the application and to know how it behaves as a ThinApp
package. Typical things of interest are as follows:

¢ The initial launch size of the sandbox

* Whether the sandbox size will grow by using the package and by launching
it several times

* No temporary files bloat your sandbox

* You can delete the sandbox after exiting the package

A good practice is to make sure the sandbox is as small as possible. This will make
the sandbox easier to roam if you are using roaming profiles. In general, there is
never any reason to allow the sandbox to grow beyond control. A good ThinApp
package, from my point of view, is the smallest possible package creating the
smallest possible sandbox. Some applications open files with editing ability without
really needing to. If these files are located within the virtual environment, they will
end up in the sandbox. There is not much you can do about this. But sometimes

you can create a mix between the physical elements (registry and filesystem objects)
and virtual elements. For example, you can choose not to sandbox user settings by
Using the Merged isolation mode on $AppData% and all its subfolders. The benefit of
doing this is that your sandbox will be smaller and you can more easily manipulate
the settings accessing the native location. The downside is of course that not all
changes made by the package are included in one portable folder. I don't prefer one
model over another, as both offer their pros and cons. The most important thing is to
understand that you have the option.

A question I often get is whether an application packaged using ThinApp supports
Group Policy Objects (GPO) or not. The answer is simple, both yes and no. GPOs
are simply registry keys. You know by now that ThinApp is able to virtualize
registry keys and is able to fully isolate native keys. By capturing on a non-domain
member, ThinApp will by default create a package that will allow GPOs to be
applied to the virtualized application. If you capture on a domain member, you

risk capturing some parts of the registry where GPOs are located. Then your package
will have fixed GPO settings, that is, when changing your network GPO settings,

the package will not see those changes. You can decide to fully isolate the GPO part
of the registry so that no GPO settings will be available to the virtualized application.

[72]

Chapter 2

The following is a list of the isolation mode settings needed to make a ThinApp
package unaffected by GPO (by default the virtualized application will honor
GPO settings).

i HKEY CURRENT USER.txt
isolation full HKEY CURRENT USER\Software\Policies

isolation full HKEY CURRENT USER\Software\Microsoft\Windows\
CurrentVersion\Policies

¢ HKEY LOCAL MACHINE.txt
isolation full HKEY LOCAL_ MACHINE\Software\Policies

isolation full HKEY LOCAL MACHINE\Software\Microsoft\Windows\
CurrentVersion\Policies

Another important thing to consider, when packaging an application, is its
integration with other applications, especially locally installed applications. Let's
say you virtualize Internet Explorer (IE). Using the package IE, you click on a
Word document hosted on a web page. That document will be downloaded into
Temporary Internet Files. When downloaded, IE will contact winword. exe and
request it to open the file that just got downloaded. The folder in this example is
what I call a hand-over-folder. Hand-over-folder is not a generally used term. I've
made it up myself. But it explains quite well what the folder is used for. The hand-
over-folder is of greatest importance when it comes to interaction between virtual
applications and natively installed ones. It can also be of importance when two
virtualized applications, not having been AppLinked, need to interact as well.

If the hand-over-folder is using the WriteCopy or Full isolation mode, then the
download in our Internet Explorer example will be sandboxed. Internet Explorer
only knows about the normal path to Temporary Internet Files, that is, c:\
Documents and Settings\User\Local Settings\Temporary Internet Files.
Virtualized IE has no idea that the correct physical location of the hand-over-folder is
actually C:\Documents and Settings\UserName\Application Data\Thinstall\
Internet Explorer\%$Internet Cache%. When Internet Explorer passes over the
path to winword. exe, it will be the wrong path. winword.exe will execute and try
to access the file, but in vain. It cannot find the file and you are left with an error
message stating the file cannot be accessed. The workaround is to make sure that

all hand-over-folders are using Merged as their isolation mode. That is to say, go to
the hand-over-folder inside the project folder and change the isolation mode in the
##Atributes. ini file to Merged.

[73]

Application Packaging

Virtualizing Internet Explorer 6

ThinApp can virtualize any version of Internet Explorer. Virtualizing Internet
Explorer 6 (IE6) is a common use case for many companies. If you must migrate to
Internet Explorer 8 or you are about to migrate to Windows 7, virtualizing IE6 allows
you to continue supporting your legacy web applications. Being able to run multiple
versions of IE is a huge benefit. Most versions of Internet Explorer can be installed on
Windows XP or Windows 7, and are therefore captured using the normal capturing
process of ThinApp. Internet Explorer 6 cannot be captured using the normal
process. You could install and capture it on Windows 2000, but that version of IE6 is
very different from the one offered on Windows XP. In order to support virtualizing
the Windows XP version of Internet Explorer 6, Setup Capture has a template
describing necessary registry keys and files. You can capture Internet Explorer 6

by starting your Windows XP virtual machine, patching it to the level of Internet
Explorer 6 wanted, and then launching Setup Capture. Straight after the prescan,
before running the postscan, you'll find a button called Internet Explorer....

.iSetup Capture - Install Application

=

Install the Applica

Internet Explorer Entry Points

() Don't include an Internet Explarer entry point

el i arestlagn 3 () Include an entry poirt for the system-installed Intemet E splarer

postscan of the system) Thiz entry point will launch the Intemet Explorer version that's installed on the
gogtem, but will ztill run it inzide the virkual environment

'ou can minimize this
() Include an entry paint for a fully vitualized Intemet E zplorer
Far maximurm applicatic
application to a path w
example, uze an 8.3 DI
Learn more.

Thiz entry point will include all the Internet Explorer B filez in the wirtual package.
Thiz option iz only active when capturing on a Windows XP ingtance with
Internet Explarar 6 inztalled natively

If the installer needs to [] l l Cancel
will restart after rebooti

take any configuration changes to the application that you want to

apply to all users, Irternet Explorer...

Find the best practices for wirtualizing thiz application:
Whdware Thindpp Cormmmunity

< Back][Postzcan » l

[74]

Chapter 2

The third option, Include an entry point for a fully virtualized Internet Explorer, is
only available when running Setup Capture on Windows XP with Internet Explorer
6 installed. Choosing the third option will harvest IE6 from the operating system,
creating a project folder containing everything needed to virtualize IE6. Since Setup
Capture is still doing its normal snapshotting you can install Java, Flash, or other
components that you want to include in your Internet Explorer 6 package. Internet
Explorer 6 packaged with ThinApp runs perfectly on Windows 7. The second option,
Include an entry point for the system-installed Internet Explorer, will simply
create an entry point using the native Internet Explorer as source. This option is very
handy when capturing a specific runtime of, for example, Java. Launching the native
Internet Explorer within the package will save you from packaging Internet Explorer,
saving you from having to maintain and patch two Internet Explorer instances.

Being able to virtualize many variations and versions of browsers is a very powerful
feature of ThinApp. But how can we tell the end users which browser to launch for
which web application? Your answer is ThinDirect. ThinDirect is a browser helper
you add to your local Internet Explorer instance. ThinDirect will monitor URLs
accessed by the user and automatically redirect the user to the correct browser.
ThinDirect supports redirecting to any virtualized browser, such as Chrome, Mozilla
Firefox, Safari, and many more, from Internet Explorer. If you redirect to another
Internet Explorer instance, ThinDirect's logic is still active so you can force the users
to only be able to access certain URLs within a packaged Internet Explorer. When
the user tries to access a URL not handled by the package, the user will be redirected
back to the native browser.

There are two main methods of deploying the ThinDirect functionality. They are
as follows:

* Centrally deploying ThinDirect.msi and managing it by using GPO

* Deploying by using the MSI wrapped package, managed with local
configuration files

Nothing stops you from using ThinDirect .msi with local configuration files or
vice versa. If your project folder contains a ThinDirect. txt file, then the ThinApp
build process will automatically include ThinDirect in the MSI it generates. This
means that the ThinDirect browser helper is installed during the deployment of the
ThinApp package. The format of the ThinDirect . txt files is very straightforward.
You specify the entry point and the URL filter you want to ThinDirect.

[VirtIE6.exe]

wWWw.saveie6 .com

[75]

Application Packaging

When deploying the package, the ThinDirect . txt file will get copied onto the
machine and its name will be changed to the entry point name. The value between

[1 will be replaced with the path to the entry point. Keep in mind that the ThinDirect
browser helper has to be installed machine-wide, that is, installed by a user having
local admin privileges.

- . v| /% ThinApp » Captures b Internet Explorer6 » VirtlEG »
_|| Package - Notepad @u
File Edit Format View Help Organize + = Open New folder
;optionalappLinks=plugins'¥. exe = -
;Requw‘redAppL'inks=€\server\share*.exe %t Favorites Name Date modified
virtualbrives=brive=c, Serial=c8896ecH g SafppData% 7/23/2010 1011 AM
svirtualbrives=Drive=a, Serial=0000008§ Bl Desktop : |
VirtualComputerName=LOCALHOST %Commen AppData% 2010 10:11 AM
&4 Downloads
o o 11 AN
Ansicodepage=1252 | Recent Places eDesktop¥ /2010 10:11 AM
LocaleIdentifier-1033 Favorites% 2010 10:11 AM
; If you have problems running a 32 bi 5 Libraries %Local AppData% /2010 10:11 AM
i WowE4=0 B Documents %Personal% 3/2010 10:11 AM
QualityReportingEnabled=1 & Music %Program Files Common% 3/2010 10:11 AM
@
[virtIEG. exe] &) Pictures YaProgramFilesDirs 2010 10:11 AM
Source=¥ProgramrilesDir¥\Internet Expl) S%Programs 201010:11 AM
ReadonlyData=bin‘Package.ro.tvr B videos
7o3en (o) L. AN
%SendTo% 201010:11 AM
[cmd. exe] . , r 11 AN
Zour ce:%syg:emsystem%\cmd Lexe "% Homegroup YaSystemRoot¥ 3/201010:11 AM
[S)hOFE%UEﬂ:"I rtIe6. exe TeSystemSystem o 201010:11 AM
isabled= - ;
[regedit. exe] /8 Computer bin 2012 9:43 PM
Source=%SystemRoot%\regedit. exe = SUpEOIE 22T, AN
Shortcut:\-"i rtIEf. exe &m‘ Network build.bat 5/13/2010 9:59 AM
Disabled-1 [HKEY_CURRENT_USER txt 5/13/2010 9:59 AM
| HKEY_LOCAL_MACHINE.txt /2372010 3:58 PM
4 m | HKEY_USERS.bet 5/13/2010 9:59 AM
£ | Package.ini 6/17/2012 9:42 PM
| ThinDirect. et 6/17/2012 9:42 PM
| ThinDirect - Notepad =nECR =<
File Edit Format View Help
Lines beginning with # are comments and are not included |

Example: Redirect all URLs (http+https) pages on server.com to this browser
server.com

Example: Redirect all URLs on server.com that start with FOLDERL/FOLDER2
server.com/FOLDERL/FOLDER2¥

R R R R TR

Example: Redirect all .jsp pages on server.com to this browser
server.com/*. jsp

[virtIEG. exe]
www. saveied. com

The previous screenshot shows a project folder with ThinDirect activated.
ThinDirect. txt is not needed when using GPO to manage ThinDirect.

You can turn off the virtual Internet Explorer package, redirecting back to the
native browser, by adding the following pPackage. ini parameter.

[BuildOptions]
ThinDirectWhitelistOnly=0

[76]

Chapter 2

The ThinDirect URL filter supports wildcards. You can specify the filter in either
the blacklist or whitelist format, that is, redirect everything but this specific URL.

[VirtIE6.exe]
wWWw.saveie6 .com

www .google. com

The previous example redirects the URLs www. saveie6.com and www.google.com to
the packaged browser's entry point named VirtIE6.exe.

[VirtIE6.exe]
https: //

The previous example redirects all URLs using the HTTPS protocol.

[VirtIE6.exe]

-WwWw.saveieé6.com
*

The previous example redirects everything but www. saveie6.com, which will be
handled by the native browser.

The recommended ThinApp capture
process

The most important thing to understand about your packaging process is that it is a
well-defined process that helps you package many applications successfully. Your
process may vary but I want to share mine for your reference.

1. Use virtual machines and virtual machine snapshots to keep a repository of
the various environments. Choose the environment suitable for the package
you want to create. Remember that the starting point will dictate the outcome
of your packaging process.

2. Launch the application before running the postscan snapshot. You must
make sure the application works as expected and you should customize it to
fit your environment. Many applications make a lot of changes to the system
on first launch, which are often important to capture. If the application
registers its license to the machine in the during its first launch, then you
should of course not launch it.

3. Talways use WriteCopy as my default filesystem isolation mode. This way
I know that I will sandbox everything that the application is modifying. I
never activate MSI or compression. At this point they only slow down my
build process.

[77]

Application Packaging

4. Allow Setup Capture to build your project and while the application is
still natively installed, launch your newly compiled package. Most
executions, where the application is locally installed, succeed. If it fails,
it is most likely due to one of the two things. Either something is wrong
with your entry point or the ThinApp runtime cannot handle the application.
If you suspect it's the runtime, then there is not much you can do. There
might be workarounds available, for example, loading components outside
the virtual environment, but it is not very likely. The best thing to do is to
have VMware support have a look at it.

5. Shut down the application and investigate the sandbox. Make sure that the
sandbox is as small as possible. Try deleting the sandbox. If denied, there
is something keeping the virtual environment from cleanly shutting down.
Investigate what it is and make sure the package cleanly shuts down when
the user exits the main application.

Copy the project folder and package to a network share.

Test run on a clean machine. Use the application to the best of your
ability. Most of the times you are not a user of the application, but you
can hopefully create something, save it, print it, start the built-in help,
and try to open something.

8. If everything looks good, create a copy of your project folder and start to
clean up the project folder. A good package is as small as possible. Get rid
of the installer cache, temp files, and whatever else you can find. If you get
a little carried away, you can always revert to your backup copy.

9. Create the production version, changing the default isolation mode if needed,
and activate MSI if that's the method used for deployment.

10. Ask the application owner to test run the application before sending it
through to the User Acceptance Test (UAT). I prefer to have my project
folder on a separate share and copy the package to a separate UAT share
for testing, by someone other than me. Make sure no one can tamper with
the project folder.

11. If I must change something in the package, I will always make a copy of
my project folder and give it a new version number. This way I can always
revert my changes. I tend to always change the sandbox name to include my
package version. This way I'm guaranteed that a new and fresh sandbox is
used. The versioning is shown in the following screenshot:

[78]

Chapter 2

File Edit ‘iew Fawvoribes Tools Help

eBack - l\) @ ,OSearch) Folders -

address |23 2\ Thindpp\Packaging

— Mame - Size | Type
File and Folder Tasks W2 I Application &.1 File Folder
Ea Make a new Folder =) application &.2 File Folder
) Application &.3 File Folder
@ Publish this Folder to the =) Application &.4 File: Folder

Weh

It's important to keep different versions of your project folders. You can
delete old versions when you have verified the functionality of the new
version, and you know you do not need to revert to an older version.

' Package - Notepad
File Edit Format Yiew Help

———————— General PUrpose Parameters ——-———-————-—
SandbeName =application a.l
ImventoryMame=application A

The previous screenshot shows the package. ini file from the first version
of the package.

[C' Package - Notepad
File Edit Formak Wiew Help

———————— General PUrpoOse Parameters -—-—-—-—-———-—-—-—
SandbeName =application A.2
Inventoryname=application a

My second version of the package uses a different sandbox name. Changing
the sandbox name to reflect your project folder version guarantees that no
old settings from the previous test runs will conflict with your changes.

12. During each step of my packaging process I document the process. Each new
version gets documented based on what changes are made and why.

[79]

Application Packaging

Some packaging tips
Over the years I've collected a couple of tips and tricks when performing packaging.
The following is a collection of the most important and frequently used ones.

32-bit versus 64-bit

The easiest method of creating a ThinApp package is to always capture it on the same
operating system as the package will be used on. But this is not always possible. There
are many reasons why you would want your package to support multiple operating
systems, and in those cases you must capture it on the lowest common denominator.

A 32-bit application captured on a 32-bit operating system, running in a 64-bit
environment, is a special kind of beast. The most common reason for trouble is the

fact that the Program Files folder change names. When a 32-bit application refers to
$ProgramFiles$, the OS will provide C:\Program Files (x86) as the path. But still
a 32-bit application can access the C: \Program Files folder. Let's say the application
uses XML files and . ini files for configuration. These files may include a path similar
to C:\Program Files\ApplicationFolder\MyImportant.dll.In your projectfolder,
the application folder is located in $ProgramFilesDir%\ApplicationFolder. When
executing the package on a 64-bit environment, the application folder will therefore

be presented as located in C: \Program Files (x86)\ApplicationFolder. Thisis

all well except for the hardcoded XML and . ini files. They still point to C: \Program
Files, which will be the 64-bit version of Program Files, and there the application
will not find its required components. You have similar behavior within the registry.
Sometimes, activating the wowé4 parameter in Package . ini will help you. But far from
every time.

A much safer method is to capture the application being installed into a static path,
for example, C: \ApplicationFolder. This path will never change and therefore
most applications will run on both 32-bit and 64-bit operating systems. When
working with 64 bit, make sure no 16-bit code is used by the application. A 64-bit
operating system cannot handle 16-bit code, no matter if it's packaged with ThinApp
or not. If you can successfully install the application on a 64-bit OS, try capturing

it on a 64-bit OS. If you still need one package supporting both 32-bit and 64-bit
environments, compare the project folder from a 32-bit OS with the one captured

on a 64-bit OS. This should help you to identify differences and hopefully be able to
merge it all into one single package. A VBScript can be used to alter registry keys or
static configuration files depending on which OS the package runs on. Learn more on
VBScript later in this chapter.

[80]

Chapter 2

Services

If you capture an application installing a service, make sure you shut down the
service before running the post-installation snapshot. This way you are guaranteed
that the service doesn't lock files keeping the capturing process from accessing them.

Auto update

You should make sure to disable all the applications' built-in auto update
functionality. Auto update often runs in the background keeping the virtual
environment running even though the user shuts down the main application. If an
update is downloaded, it is downloaded and applied into the sandbox. This will
bloat the sandbox. As a packager you should be in charge of which version is in
production and when. This should not be an auto update feature.

Save your project folders

Always save your project folders! You will always find a reason to return to your old
project folders and change some things in order to create a new version of a package.
And as Murphy's law dictates, if you capture the application from scratch and follow
all your detailed documentation, you will end up with a broken package. I store all
my project folders on a network share that is protected by a backup. You could zip
the old project folders to preserve space.

Make sure you investigate the sandbox

When the application is captured and installed, I always run my newly built
package. This way I can very quickly investigate the sandbox and see if something
is bloating it. I can then try and delete the sandbox contents. If this doesn't work,
something is keeping the virtual environment from shutting down cleanly.

This should be dealt with. Using Process Explorer from Sysinternals, available
athttp://technet.microsoft.com/en-US/sysinternals, is probably the
easiest method to find out what is keeping the sandbox locked. Simply run

the Process Explorer and search for .Rw. .RW is part of the registry filenames

and is always in use by the process keeping the virtual environment open.

[81]

Application Packaging

When capturing, make sure you are
capturing!

This means that on your capturing machine, while performing the capturing process,
you shouldn't use the environment to browse to Facebook . com or download a

cool tool you will try out later. Everything you do on the machine will pollute

your project folder. It may be boring to look at the installation wizard and not do
anything, but that is the only way to make sure nothing goes wrong. Some error
messages may flash by.

Make sure your application is 100 percent
natively installed

You cannot expect your ThinApp package to run perfectly if the native installation
doesn't run perfectly. Before you start to troubleshoot your package, verify the full
functionality of the installation you captured. Troubleshooting a ThinApp package
created on a machine where the native installation wasn't running is a guaranteed
waste of time. It will be close to impossible to fix it.

Never start with AppLink

If you plan to create a package using AppLink, capture everything in one big
package first. This way you can verify the functionality and integration first.
If there are any issues, it's much easier to troubleshoot one single package
than multiple packages using AppLink.

VB Scripting

When deploying an application using legacy methods, it is possible to customize
the application upon installation. This is not possible with a ThinApp package
because you can never actually install the application. You can simply execute

the application. So for ThinApp to support customization of a package, there is a
VBScript engine built into the runtime. Using VB Scripting built into your packages
offers great flexibility. Virtually anything can be scripted. The VBScript can interact
with both the virtual and the physical environment. Many times VBScripts are
used to change the package upon launch, for example, reading the version of the
operating system that the package is currently executing on, and changing the
package content.

[82]

Chapter 2

Many customers use VBScript for protection. If you do not have an Active Directory
you can create your own logic as a VBScript file and if not fulfilled, this shuts

down the package. You can add the VBScript functionality simply by copying your
script into the root of your project folder and hitting build.bat. The name of your
VBScript file can be anything, but it must end with .vbs. You can have multiple
scripts in the root of the project folder, but the execution order will then depend on
the name of the scripts. It's much better to only have one VBScript present in the root
of the project folder. If you want to call on other scripts you can do so from within
your main VBScript.

ThinApp supports four different callback functions when the VBScript file gets
executed. They are as follows:

®* OnFirstSandboxOwner

This is the first thing that happens when a user launches an entry point.
Before the source of the entry point is launched, VBScript will execute this
code. The onFirstSandboxOwner function runs only once per lock of the
sandbox. So if you have packaged a suite of applications, for example,
Microsoft Office, the onFirstSandboxOwner function will run when
Excel is started, but not when Word is launched if Excel is left running.

® OnFirstParentStart

This function executes every time a parent process is launched. Using
the previous example with MS Office, launching Excel will run the
code. Launching Word while Excel is still running will launch the
code one more time.

® OnFirstParentExit
This code gets executed on every parent process exit. It launches when
you shut down Excel and it runs one more time when you exit Word.

® OnLastProcessExit

This is the last thing that happens before the virtual environment is closed
down and the sandbox is unlocked. You exit Word, nothing happens, but
when you exit Excel the script is called.

[83]

Application Packaging

-
Example scripts
Function OnFirstSandboxOwner
msgbox "Hello World!™"
End Function
This script will display Hello World! when you launch the first process.
. Function OnFirstSandboxOwner
% msgbox "Hello World!"
~ End Function
msgbox "Hello again!™"

This script will display Hello World! when the first parent is launched. It
will display Hello again! for all the parent or child processes launched.
If you test run the previous script, you will notice that the part of

the script that isn't within a function will execute first. Even before
OnFirstSandboxOwner.

ThinApp uses its own built-in script engine. It supports most VBScript commands
but not all. WSCRIPT. <commands> is not supported. ThinApp has added the
following extra commands since a normal VBScript doesn't understand a

virtual environment:

® AddForcedVirtualLoadPath

This tells the ThinApp runtime to handle all the DLLs in the location as
virtual, even when they are not located within the virtual environment.

® ExitProcess

This will quit the current process. A use case example would be to protect
the package from unauthorized usage. That means if something is not
fulfilled, run ExitProcess. You can add exit codes if needed.

Example: ExitProcess 0
This provides exit code 0, that is, no errors.

* ExpandPath

ExpandPath tells the ThinApp runtime to expand folder macros. When
using VBScript, it is important to realize that system variables and folder
macros are not the same. Use ExpandPath to convert a folder macro into
a system format.

[84]

Chapter 2

ExecuteExternalProcess

This will run a certain process outside the virtual environment. This will
allow you to manipulate the physical environment from your script. Bear in
mind that the package, and therefore also the script, executes in the context
of the user.

ExecuteVirtualProcess

This is the same as ExecuteExternalProcess, but runs within the virtual
environment instead.

GetBuildOption

This is a command to get the Package. ini file's [BuildOptions]
parameters. You can add your own parameters to Package. ini and access
them using GetBuildOptions.

GetFileVersionValue

This returns the version information about a file.

GetCommandLine

This gets the command line parameter that is passed to an application.

GetCurrentProcessName

This returns the full virtual path to a process.

GetOSVersion

This returns the operating system version.

GetEnvironmentVariable

This fetches environment variables into the script.

RemoveSandboxOnExit

This will delete the sandbox content upon exit.

SetEnvironmentVariable

This specifies a value to an environment variable.

SetFileSystemIsolation

Normally, you need to rebuild your project folder if you want to change the
isolation mode for a location. Using SetFileSystemIsolation will allow
you to specify the isolation mode on the filesystem via a script.

[85]

Application Packaging

® SetRegistryIsolation

This is the equivalent of setFileSystemIsolation but for the registry.
®* WaitForProcess

This waits until a certain process ends. The process can come from either
ExecuteExternalProcess Or ExecuteVirtualProcess.

The ThinApp manual provides more detailed information with example
_ scripts. For the online version, please visit http://pubs.vmware.
com/thinapp4/help/ or download the PDF version found at
o http://www.vmware.com/support/pubs/thinapp pubs.html.
The ThinApp blog contains a lot of VBScript details as well, http://
blogs.vmware.com/thinapp/scripts

Packaging applications with
dependencies

There are three kinds of application dependencies as I see it:

* Dependencies on runtimes such as Java or Flash
* Dependencies on locally installed applications

* Dependencies on another virtualized application, for example,
packaged Internet Explorer integrates with packaged Adobe Reader

Dependencies on runtimes

When it comes to dependencies on runtimes, there are different strategies you can
choose for your deployment methods. My favorite, for most of the environments,
is having the latest, greatest runtime version locally installed. Most of your
applications can use this version and the ThinApp packages can make use

of natively installed components.

I tend to package together only the application that requires a really old version of
the runtime with its dependencies. Now I have one single self-contained package
including both the application and its dependency.

If you have a couple of applications requiring the same special version of a runtime,
I would use AppLink. I package all the applications separately and create another
package including only the dependency. This way I am free to maintain application
packages without having to touch the runtime package.

[86]

Chapter 2

Any variations of previously mentioned instances are of course just as valid.
ThinApp is a smorgasbord of features and is very flexible in its implementation.
You should choose whichever method works best in your environment. The goal
is to create the easiest possible environment to maintain. Is it easier to maintain a
certain component locally? Then by all means, deploy it locally.

If you want to create a package without its dependency, your capturing machine
must have the runtime locally installed before running Setup Capture. If you
plan to AppLink two packages, the easiest method is to run Setup Capture,
capture the installation of the runtime, and while the runtime is still locally
installed run Setup Capture again, capturing the application. This way you
know that the application was captured using the settings of your runtime
package. If you have many applications requiring a certain runtime as AppLink,
it's wise to keep a virtual machine snapshot of the installation of your runtime,
which you can use when capturing the applications.

Dependencies on locally installed
applications

When you want a package to integrate with a natively installed application, there

are a couple of things to keep in mind. It all depends on how the native application
behaves when called from the virtualized environment. Some applications do not
allow multiple instances of themselves loaded at the same time. When already running
and called upon again, the process will simply create a new window within the
already running process. If this is the case, you must make sure that any hand-over-
folders are using the Merged isolation mode. The hand-over-folder is the location
used to pass files between applications. If you are not using Merged, the content will
be sandboxed and the path, passed from the virtualized application to the native one
will be wrong, and will not contain the files. The risk with packaging applications
integrated to native ones is inconsistent behavior. If the application is already running,
it will be loaded inside the virtual environment when called upon (child processes

are by default launched within the virtual environment) and therefore have access

to the hand-over-folder irrespective of whether it's sandboxed or not. But if the
application is already running, it will fail to find the files if they are being sandboxed.
Sometimes the native application will be confused when launched inside the virtual
environment and it is common to see MSI's self-repair kick in. A common and effective
solution to the problem of integrating with a locally installed application is to make
sure that the native application never runs within the virtual environment. There

are different ways a process can be called upon. Using COM is one, and its setting,
VirtualizeExternalOutOfProcessCOM, was discussed in The Package.ini file section
of this chapter. ChildProcessEnvironmentExceptions handles the other method of
calling the process and most of the times you will use both together.

[87]

Application Packaging

[BuildOptions]

VirtualizeExternalOutOfProcessCOM=0
ChildProcessEnvironmentExceptions=WINWORD.EXE; EXCEL.EXE
ChildProcessEnvironmentDefault=Virtual

This example will always run Wwinword.exe and Excel.exe externally from the
virtual environment. ChildProcessEnvironmentDefault=Virtual is not really
needed. The virtual parameter is the default behavior of the ThinApp runtime.
I tend to include it in Package. ini to make it easier to read.

Dependencies on another virtualized

application

If your package has dependencies to other packaged applications, AppLink is the
easiest method for integrating them. But sometimes registering the two packages

on the machine is enough for the integration to work. With the help of the previous
method, keeping a native application external from the virtual environment, you can
make sure that you do not run a ThinApp package within another ThinApp package.
It usually works, but is not recommended. AppLinking two packages together will
allow for 100 percent integration. Both applications see each other as locally installed
on the same machine.

Summary

In this chapter you have learned the packaging process. You have also learned about
virtualizing Internet Explorer and using ThinDirect. We have discussed the defaults
in Package. ini and some best packaging practices. The next chapter will discuss
how to deploy packages to your end users.

[88]

Deployment of ThinApp
Packages

In this chapter you will learn about the different methods of deploying ThinApp
packages. The previous chapter taught you how to create the package. Now we
need to get that package to our end users. In this chapter you'll learn about:

* Deploying ThinApp packages using MSI and traditional deployment tools
* How to register packages using streaming
* Using alternative methods for deployment

* Using VMware Horizon Application Manager to manage your
ThinApp packages

* How to use VMware View Manager to entitle ThinApps to desktops

Different deployment scenarios

There are many different methods for deploying ThinApp packages. All of these
methods can happily coexist and one doesn't rule out another. There are two main
methods, local deployment and streaming,.

Local deployment means the packages live on the client's hard drive. The users can
use the virtualized application without being connected to the corporate network.
One obvious benefit is that you will be able to use the application offline and don't
have to depend on the network to be up and running. Another benefit is that the
performance of your virtual application doesn't depend on the performance of the
network. The downside is that you need to be in touch with your clients. You must
get those packages copied to your clients. When a new version of the package is
available you'll have to deploy the update to all of your clients again.

Deployment of ThinApp Packages

Streaming means that the packages reside on a network share. The only
infrastructure required is a Microsoft Windows file server. You don't have to install
and maintain any server component. Your clients can execute the packages over the
network, downloading only the needed blocks. The benefits of this method are that
you don't need to deploy anything to your clients and that it's a dead simple update
mechanism. The downside is that you can't use the application offline. Streaming
requires a constant connection to your streaming network share.

One of the greatest ThinApp features is that both methods are supported using
the same package. There's no need to create a special version of your package
simply because you want to stream it or use a local deployment method. This,
combined with the portability of ThinApp packages, offers a truly unique
flexibility and ease of management.

Using streaming deployment

Streaming a ThinApp package means the package is hosted on the network and
the clients access the packaged application over the network. The application is
executed on the local client. So ThinApp streaming is nothing like Server Based
Computing (SBC) where the word streaming is often being used as well. In SBC,
the execution of the application happens on the server backend and only screen
updates are sent to the clients. Commonly used Server Based Computing systems
include Citrix XenApp and Microsoft Terminal Server/RDS.

When a user clicks on a ThinApp package, the ThinApp runtime is downloaded to
the client in whole. The ThinApp runtime is approximately 600 KB so this happens
very quickly. When downloaded, the runtime executes and creates the awareness of
the virtual environment. It is not like the whole virtual environment is downloaded,
but the runtime makes sure it loads the filesystem database and virtual registry.
Then the source of the entry point is executed. What happens later is all up to the
source executable. Whatever parts are requested by the application will be pulled
down over the network. The ThinApp package stores the filesystem in a structured
manner and keeps track of the blocks that contain their respective data. This allows
for true streaming, only downloading the requested blocks.

[90]

Chapter 3

Because a Server Based Computing implementation requires considerable
infrastructure, it's understandable if you would like to use ThinApp as a
replacement. Before you can make the decision to replace your SBC implementation
with ThinApp, you must first investigate why Server Based Computing is being
used. There are two reasons to use SBC. The first situation that would require a SBC
solution is when you have the combination of a poor bandwidth or high latency
wide area network (WAN) and an application that consumes a lot of bandwidth or
requires a low latency connection to backend servers. In this case, ThinApp will not
be able to replace your SBC infrastructure. ThinApp Streaming will download the
binaries to the local client, executing the application locally and will therefore be
faced with the same WAN connection constraints as a locally installed application. In
this case, ThinApp can complement your SBC implementation rather than replacing
it. Using Server Based Computing together with ThinApp, you will have much less
application conflicts and therefore fewer server silos. Not installing applications
locally will keep your SBC infrastructure clean, stable, and obviously easier to
maintain. Approximately 30 percent of all ThinApp implementations are ThinApp
being used to enhance Server Based Computing implementations, most of them
being Citrix XenApp implementations.

If the reason for using SBC is that you don't have to deploy applications, then
ThinApp is often a very valid option. There are many benefits to executing the
application locally rather than executing it centrally on a server. Having local
access to all client devices is one big benefit.

The only infrastructure required for ThinApp streaming is a plain old Windows

file share. You place your packages on a file share, point your users to the package,
and that's it. How to point your users to the package will be discussed in depth

in the Using thinreg.exe to register your applications section later in this chapter. It is
recommended to have at least a 100 Mbit/s local area network (LAN) connection

to the file share, but I would recommend 1000 Mbit/s. The connection to the file
share must be of low latency and reliable. If you lose the connection to the file share,
it's similar to losing the hard drive from the application's point of view. No Windows
application is written to cope with the loss of the hard drive during execution, so

the application will simply crash and burn when it requests more bits to be loaded.

[91]

Deployment of ThinApp Packages

For high availability (HA), Microsoft Distributed File System (DFS) is often used.
DEFS synchronizes the content of a file share between many file servers. This way,
your users will still have access to the packages even if one file server is down.
Another benefit of using DFS is that the namespace is shared among all servers. This
way you can refer to a package (using \ \DomainName\dfsroot\PathToPackage) in
your login script and the users will always be connected to the closest DFS server.

Users should have read and execute permissions on the network share. Only the
administrators should have the permission to modify on the share. You should
make sure that the client and server antivirus is disabled for on-access scanning
of your packages. If your antivirus scans the package, the whole package will be
downloaded over the network and you will lose the block-by-block scanning

as a streaming functionality for the ThinApp runtime.

The size of your packages has very little to do with their actual performance

while streaming. Since only the requested blocks will be downloaded, a large
package doesn't necessarily mean slow performance or startup time. Most modern
applications will dynamically load the necessary files in order to present a GUI
(that is, Graphical User Interface) to the user and allow him or her to start using
the application. A legacy application may require 100 percent of itself in memory
before presenting a GUI, but luckily these applications are often quite small in size.

It's difficult to offer reference architecture and best practices when it comes to
streaming as there are so many variables to take into account. Packages of the

same application can perform in many different ways. Things to look out for

are virtualized fonts and services being started upon launch of the package and
large files being copied into the sandbox. If possible, activate fonts on the native
client rather than virtualizing them. Loading many virtualized fonts can be time
consuming and will affect your package's launch time. Services are always a launch
time bottleneck. Often you can disable the auto start of services and your application
will happily launch and then start the service when needed. You can disable auto
start of services with the Package. ini parameter:

[BuildOptions]
AutoStartServices=0

[92]

Chapter 3

If large files are copied into the sandbox, it often means the files have to be copied
over the network to the sandbox. This will of course slow down performance. It
gets even worse if you store the sandbox on a network share as well. Then you are
hit by the network's performance twice. Try to clean up your project. When sizing
your file servers and network, it's important to benchmark your packages. You need
to investigate how much bandwidth is consumed when launching the package,
and you must have an idea of how many users might launch the application at
the same time. Having 100 packages and 1,000 users doesn't mean all users launch
all 100 packages at the same time. Hosting ThinApp packages is just like hosting
Excel or Word files for a file server. There is no real difference from a file serving
point of view. So whatever sizing logic you use for your Office documents should
also be valid here. You can't look at the size of the package or what the virtualized
application consumes in memory when launched, since these two variables have
no direct impact on streaming performance. A large memory footprint and a large
package may indicate that a lot of data is needed to execute the application, and
therefore it will consume a lot of bandwidth. That much is true, but streaming
performance relies just as much on the actual code of the application and things
such as which language it is written in and which compiler is used.

ThinApp Streaming will stream the application into memory only. The Windows
operating system might cache its memory to the disk, but besides that ThinApp
Streaming will never touch the disk. This is especially important in a virtual
desktop infrastructure (VDI) environment such as VMware View. When using
VD], application virtualization is more or less a must. You do not want application
entitlement to force a change of the user's disk space consumption. A cost efficient
VDI implementation uses a Golden Image, a parent disk containing the operating
system and common applications all users should have access to. A linked clone
disk keeps the user's unique data. This user unique disk should be kept as small as
possible for you to save money on an expensive storage area network (SAN). Being
able to entitle users to applications and streaming these applications into memory
means that very little, if anything, will be changed on the user's unique disk.

ThinApp Streaming is often used on Citrix XenApp servers as well. The fact that the
servers are kept clean and conflict free is of course appealing. Streaming means you
have just one instance of the package serving your whole XenApp infrastructure.
Replacing this package will update all your XenApp servers and users. Later in this
book, I'll describe how to update a streaming package in full production with no
downtime for the users.

Streaming is mostly used in VDI or Citrix XenApp/Terminal services environments.
You can very well stream to physical clients such as desktops or laptops, but it's

not as common. When it comes to physical clients, local deployment is often the
preferred method. The next section will cover local deployment.

[93]

Deployment of ThinApp Packages

Using MSI to distribute packages

When deploying a ThinApp package locally, the most common method is to use

the MSI format. That being said, you could very well just copy the package down to
the client's hard drive. ThinApp can generate an MSI wrapper around the package.
Any deployment tool supporting the MSI format can use the MSI file. You can
activate creation of an MSI file by deleting the semicolon in front of the MSIFilename
parameter in Package.ini and running build.bat.

There are two different MSI file formats that you can create. The first alternative is
a self-contained MSI file, containing both the MSI logic and the actual package files
(entry points and the data container). The second alternative keeps the package files
outside the MSI file. If you choose to have the package files outside the MSI file, the
MSI file and the package files must all be located in the same folder. MSIStreaming
is the parameter defining which MSI format you'll compile. MSIStreaming=0 will
create a self-contained MSI file and MSIStreaming=1 will keep the package files
externally from the MSI file.

eBack < d L’@} pSearch [{ Folders v

Address |2 2\ Thindppi¥Mware Thindpp 4.7.1 677178\ CapturesiMozila Firefox (3.5.2)\bin v| Go
Mame Size Type Date Modified

File and Folder Tasks @ mozila Firsfox 34,944 KB Appiication 7/2/2012 10:20 PM

.,j Make a new Falder ﬁ'anwlla Firefox (3.5.2) 14,684 KE Windows Installer P... 7/2/2012 10:20 FM

Q e ["’ Package - Notepad

[EBuildoptiaons]
j - MSI Paramefers -—--------- i
;Enable MsIFilename if you want to generate a windows Installer package.

Other Places

[Mozila Firefox (3.5.2) [mMsIFilename=mozilla Firefox (3.5.2).msi
sMsIManufacturer=vMware Inc.

My Documents sMSIProductversion=l. 0

[Shared Documents iMsIDefaultInstallallusers=1

- sMSIRequires] evatedPr'lv‘l'Iegl;es:l

g My Computer imsIInstalloirectory=mozilTa Firefox (3.5.2) (vmware Thinapp)

&) My Network Places sMSIProductCode={AS200259-C701-A136-6C62-8C5935820670}
sMSIUpgradeCode={824D%5C2-9F8E-B59D-DEOB-18817BESFD4 2 }

MSIStreaming=0

sMSICompressionType=Fast

smsIarpProductIicon=%Programrilespirgymozilla Firefoxyfirefox. exe, 0

Details

Using MSIStreaming=0 creates an MSI file containing the package file. The package
is always created whether you activated MSI or not. Note the differences in size
between the original package file and the MSI file. By default the content of the MSI
file is compressed.

[94]

Chapter 3

eBack = J l.ﬁ /':‘J Search = Falders v

Address |[5) 24 ThinappiWMware Thindpp 4.7.1 677178\ CapturesiMozilla Firefos (3.5, 2)\bin V| Go
Marme Size Type Date Modified

WMDziIIa Firefax 34,944 KB Application Filzjzolz 10:22 PM

ﬁlMDzilla Firefoux (3.5.2) 1,941 kB Windows Installer P, 7f2f2012 10:22 PM

File and Folder Tasks A

(22 Make a new folder
N Fublish this Folder ko the L _
2] e I Package - Notepad

Fil= Edit Format View Help

[Buildoptions]

e MSI Parameters —-—-—----—---

;Enable MSIFilename if you want to generate a windows Installer package.
MSIFilename=Mozilla Firefox (3.5.22.msi

sMSIManufacturer=vMware Inc

sMsIProductversion=1,0

smsIpefaultinstallallusers=1

sMsIReguireElevatedrrivileges=1

;MmsIInstallpirectory=MozilTa Firefox (3.5.2) (Wware Thinapp)
sMsSIProductCode={A5200259-C70l-A136-6C62-8C5935820679)
sMSIUpgradeCode={824D59C2-9F8E-E5SD-DEYE-18817BESFD4 2 1
MSIStreaming=1

;MSICompressionType=Fast
sMsIarpProductIcon=%ProgramFilespirgyMmozilla Firefoxifirefox.exe, 0

»

Other Places

) Mazila Firefox (3.5.2)
ﬂ My Docurnents

| Shared Documents
g My Computer

‘a Iy Metwork Places

Details

Using MsIStreaming=1 will not include the package files in the MSI and therefore
the MSI files are much smaller.

A ThinApp MSI file built using MSIStreaming=0 does not have the file size
limitation of 2 GB that traditional MSI files have. ThinApp developers have found a
clever way to store much more data in an MSI file while maintaining compatibility
with all existing deployment tools. This is mentioned in the following blog post:
http://blogs.vmware.com/thinapp/2010/03/vmware-thinapp-45-whats-new.
html. Ever since this special method of storing content within the MSI file was
implemented, it's not been possible to edit the MSI generated by ThinApp. If you do,
the file will become corrupted. In order to be able to customize the MSI file, you need
to apply your changes to the template.msi file found in the ThinApp utilities folder.
(template.msi is used when compiling your MSI file) or use MSIStreaming=1.

The MSI file that ThinApp generates will copy the package to your clients' hard
drives. The MSI file also includes the ThinApp tool called thinreg.exe. thinreg.
exe is used to register the package to provide the look and feel of a locally installed
application. thinreg.exe is launched as a custom action. thinreg. exe is such an
important tool that I have a whole section focusing on it later in this chapter.

[95]

Deployment of ThinApp Packages

There are quite a few Package.ini parameters related to MSIL. The defaults found in
Package.ini are as follows:

[BuildOptions]

i-------- MSI Parameters ----------

;EnableMSIFilename if you want to generate a Windows Installer
package.

;MSIFilename=Mozilla Firefox (3.5.2) .msi

Enable MSIFilename and the build process will generate an MSI file
containing your package. The MSI file is often used to deploy ThinApp
packages with the help of existing deployment tools such as Microsoft
SCCM or similar. The parameter also decides which name the generated
MSI will have.

;MSIManufacturer=VMware Inc.

This specifies the manufacturer property within your MSI. The default value
is the company name your capture machines' Windows is registered to.

;MSIProductVersion=1.0

MSIProductVersion is used to identify versions of your packages

deployed via MSL. If you create a new version and activate this parameter
with a higher value, the new MSI will be able to update existing deployments
of the package.

;MSIDefaultInstallAllUsers=1

This specifies if the MSI should be deployed on a machine-wide basis, for all
users, or on a per user basis. MSIDefaultInstallAllUsers=1 will deploy the
package machine wide, with the Program Files folder as the default location.
MSIDefaultInstallAllUsers=0 will deploy per user, with the user's profile
as the default location. MSIDefaultInstallAllUsers=2 will first try to deploy
machine wide but if not permitted it will revert to per user basis.

;MSIRequireElevatedPrivileges=1

This specifies if the MSI file will require elevated privileges or not. By default,
you will be prompted with a UAC prompt on systems supporting UAC.

[96]

Chapter 3

;MSIInstallDirectory=Mozilla Firefox (3.5.2) (VMware ThinApp)

This specifies the name of the folder created during deployment and where
the package will be placed.

;MSIProductCode={A52D0259-C701-A136-6C62-8C5935820679}

Globally unique identifier (GUID) is used to identify the package. ThinApp
will handle the creation of the product code automatically and most of the
times you can leave this parameter commented out.

;MSIUpgradeCOde:{824D99C2—9F8E—B59D—DB98—18817BE5FD42}

GUID which is used to identify the package to facilitate version control.
Using MSIProductCode together with MSTUpgradeCode allows updating
an existing package with a newer version. ThinApp handles upgrade code
automatically and you normally leave this parameter commented out.

;MSIStreaming=0

This specifies if ThinApp should include the package files (entry points and
the data container) in the MSI file or leave them external. ThinApp supports
MSI files larger than 2 GB, so normally you can keep all files within the

MSI. If you are using VMware View and View Manager to entitle ThinApp
packages to virtual desktops, you can use MSIStreaming=1. This will allow
you to choose within the View Manager if the package should be streamed or
be locally deployed to your virtual desktops. If you use the default value of
MSIStreaming=0, you can only choose to deploy the packages locally. When
using MSIStreaming=1 you must keep the MSI file, entry points, and the
data container together in the same folder.

;MSICompressionType=Fast

This is used to define whether you want to compress the contents of your
MSI file or not. Available parameters are None or Fast.

;MSIArpProductIcon=%ProgramFilesDir%\Mozilla Firefox\firefox.exe, 0

This specifies which icon should be used in Add or Remove Programs
in the Control Panel window. The parameter supports an index of icons
within a file.

[97]

Deployment of ThinApp Packages

Using VMware Horizon Application
Manager

VMware Horizon Application Manager is a universal services broker and
workspace. From Version 1.5, Horizon can entitle users to both Saa$ (that is,
Software as a Service) based applications and ThinApp packages. Horizon supports
a user-based entitlement system with device and location awareness. This means you
can entitle users to applications but with policies you can define when, from where,
and on which device an application can be used. Horizon Application Manager has
an agent you can deploy to all your Windows-based clients. With the help of this
agent, Horizon can deploy ThinApp packages. It is the Horizon Agent that verifies
whether you are entitled, based on policies, to run a certain application. Horizon
Agent Version 1.5 supports both streaming and local deployment of ThinApp
packages. You can specify which mode the agent should use during installation.

—Ioix

VMware Horizon Agent Configuration f"__ E

Please enter following paranmeters :

Service URL
fi

™ Download and run Thinapp packages from this machine.
If unchecked, Thinapp packages will run by directly streaming from the network share.

Caticel | < Back | MHest > I

During the installation of Horizon Agent you can decide if ThinApp packages
should be downloaded locally or streamed from a network share.

In order for Horizon to be able to manage a ThinApp package, the package must
include a couple of Package. ini parameters, as follows:

[BuildOptions]
InventoryIcon=%SystemSystem%\cmd.exe

[98]

Chapter 3

InventoryIcon will offer a suite icon if a project includes many entry points.
Instead of listing, for example, Winword.exe and Excel .exe as two separate
icons, in the Horizon Administration interface, both the entry points will be
grouped together using the icon specified using the Inventorylcon parameter.

jommmmm - Horizon Parameters ----------

AppID=genid

The AppID parameter tells the ThinApp build process to generate a GUID
used by Horizon to identify the package. The Horizon Application Manager
uses this GUID rather than the name of the package. This guarantees that the
packages are uniquely identified.

NotificationDLLs=HorizonPlugin.dll

This tells the package that it needs to communicate with the Horizon
Agent upon launch. The Horizon Agent verifies the package's policy
and communicates back to the ThinApp runtime whether it is allowed
to launch or not.

HorizonOrgUrl=http://www.test.com

This specifies the URL to your Horizon Service Portal. If the end user doesn't
have the Horizon Agent locally installed, the user will get a dialog box telling
them they need to install the agent. The dialog box presents a link to the
HorizonOrgUrl parameter to download the agent.

The two parameters that will activate Horizon Management in a ThinApp package
are AppID=genid and NotificationDLLs=HorizonPlugin.dll.If a package is built
with these parameters active, the package will not be able to run on a machine that
doesn't have the Horizon Agent installed. If the Horizon Agent is installed, the policy
must allow the end user to run the package. There are many methods to protect

your ThinApp packages from being used by unauthorized persons, for example,
Active Directory groups, VBScript, third-party tools such as Concept Software's
SoftwareKey available at http: //www. softwarekey. com, but using Horizon
Application Manager is probably the most feature-rich method.

Horizon is supported from Version 4.7 of ThinApp. With Version 4.7.2 of ThinApp

is the relink.exe tool was enhanced with the -h switch. Using -h will inject the
Horizon package. ini parameters into an existing package without the need to
rebuild the project. This is a very quick and convenient method to enable Horizon
support in your existing ThinApp packages. If your package has a separate data
container, make sure you run relink.exe using *.* to update all entry points and the
data container at the same time. This will allow for the same AppID GUID to be used
for all entry points as well as the data container

[99]

Deployment of ThinApp Packages

Using VMware View

VMware View is VMware's virtual desktop infrastructure product. The use of
virtual applications greatly enhances your VDI implementation. Using application
virtualization makes management easier and studies have shown much greater
return on investment compared to not using application virtualization. An optimal
VDI design makes use of floating pools (no user has their own dedicated desktop)
and Golden Images. Using a Golden Image means you have one image containing
all shared content such as operating system and applications used by all your users.
User unique information is stored either in the user's profile or on a user specific
linked clone disk. In order to minimize the usage of expensive SAN disk space, the
profile is often redirected to a network share using profile management tools. The
only variable left is the linked clone. In minimizing the size of the linked clone,
application virtualization is your best friend. Application entitlement and usage
will not have to alter the disk content.

View has built-in support for ThinApp entitlement. You can entitle packages to pools
of desktops or single desktops. In the View Manager you can't entitle on a per-user
basis. This is a limitation and one of the reasons many large implementations of the
View use thinreg.exe and login scripts to handle application entitlements instead.

The View Manager has two supported methods of entitling ThinApp packages:
local deployment and streaming. Local deployment will alter the users' unique disk
footprint and is therefore not preferred. The only reason I can see the need for using
local deployment is if you are going to use offline desktops. The current version of
VMware View (Version 5.1) has no logic for pulling down streaming applications
when checking out an offline desktop, and will therefore leave you with local
deployment as your only alternative for a true offline usage. Streaming is by far the
most preferred method in a VDI environment. The View Manager uses ThinApp
MSI files to entitle ThinApps. The View Manager depends on information stored

in the MSI file generated by ThinApp. So to be able to manage ThinApp packages
within the View Manager, you need to generate an MSI file. Using the MSIStreaming
parameter, you can change the behavior of the MSI file generated. MSIStreaming=1
creates the package in such a way that the View Administrator can choose to entitle
users with either streaming or local deployment of packages. If your packages

use MSIStreaming=0, only local deployment (called Full deployment in the View
Manager) will be available as an option. This is shown in the following screenshot:

[100]

Chapter 3

| Fovortes | oy [Soggented Stes = @] Web Shce Gallery = 8 Yihware Thinfipp Factoey
| By WMt o Adiicirston [B - () & > Dugev Sty Took= G

Using MSIStreaming=0 (package defaults) will only offer you local deployment
(Full) of packages in the View Manager. The streaming option is grayed out.

| Fovortes | 3y [Suggeted Stes v (@] Wel Shce Gallery = @] Vibware Thinfipp Factory
| By Wbt Vo it] BB @ e Sty Took~ @+
4 :

| cupnymame | PoolType | user Amsgrment |
Wi, flant Windows 7 (x8h) fios Aetomated Poci | Flaating
Windows 7 herieun Astomated ot

[101]

Deployment of ThinApp Packages

Using MSIStreaming=1 will give you the possibility of deploying the package either
as locally deployed (Full) or Streaming.

Make sure your View Manager has access to the ThinApp repository. View services
must be running with a user account that has at least read access to the repository.
ThinApp is bundled with the VMware View Premier license.

Using alternative media and methods

In order to use an application packaged with ThinApp, all you need access to is the
package. This gives you unique flexibility. There are many ways to provide access to
the package. You can store it on a USB key and give the USB key to your user. You
can use Dropbox or any other file sharing method to distribute the packages to the
end users. I'm not saying you should throw out any existing deployment tool you
may have in place. But you should consider using alternative methods if you don't
have an effective method of managing applications today. Let's say you have to
deploy an application to a couple of contractors. Simply create a Dropbox share, put
the application package on the share, invite all the contractors and you're done! No
deployment tool agent needs to be installed on the contractors' machines and so you
have not altered the contractors' machines in any way.

If you place your package on a USB key, you have your application with you
anywhere. It's handy to keep the sandbox on the same USB key so all the settings
follow with the package. You could specify SandboxPath=.,which would create

the sandbox in the same location as the package. But you don't need to maintain a
special version of the package having the sandboxPath= parameter. You can create
a folder called Thinstall next to the package and this will override any Package. ini
settings and be the location of your sandbox.

T My Computer o (=] @
",'

@k - () (T Deeah [rokders | [FE-

Address g My Computer

vl Ga
= KINGSTON (E:)

Mame

System Tasks Files Stored on This

View system information [5hared Documents
(LY Add or remove programs [C)User's Documents
@ Change a setting

Q (P D s [Fodas | [T

Address |Se* E:y

Hard Disk Drives

Marme: Size Type
@Mozilla Firefox 34,944 KB Application
ICThinstal File Folder

Other Places “eLocal Disk (C:) File and Folder Tasks

&3ty Network Places Devices with Remo
My Documents

D v j.av; Floppy (A1)

[Shared Documents 21.0VD Drive (D)

3 Control Panel SKINGSTON (E9)

Make 2 oew
& Thinstall

File Edit ‘iew Favorites Tools Help

@k - () (T O [Foldes [FE-

Address |22 Ex\Thinstal

Network Drives

Details e

Name Size | Type
Mozilla Firefox (3.5.2) File Folder

Z®shared Folders o...

My Computer
System Folder

File and Folder Tasks

[102]

Chapter 3

Creating a folder called Thinstall next to the package will override the sandbox
location. The previous screenshot shows the sandbox together with the package
on a USB key.

Using thinreg.exe to register your
applications

thinreg.exe is the tool used to register a package in order to give it the look and
feel of a locally-installed application. Registering a package will register file types,
protocols, and object types, create shortcuts and add the package to Add

or Remove Programs. You can run any application packaged using ThinApp by
simply clicking on an entry point, but running the application will not register
the application.

& Applications

File Edit Wiew Fawvorites Tools Help al

@Back - _J l-ﬁ pSearch [{ Folders v

Address |29 2\ ThinapplApplications

B

Bookl.xls

IS
Mame: Size Tvpe
File and Folder Tasks | 28] Microsaft Office Excel 2003.xe 363,365 KB Application

(29 Make a new folder
@ Publish this Folder ko the
Weh

Other Places

) Thindpp

My Documents
(3 Shared Documents
i My Computer
!:J Iy Mebwork Places

Details

& Applications o T WM 10:05 PM

[103]

Deployment of ThinApp Packages

Running Excel packaged with ThinApp does not register the .x1s file type.
The operating system does not know how to handle the Excel file.

- j ‘Windows cannot open this file:

File: Bookl.xls
To open this File, Windows needs to know what program created it Windows

can go online to look it up automatically, or wou can manually select Fram a list of
pragrams an your camputer,

What do wou want to do?

{(#) Use the Web service to find the appropriate program

() Select the program From a list

When the user double-clicks on the Book1.x1s file, they are presented with the not
so user-friendly dialog box shown in the previous screenshot.

You can register an application by running thinreg.exe and point it to the package.
When we use our previous Excel example, the code snippet will look as follows:

thinreg.exe "Z:\ThinApp\Applications\Microsoft Office Excel 2003.exe"

You can run thinreg.exe from a command prompt or a script. Often thinreg.

exe is called from a login script. When using a login script, your ThinApp packages
will be registered upon login. thinreg.exe is a standalone tool and can be copied to
any location. Many of the other tools in the ThinApp utilities folder are entry points
that require being stored next to the data container. Often, thinreg.exe is placed in
the NETLOGON share for easy access from within the login scripts. thinreg.exe is
updated two or three times a year, so I recommend not storing thinreg.exe on your
clients' hard drive. You can use a different version of thinreg.exe than the ones
with which your packages are built.

[104]

Chapter 3

= AEH|
Iy
L]

O Back ~ () ir p) ssarch Folders Elv

Address |23 Z:\ThindpplApplications “ a Go

Bookl.xls | Mame Size Type
File and Folder Tasks & [8]Microsaft Office Excel 2003.exe 363,365 KB Application

CAWINDOWS\system 32\cmd.exe

C:s>thinreg.exe "Z:\Thinfipp~Applications“\Hicrosoft O0ffice Excel 28083 .exe"'_

start

s r-. Applica

In the previous screenshot, thinreg. exe is placed in the root of C:.

= REE

Q Back ~ [) ir 7) ssarch Folders Elv

Eﬂj
Hl address (I3 Z:\ThindpplApplications h a Go
Bookl.xls Mame Size | Type

File and Folder Tasks A1 || Microsaft Office Excel 2003.exe 363,365 KB Application

C:\WINDOWS\system32\cmd.exe

IC:x>thinreg.exe "Z:“\Thinfipp~fApplications Hicrosoft Office Excel 2803_exe"
(HERN

r-. Appli

[105]

Deployment of ThinApp Packages

Notice that the icon changed on the Book1.x1s file after running thinreg.exe,
as shown in the previous screenshot.

[Internet) My Documents
Internet Explorer

Outlook Express 2 wWindows Catalag
& windows Update

\’ MsH
[@ Accessaries 3
Motepad [@ Games r

€| Microsoft Office Excel 2003

@ SetProgram Access and Defaults 3
ﬁl‘ E-mail

® Wwindaws Media Play @ Startup 3
@ Internet Explarer
,‘3 Windaws Messenger \. MEM ~
a
. @ Outlook Express Ll
[Tour Windows xP
o Remate Assistance Recycle Bin
B Files and Settings Trfl &) windows Media Player
wizard

3 wWindows Messenger

All Programs B “indows Movie Maker

ﬁ‘ Logoff (@] Turm off Computer

'4 start &)%) W 10:54pm
In the previous screenshot, notice that a shortcut has been created pointing to the
package. In this case, the package is still located on the network share. thinreg.exe
only registers the package - it doesn't copy the package locally.

¥ Add or Remove Programs E

%ﬂ Currently inskalled programs: [show updates Sort by
_l'.I.Hi

Change or 15 Microsoft Office Professional Edition 2003 (YMware ThinApp)

Remove
Bookl.xls Programs
Add Mew

Programs ﬁl Microsoft: Yisual C++ 2008 Redistributable - 86 9.0,30729.4145 Size 10.19MB

(& wrware Tools Size 32.69MB

Add/Remove
Windows
Components

@

Set Program
Access and
Defaults

"7 start B Addor

[106]

Chapter 3

By default when running thinreg.exe, Add or Remove Programs is updated.
The ThinApp packages are identified with (VMware ThinApp), since you may
already have the application natively installed.

thinreg.exe supports using wildcards. The following are a couple of examples
of running thinreg.exe:

* thinreg.exe \\ServerName\ShareName*.exe

This command will register any package located on the share.

* thinreg.exe \\ServerName\ShareName**.exe
thinreg.exe will register all the packages located one folder down
on the share.

* thinreg.exe \\ServerName\ShareName***.exe

thinreg.exe will register all the packages located two folders down
on the share.

thinreg.exe supports the PermittedGroups parameter in Package. ini. If the
user is not a member of the correct Active Directory group, then thinreg.exe
will not register the package. This is especially powerful when using thinreg.exe
with wildcards. You can have thinreg.exe scanning your whole ThinApp
repository, only registering the packages that the user is entitled to.

thinreg.exe has a couple of switches for customization. If you run thinreg.exe
without any switches, you will get the help file explaining all possible switches.

* /a or /allusers
This switch will register the package machine wide, that is, for all the users.
By default, thinreg.exe only registers the package for the current user.

* /k or /keepunauthorized or /keep

This will keep registrations of the packages that the user is no longer entitled
to use. Entitlement depends on the PermittedGroups parameter in the
Package. ini file. By default, thinreg.exe will unregister the packages

you are no longer entitled to.

* /g or /quiet

This switch tells thinreg.exe not to print information to the screen.

* /r or /reregister

The reregister switch will run registration on a package, even if the
package is already registered. Note that re-registering is more time
consuming than running a normal registration.

[107]

Deployment of ThinApp Packages

/u or /unregister or /uninstall

This is the switch to unregister a package. When unregistering a package,
the unregister VBScript stored in $AppData%\Thinstall\UnRegister is
used to revert the client's settings. If you are interested in learning what
registering a package actually does to your clients, you can reverse
engineer the unregister VBScripts.

/e or /exclude

This switch tells thinreg.exe what not to register. This can be both
folders and packages.

/f or /file

You can specify a file to pass thinreg.exe extra parameters/switches.
This is very handy if you want to update your thinreg.exe logic from
a central location without changing your login scripts.

/norelaunch

This switch will not allow thinreg.exe to re-launch using
elevated privileges.

/noarp

This switch will disable creation of an entry in the Add or Remove
Programs window in Control Panel.

/nodesktoprefresh

Using /nodesktoprefresh will not refresh the users desktop. If you

run multiple thinreg. exe parameters one after another in a login script,
the desktop will refresh after each thinreg.exe execution. This takes time
and can be irritating for the users since the screen appears to be flickering.
To avoid this issue, use this switch each time you call thinreg.exe except
the last time.

thinreg.exe is included in the MSI file generated by ThinApp. The obvious
difference between using thinreg.exe standalone and MSI is that MSI copies
the package to the local client's hard drive where as thinreg.exe doesn't. Both
the techniques will register the package. The thinreg. exe standalone is often
used when streaming your packages from a network share.

[108]

Chapter 3

Using thinreg.exe with a wildcard search on a large ThinApp repository will
take some time. You should make sure your login script runs in the background,
not blocking the user from getting access to his or her desktop. Many examples

of thinreg. exe login scripts can be found on the ThinApp blog, http://blogs.
vmware . com/thinapp/scripts. One alternative is to use the ThinApp SDK
(software development kit). The ThinApp SDK is freely available at the VMware
web page, http://communities.vmware.com/community/vmtn/developer/
forums/thinapp. Using the SDK will speed up registration significantly. thinreg.
exe must open the package file in order to investigate it, while the ThinApp SDK
can use APIs to investigate the package. Using the ThinApp SDK will require you
to distribute and load a DLL on all clients. An example registration script using the
SDK can be found at http://blogs.vmware.com/thinapp/2012/03/configuring-
the-thinapp-sdk-in-place-of-thinreg.html.

Summary

In this chapter you've learned the different methods of deploying ThinApp packages.
Hopefully you can appreciate the flexibility that ThinApp offers and choose the
deployment method(s) that best suit your environment. In the next chapter, you will
learn how to apply updates to existing projects.

[109]

Updating and Tweaking Your
ThinApp Project

In previous chapters you have learned about ThinApp basics; how to create a
package and how to deploy a package to your end users. Now, it's time to learn
how to maintain a package. An application's life cycle includes updating the
application to a new version or changing its settings. In this chapter you will
learn about the following topics:

* The most efficient update method for different update needs
* How to use the sbmerge. exe tool to update a project folder

* Different sandbox considerations when creating a new version of a package

Different categories of updates

There are different categories of updates. Different update methods are preferred for
different update categories. That said, a certain update mechanism may be the most
efficient in a certain update scenario but can very well still be used in another. The
different update categories are:

* Major updates (that is, full version updates): This update category is
typically a major product version update. For example, Microsoft Office
2007 was updated to Microsoft Office 2010.

* Minor updates (typically point releases or service packs): This category
typically features updates and bug fixes within a specific full version. For
example, updating from Adobe Acrobat Reader 8.0 to 8.1. Both are within
the full version of 8.

Updating and Tweaking Your ThinApp Project

* Patching and hotfixes: These updates are typically smaller in size than minor
updates/point releases but are essentially within the same update category.

* Configuration changes: Configuration changes are typically a very small
number of changes. These are often only a couple of registry changes or a
change to a . ini or configuration file.

* ThinApp runtime updates: There is rarely any need to update the ThinApp
runtime within a package that is deployed and fully functional. The only
reason to update the runtime would be to inject new operating system
support or to update the license key in an existing package.

Recapturing an application

One update mechanism is of course to create a completely new capture of the
application. I would recommend using this method only to capture a major update
of an application or if you are using Horizon Application Manager. (More on

the Horizon part in a second). When performing a full new capture, all default
settings within your project folder will be different from the older version. Any
customization you made to your old project has to be re-applied to the new project
folder. If you want the new package to re-use the existing sandbox, that is, preserve
the users' settings, you must make sure to change the SandboxName parameter in
the Package. ini file, using the same name as the old package. Recapture of an
application is recommended when packaging a whole new version. Upgrading from
Microsoft Office 2007 to Microsoft Office 2010 is a good example of when we want
to perform a full recapture. Conventionally, the major upgrade of an application
such as Microsoft Office is often a case where an administrator uninstalls the old
version before installing the new version due to the number of complexities within
the application and the upgrade process. Taking this into account, I recommend
performing a full recapture of the application. Other common package.ini
settings to consider when recapturing an application are MSIProductCode and
MSIUpgradeCode. These two parameters will allow for the new version to replace
old versions when deployed locally using MSI.

If you're using Horizon Application Manager to manage your ThinApp packages,
you can create an update package while running Setup Capture.

In ThinApp Version 4.7.2, Setup Capture was updated with this new feature. While
enabling Horizon management, you can choose to create a package that is identified
as an updated version of an already existing package. When adding the new update
package to Horizon, Horizon Application Manager will automatically update all
entitlements with the latest version. For more details about the update mechanism
in Horizon, please refer to http://kb.vmware.com/kb/2030248. You can also use
relink with the -h parameter to create an update package.

[112]

Chapter 4

- Setup Capture - Manage with Horizon

Whiware Horizon Application b anager provides deployment, dynamic entitlement,
r("-\\ and centralized uzage reporting capabilities for Windows applications virtualized
(@S} with YMware Thindpp. The Yidware Horizon platform provides the foundation for
TG unified application management with a catalog of enterprize Saa5 and wirtualized
YWindows applications, dynamic palicy-bazed management, and access conbrol.

M anage with *Mware Horizon Spplication Manager

Organization URL [optional) : | |

[] This package iz an update of an existing base Thinapp package

| Browse

Help] [License...[#ﬁdaysleft]] [< Back ” Mext » l [Cancel

With ThinApp 4.7.2, a new feature was introduced in Setup Capture.
You can create an updated version of a package managed by VMware
\1 Horizon Application Manager. Enable the This package is an update
~ of an existing base Thinapp package option and browse browse to
Q the folder containing the original version of your base package. This
will extract the necessary AppID properties of the base package and
include them as identifiers in the new package. Horizon will use these
properties to identify the package as an update.

[113]

Updating and Tweaking Your ThinApp Project

Modifying the project folder

Applying changes directly to the project folder is a very efficient and easy method
of updating your packages. This method is mostly used when applying configuration
changes, and patching and hotfixes. Using this update method requires that you
know where changes are to be applied and how. If the configuration change is

a simple change of a registry key, it's easy enough to open the registry text file,

find the key, and change it. If you need to change a configuration file within your
virtual environment, it's a simple matter of opening the file in Notepad and making
the modification. If the update is delivered to you as files with documentation on
where they should be copied, many times replacing the existing versions, case, I
would personally use this method of updating. One big advantage of using the
modifying the project folder method is that all your original package. ini settings
are preserved. If you want to use MSI for deployment of the new version, you only
need to change the MSIProductVersion parameter to a higher number in order for
the new MSI to replace existing deployments. Any previous tweaking of the project
folder, such as isolation modes and more, is kept using this update method.

Sandbox merge

Sandbox merge is by far my favorite ThinApp tool. When you run a package

and change its settings, the sandbox is modified. All new settings are stored

in the sandbox. By using sandbox merge (sbmerge . exe), you can merge the
contents of the sandbox into your project folder. sbmerge . exe will merge any
changes you've applied to the virtual environment, that is, patches, configuration
changes, or updates. Let me walk you through an example. Hopefully, it will
demonstrate the power of sbmerge . exe.

[114]

Chapter 4

Let's say we need to update the version of Mozilla Firefox we've got. In this
example we'll package an update to Mozilla Firefox Version 3.6.3. This is
shown in the following steps:

File

-

") Mozilla Firefox

Edit Wiew History Bookmarks Tools Help

C X & |

Search Bookmarks and History

Most Visiked |j Getting Started |5 |

About Mozilla Firefox

J |} (Untitied)

Firefox

version 3.6.3

©19958-2010 Contributors. All rights reserved,
Licensing information). Firefox and the Firefox logos
are trademarks of the Mazilla Foundation, all rights
reserved,

Mozillafs,0 {iwindoves; U; windows MT 5.1; en-US;
rvi1.9.2,.3) Gecko/20100401 Firefox3.6.3

[115]

Updating and Tweaking Your ThinApp Project

1. Launch the virtualized Mozilla Firefox. Luckily, Mozilla Firefox has a built-in
update mechanism, so let's make use of it.

?) Mozilla Firefox

Fle Edit View History Bookmarks Tools MEE

FireFox Help F1
For Internet Explorer Users -
Troubleshooting Information. ..
Relzase Nokes

J] (Untitled) |: Report Broken Web Site ..
Feport Web Forgery...

- A 'y | Search B

[&] Mast visited |j Getting Started |5 | Latest Hea

About Mozilla Firefox

2. Run the built-in update mechanism of Mozilla Firefox.

") Software Update

Downloading Update

{,. Downloading Firefox 3.6.28... Details

I | @D

3 minukes, 1 second remaining — 1.9 of 11.1 ME (61.5
KEsec)

[116]

Chapter 4

3. When you are prompted with the following screenshot, proceed by clicking
on Restart Firefox:

%) Software Update

Update Ready to Install

The update will be installed the next bime Firefox starts, Yoo
can restark Firefox now, of conkinue working and restart
laker.

L Restart Firefox J

Restark Later

The whole update is now running within the virtual environment. All changes made
by the update are stored in the sandbox.

™ Mozilla Firefox X
File Edit View Favorites Tools Help ?
@ Back ~ -\) l@ p Search H__i‘ Folders -

Address CiiDocuments and Settingsiuseriapplication Datal ThinstallMozilla Firefox (3.6,3)%ProgramFilesDir%\Mozilla Firefox A | Go

Mame = Size | Type Date Modified L]
File and Folder Tasks |5 searchplugins File Falder 7H9Z01Z 11:27 PM
r‘j Make & new Folder () uninstall File Folder 7I9}2012 11:27 PM
")) .autareg O0KE AUTOREG File 711912012 11:27 PM
%] S\ﬂSh this folder to the AccessibleMarshal.di 19KE Application Extension 7/19(2012 11:27 PM
@ hare this Folder 3application.ini 3KB Configuration Settings 7f19/2012 11:27 PM
= blocklist . xml 6KE XML Document 7I9}2012 11:27 PM
browserconfig.properties 1KE PROPERTIES File 7I9}2012 11:27 PM
Other Places [crastreparter. exe 105KE Application 7/19/2012 11:27 PM
3crashreporter.ini 4 KB Configuration Settings 7f19/2012 11:27 PM
I5) “ProgramFilesDirss 3crashreporter-override.ini 1KB Configuration Settings 7f19/2012 11:27 PM
[Ej My Documents dependentlibs. list 1KE LIST File 7I9}2012 11:27 PM
O A e @tirefox.exe 391 KB Application 7/19/2012 11:27 PM 4
a - EFreeblS.chk 1KE Recovered File Frag... 7f19/2012 11:27 PM
= v i E freebl3.dl 263 KE Application Extension 7/19/2012 11:27 PM
&3 1y Network Places %) js3z50.dI 991 KE Application Extension 7/19/2012 11:27 PM
LICEMSE 31KE File 711912012 11:27 PM
Detail E mozcppl2.dil FO3KE Application Extension 7/19/2012 11:27 PM
etars & mozert19,dI F03KE Application Extension 7/19/2012 11:27 PM
E nsprd. dil 199KE Application Extension 7/19/2012 11:27 PM
E nss3.dll 631 KB Application Extension 7/19/2012 11:27 PM
E nssckbi.dll 363KE Application Extension 7/19/2012 11:27 PM
E nssdbm3. chk 1KE Recovered File Frag... 7f19/2012 11:27 PM
E nssdbm3. dil 103 KE Application Extension 7/19/2012 11:27 PM
E nssukil3,dil 87 KB Application Extension 7/19/2012 11:27 PM
3platform.ini 1KE Configuration Settings 7f19/2012 11:27 PM
plcd.dl 22KEB Application Extension 7/19/2012 11:27 PM
plds4.dll 19KE Application Extension 7f19/2012 11:27 PM v

[117]

Updating and Tweaking Your ThinApp Project

Launching the original package (Mozilla Firefox 3.6.3), using the sandbox containing
the updated version of Mozilla Firefox, will run the latest version, in this case
Version 3.6.28. Just to clarify what is now happening - your package's read-only
data contains Mozilla Firefox 3.6.3. while your sandbox content is the Mozilla Firefox
3.6.28 update. So if you launch your Mozilla Firefox package with the updated
sandbox you will be running the later version of Mozilla Firefox.

Al

~ Everything changed by the update is stored in the sandbox. You
can investigate the sandbox to learn what the update changed.

") Mozilla Firefox Web Browser — Check for Updates — mozilla.org - Mozilla Firefox
File Edit Wew History EBookmarks Tools Help

v c A {eY lw http:f funan . mozilla . orglen-1US firefoxfupdate! ﬁ -

-
s

(2] Mast visited |j Getting Started |5 | Latest Headlines

W Mozilla Firefox Web Browser — Chec... | +

D3 qEelEN About Mozilla Firefox

Congratulations!

Your Hrefox is up to date. .
Firefox

version 3.6.28

@©1998-2012 Contributors. All rights reserved. {

F r‘e q U e m t| y (_:,] S ke d q u eS U O n 9 Licensing infarmation), Firefox and the Firefox logos

are trademarks of the Mozilla Foundation. Al rights
reserved.

Some of the trademarks used under license from The

+ What is a Firefox software upd charkon Company.

Mozillafs. 0 (windows; L; Windows MT 5.1; en-U3;
rvi1,9.2,268) aeckof 20120306 Firefox(3.6.25

+ How do | update Firefox?

+ How do | know what version g

[118]

Chapter 4

So, the combined environment of the read-only virtual environment built into
the package, and the read and write part of the virtual environment stored in
the sandbox, provides Version 3.6.28 of Mozilla Firefox.

Let's use sbmerge . exe to merge the content of the sandbox into our original
project folder, creating a project folder with Mozilla Firefox 3.6.28.

sbmerge . exe must be launched outside the virtual environment using the command
prompt. The easiest method is to navigate to the project folder and launch sbmerge.
exe from there. If launched in the project folder, sbmerge . exe will automatically
find its active sandbox. Launching sbmerge . exe using the apply switch will merge
the sandbox into the project folder.

=

Q Back ~ () ir /) sarch Folders EI-

Address |5 2\ ThinApptyMware Thindpp 4.7.2 771512V CapturesiMozila Firefox (3.6.3)

Mame Size Type Date Modified
¥R
File and Folder Tasks %) M B %nppData% File: Folder 7/19/2012 11:18 PM
J Make & new Falder |2 %=Camman AppData®s File Folder 711902012 11:18 PM
- |3 %eCommon Deskbop File Folder 711902012 11:17 FM
&3 Publish this Folder to the . - ’ .
e |21 % Common Programss File Falder 7119/2012 11:17 PM

\WINDOWS\system32\cmd. exe

Z:~ThinApp~UHware ThinfApp 4.7.2 771812 Captures~Mozilla Firefox (3.6.32>..N\..nsh
merge . .exe apply

sbmerge . exe is located in the ThinApp utility folder. The process

~ involved with sbmerge . exe is a destructive method of updating the
Q project folder. All conflicts will be replaced with the sandbox content,

so make sure you always have a backup copy of your project folder.

[119]

Updating and Tweaking Your ThinApp Project

During the sandbox merge, you'll be presented with all the changes being applied to
your project folder, as shown in the following screenshot:

_

OBack - : ir 7 ! Search Folders Ev

Address |2 Z:AThindppiYMware Thindpp 4.7.2 77181 2\CapturesiMozilla Firefox (3.6.3)

Mame Size | Type Date Modified

File and Folder Tasks A1 [wappDatats File Folder 7/19/2012 11:18 PM
,.) Make & new Folder _| YaComman AppDatadh Ffle Folder 711912012 11118 PM

) i) %=Common Deskkop%s File Falder 7/19/2012 11:17 PM
&) Publish this folder o the) %Camman Programs File Folder 7/19/2012 11:17 PM

WINDOWS\system32\cmd.exe - ..\..\shmerge.exe apply -|= ﬂ GPM

SFM

(3.6.3>~xLocal AppDatax~Mozilla“Firefox n
CreateDivectory Z:5\ThinApp“UMuare ThinfApp 4_.7.2 ?M1812°Captures Mozilla Firefox 8PM
C3.6.3>~xLocal AppDatax~Mozilla~Firefox Mozilla Firefox GFM
Moved C:“Documents and Settings:UsersApplication Datas~Thinstall~Mozilla Firefox aPM
¢3.6.3>~xLocal AppDatax~Mozilla“Firefox“Mozilla Firefox“active—update.xml
CreateDirectory Z:\ThinfApp~VMware Thinfipp 4.7.2 ?71812~Captures:Mozilla Firefox ZPM
{3_6.3>xLocal AppDatax“Mozilla“Firefox“Mozilla Firefox“updates ZPM
CreateDirectory Z:*\Thinfipp~UHMuare Thinfipp 4.7.2 ?7181i2~Captures~MHozilla Firefox
(3_.6.3>~xLocal AppDatax“Mozilla“Firefox Mozilla Firefox‘updates-A P
Moved C:“Documents and Bettings“UsersfApplication Data~Thinstall-Mozilla Firefox aPM
(3.6.3)xLocal AppDatax~Mozilla“Firefox~Mozilla FirefoxupdatessBiupdate.mar aPM
Moved C:“\Documents and Settings:User“Application Data“Thinstall“Mozilla Firefox
C3.6.3>~xLocal AppDhatax~Mozilla“Firefox~Mozilla Firefox updates Bwupdate.status 7 AM
Moved C:“Documents and Settings:UsersApplication Datas~Thinstall~Mozilla Firefox 7 AM
C3.6.3>~xLocal Apphatax~Mozilla“Firefox“Mozilla Firefox*updates-Bsupdate.version apM
Moved C:\Documents and Settingsi\User“Application DatasThinstall“Mozilla Firefox aPM

3.6.3>~xLocal Appbatax~Mozilla“Firefox Mozilla Firefox*updates.xml
reateDirectory Z:x\ThinApps\UMuware ThinfApp 4.7.2 ?71812°\Captures~Mozilla Firefox
3.6.3>~xLocal AppDatax~Mozilla“Firefox“FProfiles

CreateDirectory Z:xThinApp~VMuare ThinfApp 4.7.2 ?71812~Captures~Mozilla Firefox
{3.6.3>xLocal AppDatax“Mozilla“Firefox“Profiless\lkyyh3zn._default
CreateDirectory Z:5\Thinfipp*UHuare Thinfipp 4.7.2 ?M1812°Captures Mozilla Firefox
(3_.6.3>~xLocal AppDatax~Mozilla“Firefox Profiles~lkyyh3zn._defaultsCache

When the sbmerge . exe process is finished, you will only have to rebuild your
project folder to create the new version of your package.

[120]

Chapter 4

I hope the previous example shows you the process and the power of using

sbmerge . exe. It's a quick and simple way of applying changes to existing packages.
And it's not only for applying updates. Simple configuration changes can be applied
to the project folder in seconds. Launch the packaged application, change the
settings, shut down the application, and run sbmerge . exe. Easy peasy! sbmerge . exe
is suitable for minor updates, patching and hotfixes, and configuration changes.

Manually editing the project folder's registry files is not the most user-friendly
method for changing the virtual registry. When I have to modify the registry,

I tend to use a regedit.exe entry point and make use of sbmerge . exe.

File

Edit Wiew Favorites Tools Help

@Back @ -_) L@ pSearch H_ Folders v

Address [Z:\ThinAppi¥Mware Thindpp 4.7.2 771812\ Captures\Mozilla Firsfox (3.5, 2 bin

Mame =
wrﬂozilla Firefox, exe
' regedit.exe

¢ Registry Editor
File Edit Wiew Favorites Help

Size | Tvpe
36,608 KB Application
21 KB Application

= E My Computer Marne Type Data

{1 HKEY_CLASSES_ROOT [3B)(Default) REG_SZ (walue not set)
[-[C1 HKEY _CURREMT_USER,

-2 HKEY_LOCAL_MACHINE
w1 Fs

- HARDWARE

w2 SAM

- Software

=3 SYSTEM

-2 Controlsetonl

-3 Controlsetooz

-2 CurrentControlSet

{:| LastknownGoodRecowve

-2 MountedDevices

{7 Select

-3 Setup

-0 wea
P

-2 HKEY_ISERS
#-(Z7] HKEY _CURRENT_COMFIG

[121]

Updating and Tweaking Your ThinApp Project

1
‘Q Running regedit . exe within the virtual environment will update

the virtual registry.

File:

Edit Yiew Fawvorites Tools Help

eBack A O @ ,OSearch H:‘ Folders v

Address ([23\ Thindppl¥Mware Thindpp 4.7.2 771812\CapturesiMozila Firefosx (3.5,2)\bin
Marne = Size | Type

nr\ﬂozilla Firefox.exe 36,608 KB Application
ﬁregedit.exe 21 KB Application

File and Folder Tasks 3

Registry Editor
File Edit “iew Fawarites Help

= g My Computer Mame Type Data
(] HREY_CLASSES_ROCT (Default) REG_SZ (walue not set)
{1 HKEY_CURRENT_USER [aB]Testing REG_SZ 123456

Edit String

Walue name:

Testing |

=0 sYsTEM Walue data:
#-[Z0 Controlsetony
[#-[Z0 Controlsetonz
EJ--{:l CurrentControlS L
(] Lastknownizood

(21 MountedDevices
[select

-3 Setup

-0 wea

a Peter

- HKEY_USERS

E:I'-D HEKEY _CURREMT _COMNFIG

[122]

Chapter 4

When prompted with the Edit String dialog box, I added the key, Peter, and created
a value called Testing, as shown in the previous screenshot.

Z:~ThinfApp~UHuw

UMware ThinfApp
Copyright 28086
fiddedSubkey
AddedSubkey
AddedSubkey
fddedSubkey
AddedSubkey

AddedSubkey
=~ Regedit
AddedValue H
AddedValue H
AddedValue H
AddedSubkey
fiddedSubkey
DeletedSubkey
AddedSubkey
AddedValue H

Z:»\ThinApp~UHuy

_

OBack - . ? 7 ! Search Folders Elv

Address [[2) Z:ThindppiYMware Thindpp 4.7.2 7718124 CapturesiMozilla Firefox (3.5.230bin

MHame Size

y ~
File and Folder Tasks — @Mozilla Firefox.exe 36,605 KB
¥ reged sxe 21 KB

= Maks a new folder

&N Publish this Falder to the
Web

C:AWINDOWS\system32\cmd.exe -8

are ThinfApp 4.7.2 ?71812~Captures~Mozilla Firefox (3.5.2>>..%..%s8b

Sandbox Merge Utility 4.7.2-771812, Built Jul 3 2812
—2812, UMware, Inc. All rights reserved
HKEY_CURRENT_USER\Sof tware
HEEY _CURREMI_USER“SoftwaresMicrosoft
HEEY _CURRENT _USER~Sof twaresMicrosof t"\Windows
HKEY_CURRENT _USER~Sof twareMicrosof t\Windows\CurrentUersion
HKEY _CURRENT _USER~Sof tware“Microsof t\Windows\CurrentlUersion“Applet

nerge .exe apply

HKEY _CURRENT _USER~Sof tware“MicrosoftiWindouws \CurrentlUersion~Applet

KEY_CURRENT _USER~Vieuw

KEY_CURRENT _USERWFindFlags
KEY_CURBRENT _USER-LastKey
HKEY_LOCAL_MACHINE\Sof tuare
HKEY_LOCAL_MACHINE~SYSTEM
HKEY_LOCAL_MACHIME~SYSTEM-Mew Key i
HKEY_LOCAL_MACHINENSYSTEM“\Peter
KEY_LOCAL_MACHIME~Testing

are ThinfApp 4.7.2 771812 Captures~Mozilla Firefox (3.5.2>>

Type
Application
application

B
B
[

[123]

Updating and Tweaking Your ThinApp Project

Run sbmerge. exe to merge the registry changes into the project folder.

™ Mozilla Firefox (3.5.2)

File Edit Wiew Favorites Tools Help

@Back - .\) Lﬁ pSearch Il;‘ Folders v

Address (I3 Z:4ThinAppt¥Mware ThinApp 4,72 771812YCaptures\Mozila Firefox (3,5.2)

Marne & Size Tvpe
File and Folder Tasks E3 [%AppDatas File Falder
Sall AppData®: File Fald
@ Rename this file 23 %Commn AppDatat fe ol
) o ()% Common Desktop®s File Falder
@ Move this file () %=Comman ProgramsS File: Falder
[} Copy this file () %Deskkops File Falder
@ Publish this file to the Yweb [%Local AppDatads File Falder
@ E-mail this File [%Personal®s File Folder
' o il (=] f
‘:Q Brint this File [%Program Files Common®s File Falder
s () %ProgramFilesDirs: File Falder
o Ldeslivs il ()55 ystemRoot % File Folder
[T %SystemSystem s File Falder
Other Places [bin File Falder
[C3)5upport File Falder
) Captures Fbuild.bat 3KB M5-DOS Batch File
(53 My Documents [E] HKEY_CURRENT_USER kxt ISKE Text Dacument
=| HEEY_Local _MacHIME, bxk 23 KB Text Document
(3 Shared Documents
Q@ My C : E] HKEY_IISERS.ExE 1KE Text Document
-'i ¥ - OmpLLEr 3Package.ini 9KE Configuration Settings

& Py Mebwig

I HKEY LOCAL_MACHIME.txt - Notepad
File Edit Format Wwiew Help
REG_SZ-%ProgramfFilespirgymozilla Firefox\plugins#2300

Details

Jsolation_full HrEY_LOoCaL_mMACHIMEMNSOoftwareymozilla. org

isolation_full HKEY_LOCAL_MACHIMEMWSoftwareymozilla.orgimozilla
value=Currentversion
REG_SZ-1.9.1.2#2300

isolation_full HKEvV_LOCAL_MaCHIMWEMNSoftwarehwRegisteredapplicatig
value=Firefox
REG_SZ~softwarenClientshsStartMenuInt ernet FIREFOX. EXENCapahii

isolation_writecopy HKEY_LOCAL_MACHIMEMSYSTEM

deleted HKEV_LOCAL_MACHIMENSYSTEM\MNew Key #1

£
—

[124]

Chapter 4

1
‘\Q After a successful sbmerge . exe execution, you can find the

registry entries within the registry file.

As mentioned earlier, the easiest method is to be standing in the project folder when
running sbmerge . exe. You can be located anywhere and point to the location of the
project folder, and the sandbox using -ProjectDir or-sandboxDir switches. But I
find it much easier running sbmerge . exe standing in the project folder. Then, I don't
have to worry about getting the paths correct.

You can run sbmerge . exe in one of two ways. The first one is sbmerge.exe PRINT,
and that will not alter your project folder. It will only run the comparison between
the sandbox and the project folder. I tend to run the command and redirect the
output to a text file, for example, sbmerge.exe PRINT > c:\output.txt. This
way, I can read what is different and what a certain update has modified. Then,
once you want to merge the sandbox content into the project folder, you can run
sbmerge.exe APPLY. When the sandbox merge has completed successfully, the
sandbox is deleted.

You should use a copy of your project folder. sbmerge . exe is a destructive update
mechanism and there is no way to revert changes applied to the project folder.

Make sure you always start with a clean sandbox when applying the changes that
you want to merge into your project folder. You do not want to pollute the project
folder with old cache files or other rubbish. You can run sbmerge . exe with an
exclusion list, just like snapshot . ini, but I find it much easier to just make sure
that the sandbox is clean. Run sbmerge . exe without any switches to get the help
file covering all the switches you can use.

While using sandbox merge, it is important to use WriteCopy as the default directory
isolation mode within the package. It is difficult to tell upfront where changes will be
made, so sandboxing everything is your safest bet.

[125]

Updating and Tweaking Your ThinApp Project

Updating the ThinApp runtime

You can update the ThinApp runtime embedded in the packages. You can rebuild
your project folder using a new ThinApp version, or you can use the tool relink.
exe to update the runtime. relink.exe does not require the project folder. It will
apply a new runtime directly into an existing package. There's rarely any need to
update the ThinApp runtime. Normally, you don't need to update your packages
when a new ThinApp version is released. But when ThinApp 4.5 was released, one
of the big new features was Windows 7 support. Old packages had to be updated
in order to work on Windows 7. Windows 7 (and Windows 2008 R2) was a major
recoding of the operating system with many Windows API changes, and therefore
the ThinApp runtime had to be updated. There is no telling whether the future
Windows versions will force you to update runtimes for existing packages or not.
Other than for operating system support, you may also want to update the runtime
because you want to change the license key. While updating the runtime you can
change the License Key and the Licensed display name that is displayed as well.
All project folders are completely license-anonymous. If you capture an application
using a trial version of ThinApp, you can simply change the license information, and
rebuild or use relink.exe to transform your packages into fully licensed versions.

You can change the License Key or Licensed display name by launching Setup
Capture, clicking on the top-left corner, and choosing License....

-~ Setup Capture - Welcome E]|E|@

Mawve

= Minirmize:

X Close Alt+F4 the following steps to create a virtual application:

License. ..

e of the system Quick Start Video
About Setup Capture plication
@ Postscan Identify changes using the baseline >
4 Configure Configure project settings Click to play
% Build Build the virtual application

ThinApp Community
See how other IT Professionals are revolutionizing
the way they deploy software using VMware ThinApp.

Join the community Yersion 4.7 2-771812

Help] [License...[15daysleft]] Mest > l [Cancel

[126]

Chapter 4

Enter your new information in the Enter License Key dialog box, as shown in the
following screenshot:

i Setup Capture - Welcome

VMware ThinApp

Enter License Key

Enter vour 28 character license key and licenze name

Licenze Kew | |

Lizensze display name: | |

v Cowen]

RS e

ThinApp Community
See how other IT Professionals are revolutionizing
the way they deploy software using ViMware ThinApp.

Join the community Yerzion 4.7.2-771812

[Help] [License...[15daysleft]] < Back L Mext > J l_ Cancel]

relink.exe is great for batch-updating your whole ThinApp repository. relink.
exe can scan for packages to update recursively.

relink.exe -Recursive "Z:\ThinApp Repository"
This command will scan recursively and update all packages and MSI files found.

With ThinApp 4.7.2, relink.exe was updated with a new feature: Horizon
Application Manager support. With relink.exe -h, you can add Horizon
management to an existing package without needing to rebuild the whole project.
In this knowledge-base article, you can find much more detail about the -h switch:
http://kb.vmware.com/kb/2021928.

If you type relink.exe without any switches at a command prompt, you'll get the
help text for relink.exe.

When you run relink.exe, make sure you have enough free disk space. relink.
exe will make a backup of the original package before updating the package.

[127]

Updating and Tweaking Your ThinApp Project

Sandbox considerations for updated
packages

When updating an existing package, you must consider the existing sandbox.

In

many situations, you might want to preserve the users' settings and therefore reuse
the existing sandbox. Make sure the new version of the package uses the same
SandboxName and SandboxPath values, and the existing sandbox will be used,

that is, if the new version of the virtualized application can handle the settings

from the old version of the application. There is not much ThinApp can do if the
application cannot handle existing settings. Luckily, most applications can handle
previous versions' settings. If the old sandbox contains conflicting elements, your
new package must use a new sandbox. Currently, there is no method to update the
existing sandbox content with content from the read-only data. A typical example of
this behavior is Mozilla Firefox. By simply launching a packaged Mozilla Firefox, the

sandbox will be populated with many files. Most of them are settings files.

Qo - ©Q - P Oseach [rokes [

ddess | 3 oeuments and Settings|User|application DatsiTrinstall|Mozila Firefox (3.5.2)(#AppDatatlMoaila|FircfoxiPrfissig1auss.defaut | | (£ G
Name See Type Date Modfied

[E)bookmarkbackups Fils Folder 5/21j2012 5:41 P

] certs.db

[ey B prefs - Notepad

| cookies.saite Fie Edit Faormat view Help

File and Folder Tasks

(29 Make a new Folder
&0 Publish this foldsr to the
eh

[Hfombistory.salte ¢ mozi17a user praferences

[Bkey3.dn

(= localstore. rdf /% Do not edit this file.
w

Hpermissions.saite | » £ you make changes ta this file while the agp'\icaticm is runn"\ng,
p\aces sqlite w thE changes will be overwritten when the application exits
laces. sqlite-journal
p ‘. e * To make a manual change to preferences, you can visit the URL about:config
Blprefs * For mora information, sea http://www.mozi11a. org/unix/customizing. html#prefs
s

ld share this folder

Other Places w3

) Profiles

(£} My Documents
(3 Shared Documents
i My Computer

&3 My Network Places

D search.json
B search.sqliee

user_pr'ef("app.update.'\astupdate‘r'\me.addﬂm—backgrnundfupdate timer"”, 1337088992);
user,pref("app.update.hstupdateﬁma.backErUund update-timar” 1337088992)
user_pref("app.update. lastupdaterime. block14st-hackground- update Timer" 1337086992)
user_pref("app. update. JastUpdateTime.mjcrosummary-generator-update- timer" 1337088992)
user_pref(“app.update. Jastupdaterime. places-maintenance-timer", 1337089008)
user’_pr‘ef("app.update.'\astupdateﬁme search- eng'mefupdateft'\mer . 1327088993);
user_pref(“browser.migration.version”, 1J;

user_pref("browser.places. 1mpnrtEnnkmar‘ksHTML FaWSe)

user_pref("browser.places. SmartEanmarks\/erstn 13;
user_pref("browser.rights.3.shown", true

user_pref(“browser.startup. hnmepage http S sunet. se)
user,pref("bruwser.startuﬁ hamepage_s Uvermde mstone", "rv 9");
user_pref(“axtensions.enableditems" {972(94(6 7e08-4474- aZES 3208198(96fd} 3.5.9");
user_pref(extensions. '\astAppver‘s‘mn "3.5.8");

user_pref(“axtensions.update. nutﬁyuser faWse)

user_pref("intl. charsetmenu. browsar. cache", "UTEla' H

user_pref("network. cockie. prefsmigrated"”, true)

user_pref('privacy.sanitize.mi rateFxifrafs", tru E3H

user_pref("urlclassifier. keyupdaterime. https Srsh- 551, google. com/safebrowsingnewkey",

Details

1339680934);

Example of files created in the sandbox when launching a packaged Mozilla Firefox

[128]

Chapter 4

As you can see in the previous screenshot, the prefs.js file is created in the

user's sandbox. pref.js holds many Mozilla Firefox settings. One of the settings

is the homepage. You can't enforce a new homepage in a new Mozilla Firefox
package. Since prefs.js is already present in the sandbox, the version stored in the
package will not be used. There are a couple of different methods you can use as
workarounds for this.

* Use a new sandbox and merge settings from the existing sandbox. For
example, a script can be used to copy content from the old sandbox into
the new one.

* Store the user settings outside the virtual environment, that is, use Merged
on $AppData$%. This way, you can use traditional, physical methods to change
users' settings.

* Implement a VBScript in the new package, altering the settings you want
to enforce.

The most important thing is that you are aware of a certain package's behavior.
That is why it's so important to investigate the sandbox when you're test running
a package. You must know what will end up in the sandbox and investigate if it
will be an issue later on when updating.

Summary

In this chapter you have learned how to create a new version of a package. There are
many different methods you can use, and some are more suitable for certain update
categories than others. The next chapter will explain how to deploy these new
versions of your packages.

[129]

How to Distribute Updates

In the previous chapter you learned how to create a new version of a package.
This chapter will guide you through the different methods of getting the new
version to your end users.

This chapter will cover the following topics:

Using MSI to deploy updates

In-place update

How to use AppLink for updates

Application Sync

How to distribute updates with VMware Horizon Application Manager

Different categories of updates

The different update categories specified in the previous chapter are still very much
valid when talking about deployment methods for updates. So first let's start with a
quick recap of the different categories as I see it:

Major updates (that is, full version updates): This update category is
typically a major product version update. For example, Microsoft Office
2007 updated to Office 2010.

Minor updates (typically point releases or service packs): This category is
typically feature updates and bug fixes within a specific full version. For
example, updating from Adobe Acrobat Reader 8.0 to 8.1. Both are within
the full version of 8.

Patching and hotfixes: These updates are typically smaller in size than minor
updates/point releases but are essentially within the same update category.

Configuration changes: Configuration changes typically involve very few
changes. These are often only a couple of registry changes or a change to
an .ini configuration file.

How to Distribute Updates

* ThinApp Runtime updates: There is rarely any need to update the ThinApp
Runtime within a package that is deployed and fully functional. The only
reason to update the runtime would be to inject new operating system
support or updating the license key in an existing package. Normally
when a new ThinApp release is made available you do not bother
updating existing, deployed packages.

It is important to understand that when you create a new version of a package and
use one of the update methods described in this chapter, all package settings are
from the new package. Things such as Sandbox location and name or installation
location are all from the new version's Package.ini.

Using MSI to distribute updates

Using MSI as the deployment method for your updates fits all categories of
updates, since it reuses existing processes. If you deploy new applications and
packages with the help of MSI, why not use the same process for deploying
updates? I fully understand that kind of reasoning. Using MSI might not be the
most effective method when taking bandwidth and speed into consideration, but
using processes already in place are often more important. Using MSI to deploy

a new version of your package will require the whole package to be downloaded
by your clients. The MSI that ThinApp generates is capable of replacing existing
deployments. The parameters in use for a successful replacement of existing
packages are MSIProductVersion, MSIProductCode, and MSIUpgradeCode
found in the MSI section of Package. ini. If you create your new version of the
package by modifying the old project folder, you should only have to activate and
change the MSTProductVersion value, providing it with a higher number. If the
MSIProductCode and MSIUpgradeCode parameters are left disabled, the ThinApp
build process will make sure to handle the correct Globally Unique Identifier
(GUID). GUIDs are application-unique identifiers. If your new version is using a
new project folder you must manually make sure that the new package uses the
same MSIUpgradeCode parameter as the old package. The MSIProductcCode should
be different in the two packages.

Let's have a look at a couple of versions of the Package. ini file explaining the
process of creating an update MSI file.

The following is Package. ini for Version 1.0 (original version):

[BuildOptions]

i-------- MSI Parameters ----------

;EnableMSIFilename if you want to generate a Windows Installer
package.

[132]

Chapter 5

;MSIFilename=Mozilla Firefox (3.5.2).msi
;MSIManufacturer=Corp Inc.

MSIProductVersion=1.0

;MSIDefaultInstallAllUsers=1

;MSIRequireElevatedPrivileges=1

;MSIInstallDirectory=Mozilla Firefox (3.5.2) (VMware ThinApp)
;MSIProductCode={A52D0259—C701—A136—6C62—8C5935820679}
;MSIUpgradeCode={824D99C2—9F8E—B59D—DB98—18817BE5FD42}
;MSIStreaming=0

;MSICompressionType=Fast
;MSIArpProductIcon=%ProgramFilesDir%$\Mozilla Firefox\firefox.exe, 0

The following is Package . ini for Version 1.1 (updated version):

[BuildOptions]

e MSI Parameters ----------

;EnableMSIFilename if you want to generate a Windows Installer
package.

;MSIFilename=Mozilla Firefox (3.5.2).msi

;MSIManufacturer=Corp Inc.

MSIProductVersion=1.1

;MSIDefaultInstallAllUsers=1

;MSIRequireElevatedPrivileges=1

;MSIInstallDirectory=Mozilla Firefox (3.5.2) (VMware ThinApp)
;MSIProductCode:{A52DO259—C701—A136—6C62—8C5935820679}
;MSIUpgradeCOde:{824D99C2—9F8E—B59D—DB98—18817BE5FD42}
;MSIStreaming=0

;MSICompressionType=Fast
;MSIArpProductIcon=%ProgramFilesDir%\Mozilla Firefox\firefox.exe, 0

The previous example will successfully uninstall the existing Version 1.0 of packaged
Mozilla Firefox and deploy Version 1.1 of the package.

I'm disabling the MSIProductCode and MSIUpgradeCode
/= parameters, leaving the ThinApp build process to handle them.

Once you've created your updated MSI file you can use any existing deployment
tool to distribute the update. One of the benefits of using ThinApp is that there's not
much that can go wrong when you deploy an update. It's just a matter of replacing
the package, many times by just copying one single file. You don't have to change
registry keys, risk introducing regression, or worry about the update mysteriously
stopping after 90 percent is done.

[133]

How to Distribute Updates

Using an in-place update method

In-place update is truly my favorite among update deployment methods. It's a
feature that is unique to ThinApp and truly makes the most use of application
virtualization. The feature in-place update has been called many things over the
years. You will find references using the name integer update or side-by-side update.
I personally prefer the name in-place update so that's the name I will use. In-place
update is most effective when using the streaming deployment method. When you
use streaming as your deployment method, your environment will have only one
single instance of the application, represented by the package located on a network
share. So for you to update the version deployed you simply have to replace this one
single instance with the new updated version. But what happens if the package is in
use? When a ThinApp package is launched the file is locked. You cannot delete it or
replace it. That's when in-place update comes in handy. In-place update will allow
you to deploy the new version next to the old version with zero downtime, during
full production. Upon the next launch of the package the ThinApp runtime will find
the in-place update package and, seamless to the user, will shutdown the old version
of the Package and launch the new updated package instead. Let's have a look at
how this works:

= Applications

@Back @ d l,ﬁ; pSearch = Folders v

Address |23 Z:\ThinApptApplications

Mame Size | Twpe Date Maodifisd
File and Folder Tasks @ Mozl Firefox,exe 34,112 KB Application 7[26/2012 3:46 PM
7 Make a new Folder

e Publish this Folder to the
Weh

Other Places

= Thindpp | test

D My Documents
() Shared Documents
j Iy Computer

‘ﬂ My Network Places —

|| SUNET - SUNET

|2l

 p—
.
G F f
Details el | Irerox
version 3.5.2
x
S U N ET ©1998-2009 Contributors, Al rights reserved, | g
Licensing information). Firefox and the Firefox logos o
are trademarks of the Mozilla Foundation, All rights °
resarved, @
STARTSDA OMSUNET T Jange stkord >
L Mozila/5.0 (Windows; L; Windows NT 5.1; en-LIs;
rvi1.9.1.2) Geckof20090729 Firefox/3.5.2
WALKOMMEN TILL SUMET Skrivut =
UNET .

[134]

Chapter 5

The previous image shows Version 3.5.2 of Mozilla Firefox deployed to my

ThinApp repository.

'™ Applications

Filz Edit ‘“iew Favorites Tools

Help

v‘Gn

Date Modified
FIZ6(2012 3146 PM

Size Type

34,112KE Application

) Cancel

Other Places

I3 Thindpp
E My Documents
I3 Shared Documents
i My Compuker

g I¥y Metwork Places

Details

Error Copying File or Folder

g Cannot copy Mozilla Firefox: It is being used by another person or program,

Close amy programs that might be using the File and try again,

Ok,

STARTSIDA

SUNET

OMSUNET TJANSTER FOR TEKMIKER — EWEREMARNG Ange sdkard SOK

Feedback

If I keep the Mozilla Firefox package running in the background and try to replace
the version of the Mozilla Firefox package, I am not allowed to do so since the

package is in use.

& Applications

File Edit ‘iew Favorites Tools Help

eBack @ o @ pSearch E—‘;Fo\ders v

Address |3 Z:AThindpp!Applications

v|Gn

File and Folder Tasks

fa Make & new folder
&) Publish this folder to the
Web

Other Places

@ ThinApp
My Documents

I3 Shared Documents
g My Computer
N My Network Places

Details

Mame -«

& 'Mozilla Firefox. exe
Mozilla Firefo, 1

Diate Modified
Tiz6[2012 3146 PM
Tiz0f2012 3113 PM

Size
3,112KB

Type
Application

B1,376KE 1File

"} SUNET - SUNET - Mozilla Firefox

Ele Edt View Hitory Bookmarks Tools Help

B ¢ X & (O mitwmretsy FEIE BT
1] test

| (] SUNET - suNET [+] -

5

|>

[135]

How to Distribute Updates

So instead we use in-place update and rename the updated package, in this case
containing Version 3.6.28 of Mozilla Firefox, to use a number as an extension instead
of .exe. Now the filename is not conflicting, and both packages can be located in the
same folder. Please note the size difference between the two versions. My old version
of Mozilla Firefox is still running.

® Applications

File Edit Wiew Favorites Tools Help @'

@Back - .\) @ pSearch E__" Folders v

address |23 Z:\Thinappiapplications v| @
A Mame - Size Type Date Modified
. Py
File and Folder Tasks =/ (@ Mozila Firefox.exe 34,112 KB Application 7j26/2012 46 PM
o (3 Mozilla Firefox, 1 61,376 KE 1 File 7lz0fz012 2:13 PM
Iﬂ Rename this file

@ Mowe this file
D Copy this file

& Publish this file to the
Web

() E-mal this file
¥ Delete this file - C X &

") Mozilla Firefox
Edit History About Mozilla Firefox

File

Wiew

Mosk Visited |j Getting Starked

J | untitled)

Other Places

I3 ThinApp

My Documents
|3 Shared Docurnents
a My Compuker

=

Firefox

version 3.6.28

©1995-2012 Contributors, All rights reserved. (
Licensing information), Firefox and the Firefox logos
are trademarks of the Mozilla Foundation. all rights
reserved,

Some of the trademarks used under license from The
Chatlton Comparny .

Mozillajs.0 {windows; U; Windows NT 5.1; en-US;
rv:1,9.2,28) Gecko/20120306 Firefox)3.6.28

When the end users shut down the old version of Mozilla Firefox and launch it again,
using the original old package (Mozilla Firefox.exe), the package named Mozilla
Firefox.1 will be the one launched instead. The update has been deployed with
zero downtime and seamlessly to the end user.

[136]

Chapter 5

In-place update works just as great for downgrades. Let's say you found an issue in
the newly deployed Version 3.6.28 of Mozilla Firefox and needed to immediately
revert to the old version.

= Applications

File Edit Wiew Favorites Tools Help ;ﬁ'

eBack - .'_) Lﬁ; pSearch lEi‘ Folders v

Address |23 22\ ThinapplApplications v| e
A Mame -~ Size Type Date Maodified
File and Folder Tasks % (@ mazila Firsfox exe 34,112 KB Application 7I26/2012 Fi46 PM
i) Rename tis e Mozila Firefox, 1 61,376 KB 1File 7/20/2012 9:13 PM
Mozilla Firefax, 2 34,112KE 2 File 7[26/2012 3:46 PM

[y Mave this File

LR ") SUNET - SUNET - Mo

&3 Publish this file o the About Mozilla Firefox
Web File Edit Miew Histor

() E-mail this file = >

¥ Celete this file - c A

|j test

| [SUNET - SUNET

Other Places

I Thindpp L
My Documents

| Shared Documents l
a My Computer

et

Firefox
S U N ET version 3.5.2

©1993-2009 Contributors, All rights reserved, §
Licensing information), Firefox and the Firefox logos

are trademarks of the Mozilla Foundation. Al rights

STARTSIDA Ob SUMET reserved. Ange sokord

Mozillafs. 0 (windows; U; wWindows NT 5.1; en-US;
L KOMMEN TILL SUNET rvi1.9.1.2) Gecko/20090729 Firefox/3.5.2

Create a copy of the old version of the Mozilla Firefox package, give it a higher
number than the previous package as its file extension. Now the original version
becomes the new active package. Please note the file size to identify the copy of
Version 3.5.2 now named Mozilla Firefox.2. You must keep the original Mozilla

Firefox.exe package since that's the one the end user's shortcut and registration
information points to.

[137]

How to Distribute Updates

Deploying many updates, and perhaps reverting some, will leave quite a few
copies of packages in your ThinApp repository. As soon as the not active in-place
versions are not in use anymore, you can safely delete those. During your planned
service window you can clean up your ThinApp repository, replacing the original
PackageName . exe file with the latest active version. When performing in-place
updates, it is important to understand that it's the data container that needs to be
updated. If you have a package using a separate data container, you must update
the data container using an in-place update. The entry points do not have to be
updated for the new version of the virtual environment to be activated.

& Applications =]

File Edit “ew Favorites Tools Help

eBack © l\) Lﬁ pSearch l[:‘ Falders v

address |3 2\ ThinAppiApplications v| @
Mame & Size | Type Date Maodified

File and Folder Tasks Mozilla Firefas, 1 106,624 KB 1 File 7126/2017 10:35 PM

Mozilla Firefox, dat 35,520KE DAT File Fi26i2012 10:37 PM

wMoziIIa Firefou. exe SO9KE Application FIZ6fZ012 10037 FM

(29 Make a new Folder
€3 Publsh this folder o the
Wieb

") Mozilla Firefox
File Edit Wew History Bookmarks Tools Help

{hew b | +]

€ G0 ko & Website

Other Places

I Thindpp

[E] My Documents
|5 Shared Documents
a My Computer

id Iy Mebwork Places

About Mozilla Firefox [%]

Firefox

12.0

Details

‘fou are currently on the release update channel,

Firefax is designed by Mozilla, a global community working
tagether to keep the \Web open, public and accessible ko all.

Sound interesting? Get invalved!

Licensing Information End-User Rights Privacy Policy

Firefox and the Firefor logos are trademarks of the Mozilla Foundation,

In the previous image, I'm in-place updating a package using a separate data
container. This is an in-place update of Mozilla Firefox Version 3.5.9 (Mozilla
Firefox.dat) with Version 12.0 of Mozilla Firefox (Mozilla Firefox.1).

[138]

Chapter 5

When using in-place update to update packages with a separate data container it's
best practice to make sure that the entry point and the data container don't have
the same name. In my previous example I've used the same name for both the data
container and the entry point (both names are Mozilla Firefox before the extension).
It still works, but you get an irritating command prompt launching the in-place
updated package.

= HES)
I -
N
G Back - > ? 7~ Search Folders El -
Address || Z:\Thindppiapplications b a e
Mame Size | Type Date Modified
File and Folder Tasks A @ mozila Firefax.exe 599KB Application 7/26/2012 10:59 PM
FirefoxDATA. 1 106,560KE 1 File 7/26/2012 10:59 PM

(27 Make a new folder

FirefoxDATA,dat 35,520 KB DAT File 7l26/2012 10:59 PM
@ Fublish this folder to the
Web

Best practice when in-place updating a package using a separate data container
is to have different names for the entry point and data container.

In-place update is the most suitable method for delivering Major, Minor, and
ThinApp Runtime updates when using Streaming deployment method. It will
of course work for deployment of the other update types as well, but might not
be the most efficient method available.

You do not have to store the in-place update packages next to the original package
if you don't want to. You can change the location of your in-place updates by
specifying the UpgradePath parameter in Package. ini.

The in-place update method works on your AppLink packages as well. I hope this
description of the in-place update makes you as excited about the feature as I am.
I just love demoing it for customers. It's always a hit.

Application Sync (AppSync)

Application Sync or AppSync is another unique ThinApp update method. AppSync
was designed to help deal with the management of applications on unmanaged
devices. Typical case of usage is a consultant having his/her own computer, and
you have to provide an application to the consultant. Using AppSync you are able
to maintain the application on the consultant's machine without the need of a locally
installed management agent. AppSync can be run with the help of the standalone
tool, AppSync. exe found in the ThinApp utilities folder. But most of the time you
use the built-in AppSync feature in your packages.

[139]

How to Distribute Updates

When a package has AppSync activated, it will check for an updated version of
itself when it's started. The check for update and the download of any updated
version all happens in the background, seamless to the user. If there's a new version
available, the package will download only the blocks that are different. When all the
changed blocks have successfully been downloaded, a new version of the package
is compiled. Upon the next launch of the package, the new version replaces the old
version. Being agentless (that is, it does not require anything locally installed on the
clients) and its method of incrementally downloading only the changed blocks are
both huge benefits when using AppSync. AppSync is suitable for minor updates,
patching and hotfixes, configuration changes, and ThinApp runtime updates.
AppSync can of course be used for deploying major updates, but since everything
has probably been changed within the new package, AppSync will have to download
the whole package and cannot make use of the incremental download. There are a
couple of Package. ini parameters related to AppSync.

[BuildOptions]
i-------- AppSync Parameters ----------
;AppSyncURL=https://example.com/some/path/PackageName.exe

The AppSyncURL parameter specifies the location of the update package. You must
specify the whole path to the update package's data container. HTTP, HTTPS, and
FILE are supported protocols. If you use HTTPS, make sure the clients trust the
certificate. There is no GUI available to the user to accept untrusted certificates. There
isn't any GUI for providing authentication information either, so you can't protect
your AppSyncURL by demanding username and password. The path to the update
package has to be specified in URL format:

file://ServerName/ShareName/Folder/UpdatePackageDataCon.dat
This AppSyncURL example will search for new versions on a network share.
file:///c:/Folder/UpdatePackageDataCon.dat

In the above example, a local path is used as the AppSyncURL parameter. Please note
the three forward slashes. This is the URL format for specifying a local drive. Using
a local path might not be one of the most common use cases. One use case could be
updating using a USB stick or CD-ROM.

[140]

file://ServerName/ShareName/Folder/UpdatePackageDataCon.dat
file://ServerName/ShareName/Folder/UpdatePackageDataCon.dat

Chapter 5

The following are the remaining Package . ini parameters used to control
AppSync functionality:

; AppSyncUpdateFrequency=1d: This parameter specifies how often the
package will search for updates. Valid update frequencies are: minutes (m),
hours (h), or days (d). Please note that the package only checks for updates
when it's launched. If the package is not used by the end user, AppSync
will not update the package.

; AppSyncExpirePeriod=30d: If the package has not been able to contact
AppSyncURL within the specified time frame, it will expire. 30 days is the
default setting. If you want your package to never expire, you should
Specﬁy,AppSyncExpirePeriod:never

; AppSyncWarningPeriod=5d: The AppSyncWarningPeriod parameter
specifies how many days ahead of expiration the package should display
a warning message to the end user. The message that will be displayed is
specified using the AppSyncWarningMessage parameter.

; AppSyncWarningFrequency=1d: This parameter specifies how often the
AppSyncWarningMessage message will be displayed. The message is only
displayed at application launch.

;AppSyncWarningMessage=This application will become unavailable
for use in %remaining days% day(s) if it cannot contact

its update server. Check your network connection to ensure
uninterrupted service.

This message is displayed to the user to warn that the package is about
to expire.

;AppSyncExpireMessage=This application has been unable to
contact its update server for %expire days% day(s), so it is
unavailable for use. Check your network connection and try
again.

If the package has expired then this message will be shown to the end user.

;AppSyncUpdatedMessage=

When an update has been deployed, the end user can be notified with
this message.

[141]

How to Distribute Updates

® ;AppSyncClearSandboxOnUpdate=0

Upon updating the package you, as an administrator, can decide to
delete the existing sandbox. The default choice is to leave the existing
sandbox untouched.

& Mozilla Firefox 2.

File

Edit View Favorites Tools Help

Qux- Q¥ pSEar[h 1= Folders

nddvess |9 Co\Program FilesiMozilla Firefox 2.0.0,14 v B
— Hame = Size | Type Date Mocified
o Back ~ O @ p Soarch [En,; Folders , File and Folder Tasks A & mozlla Firefox 25,440 KB Application 47812010 11:35 A
22 Make & new Folder
€N Publish this falder o the
weh

= updates

File Edt Wiew Favorites Tools Help

Address |23 C:lupdates

File and Folder Tasks (&) k7 share this Folder

) Make 2 new Folder
&) Publish this Folder to the Other Places
wieh

(7 Share this folder [, Package - Notepad
File Edit Format ‘Yiew Help

H APPSYNC Paramerers ————-—————
AppsyncURL=Fi18: ///c: /updates Mozi1la Firefox. exe
s AppSyncUpdat eFreguency=1d

s AppSyncExpirePeriods:
sAppSyncwarningPeriod=5d
;AppSyncwarningFreguency=1d

Other Places

%o Local Disk (€2
My Documents

Here's an example of an AppSync-activated package. As you can see in the package.
ini file, I am using a local path as the AppSyncURL.

= Mozilla Firefox 2.0.0.14
Edit Yiew Favortes Tooks Help o

Qosk - O - [F O st |7 rolders

address |3 Ci\Program FilesiMoila Firefox 2.0,0.14 "| @
Name = Size | Type Date Modified

& tozila Firefox 23,440 KB Application 4/8i2010 11:35 AM

MDziHa Firefox (2,0.0,14).35d LKE ASDFile 7HI0/2012 9:56 AM

File

& updates

Fle Edt View Favorites Tools Help

Qs+ () (T O st [rolders

Address |5 Ciupdates

File and Folder Tasks A

=]} Rename this e

[y Move this File
[Ty Copy this file

File and Folder Tasks

(2 Make anew Folder *J Mozilla Firefox
Publish this foder ta the
@ Web Edit

Eile Vew Higiory Bockmarks Took Help

ka? Share this folder

- @ (Y O Festiicyerogramz0fies|Mozila20Fisfoxfdefaut hkmi [»] [[Gl+[so0a= =8|

Other Places M Getting Started [Latest Headines

Mozila Firefox 2.0.0.14

e Local Disk (C:)
My Documents

[142]

Chapter 5

When launching a package with AppSync activated, a log file will be created (the
.asd file). This log file tells the package if it managed to contact AppSyncURL or not.
In this example there was no update package, so no AppSync action was required.

& Mozilla Firefox 2.0.0.14

File Edt View Favorites Tools Help

Qu+- O F pﬁearch (= Folders | [FE3)-

125 C:\Program FilesiMozilla Firefox 2.0.0.14 v| Go
File Edt View Favorites Tools Help

Name + Size | Type Date Modified
eﬁm - ,J @ psamh 7 Foiders File and Folder Tasks 201 @ oaila Fircfox 23,440K8 Application 41512010 11:35 AM
(29 Make a new folder
& Publish this Folder ta the

Weh

& updates

Address |[3) ¢:\updates

Mame -~
File and Folder Tasks 1 @ Mozila Firefox ka? share this folder

(£ Make anew Folder
&N Publish this folder to the Other Places
Web

fa? share this folder 1= Program Files
My Dacuments
|5 Shared Documents
i My Computer
) My Network Places

Other Places

S Local Disk (1)

I deleted the AppSync log file to force a new AppSync operation to start at the next
launch. I copied a new version of my package into the AppSyncURL location.

% Mozilla Firefox 2.0.0.14 [(=1[E9]
Fle Edt View Favortes Tools Help i

Qosk - © - F Oseant [roiers [

address |23 Cx\Program Flles\ozila Firsfox 2,0.0.14 4 ‘ €

File Edt ‘Mizw Favorites Tools Help Name - S0 Type Date Modified

Qo - © - T | Pseacn [rokes | [F]- File and Folder Tasks &) I @At Ficton 23,440KE Application AR/ 1135 AW
as Make & new Folder =] Mol Firefox (2.0.0.14).asd OKE ASDFile 7/30/2012 3:04 AM
g e ——— = Mozilla Firefox.ase TZEKE ASE File 7J30£2012 9:04 AM
Publish this Folder ta the :
Mame -~ web [Mozilla Firefox. sl 9KE ASLFile 7/30/2012 9:04 AM

File and Folder Tasks | @ Mozila FireFox [a? Share this Folder
() Make a new Foider
) Publish this Folder to the = Other Places

web es 8

address |5 C:lupdates

2 Share this Folder [Program Files

b L My Documents
[Shared Documerts
i My Computer
e Local Disk (C:) & My Network Places
My Documenkts

Other Places

[143]

How to Distribute Updates

When I launch the old package it recognizes that there is a new version available.
The package downloads all the changed blocks into the .ase file. The . as1 file is
only present while updates are being downloaded. If you close your package before
everything has been downloaded the package will start where it was left last upon
the next launch, thanks to the .as1 file.

™ Mozilla Firefox 2.0.0.14

File Edit View Favorites Tools Help

Qe -) (T PO [7roses [F-

acdress (£ C\Program Filesipazlla Firefor: 2.0.0.14 v B
Name Siee | Type Date Mocified

& ozlla Firefox 23,440KE Application 4[5(2010 11:35 AM

WMozila Firefox (2,0.0,14).asd LKB ASDFile 7]30/z012 2104 AM

Mozila Firefor ase: 268,431 KB ASE File 7/30/2012 9:04 AM

A

File and Folder Tasks

29 Wake 2 new folder
&8 Publish this folder ta the

& updates |;‘ ‘i‘ ‘Xl

File Edt WView Favorkes Tools Help

Qo - () (B Osearen [oroers [

Address |59 crupdates

- Mame Size Type Date Modified
File and Folder Tasks A @ Mozilla Firsfox 28,4318 Application 4/8/2010 11:35 AM

(27 Make anew folder
& Fublish this folder to the
weh

} Mozilla Firefox

Fle Edt Miew Hstory Bookmarks Tooks Help

fad share this Folder

e - @ 3 [AeiciProgram20Fies Mozl 20Fcfordefaut ikl [=] B] [Cl-[so0a=

B Getting Started [Latest Headlines

Other Places

g Local Disk (1) Mozilla Firefox 2.0.0.14

When all the changed blocks have been fetched, the ThinApp runtime will add
all the unchanged blocks from the original package and create a fully functional
package as the . ase file. Please note that the size of the . ase file is identical to the
updated package located in the C:\updates folder.

= Mozilla Firefox 2.0.0.14

Fle Edit View Favortes Tools Help

Qek - @ - ¥ O search [roders [~

iddress |2 C\Program Filesyozila Firefax 2.0.0.14 o> E

& updates

Fle Edit View Favorites Tools Help

. Hame Size | Type Date Modiied
e Back - \) @ p Search || Foders | [IE3]~ File and Folder Tasks AL @ ozl Firefox 28,431 KB Application 7{302012 9:04 AM
[E)Mozila Firefex (2.0.0.14).a5d 1KB ASDFie 7/30/2012 9:24 AM
. Rename this fle
Acdess [0 Cilpdates @ [Z)moaila Frefox (3.0.17.25d 1B ASDFie 7/30j2012 9:24 AN
: Mame - [k Mave this file
File and Folder Tasks A1 @ moails Frefox

[Copy this file

29 Maka a new Folder

:i " .
€8 Pubish this Folder b the Mozilla Firefox
Wieh

File Edt View History Bookmarks Tools Help

| share this Foldzr

- G Mt [[Feicyprogram Fiestozila Fiefoxoef 3~ | (Gl cooae)

Most isited 4 Getting Started 5 | Latest Headlines

Other Places

e Local Disk{C:)
My Documents

Moazilla Firefox 3.0.1

[144]

Chapter 5

Upon the next launch, the old package is deleted and the new package is renamed
to the name of the package. In this example the InventoryName parameter is
different in the two packages, therefore a new version of the . asd file is created.

AppSync lacks typical enterprise features such as reporting, the ability to deploy an
update ahead of time, and activating the new version on a certain date. But because
of its ease of use and robustness, AppSync is getting more popular. More and more
customers use AppSync as their method of deploying updates, not only to external
contractors but to their managed devices as well. It doesn't matter if you skip an
update, AppSync will make sure all clients run the same version eventually. Looking
for updated packages is very quick. AppSync compares the hash of the packages

to find out if there is an update available or not. When AppSync decides that there

is an update available it will start to compare the hash of each block and only
download those that are different. This method of investigating the package without
downloading it is made possible by some clever coding from ThinApp developers.
The fact that the Web or file server hosting the update doesn't need any locally
installed components is even more impressive. The only thing you need to do if you
chose to host your AppSync packages on a web server, is to make sure that the web
server allows .exe and .dat files to be downloaded. On newer Microsoft IIS servers
you'll have to manually configure this.

The built-in AppSync has some caveats but there are some other ways to execute an
AppSync update. In order for built-in AppSync to work, both packages must have
AppSyncURL activated. AppSync can be initiated using the ThinApp SDK. On the
ThinApp SDK community page (http://communities.vmware.com/community/
vmtn/developer/forums/thinapp) you can find example scripts and download
the ThinApp SDK. Using AppSync via the ThinApp SDK or AppSync. exe does not
require your packages to have AppSyncURL activated. Both methods allow you to
specify an AppSyncURL location when you run the command allowing a dynamic
AppSyncURL. Another benefit of not running the built-in version of AppSync is that
you can run AppSync in another user context. When running the built-in AppSync,
the whole AppSync operation is carried out in the context of the current user.

[145]

How to Distribute Updates

Using the SDK or AppSync . exe you can launch these AppSync operations using any
user account. You can also specify when AppSync will occur, for example with the
help of an AT scheduled job on your Windows clients.

- AEE)

O Back ~ [? 7) szarch Folders Elv

Address [[2) Z:AThindppiW¥Mware ThinApp 4.7.2 7716121CapturesiMazila Firefox (3.5.2)bin v ﬂ Go
Mame Size | Type Date Modified
File and Folder Tasks A @ Moila Firefox 35,840 KB Application 7/27/2012 D48 AM

) Make & new folder
@ Publish this folder ko the
Wwheb

\WINDOWS\system 32\cmd.exe

:\ThinfApp\UHware ThinApp 4.7.2 771812%Captures\Mozilla Firefox {(3.5.2>\hin>..\.
-N..\AppSync.exe "file:///Z:/ThinApp/UHvare ThinfApp 4.7.2 771812 Captures Mozill)
la Firefox (3.6.3>/hinsMozilla Firefox.exe" "Mozilla Firefox.exe"_

In the previous picture I'm running AppSync . exe specifying both the AppSyncURL
and the package to update.

-

O Back ~ > ir p) search Folders Ev

address (I 2:\Thindpp¥Mware Thindpp 4.7.2 771812 Captures\Mozilla Firefox (3.5, 20 bin

Marne Size | Type
File and Folder Tasks AL @ Mozila Firefox 35,840 KB Application
_) Make a new Folder
@ Publish this Folder to the
Wieh
& - || x|

ox €3.5.23N\bin>. ..

Z:~ThinApp~UMware ThinApp AppSync
B12Captures-Mo=zill
T

N :\prSync .eXe "{-‘:i.le IS
a Firefox ¢3.6.3)sbhin/Mozi Downloading a new version of your application

7= wThinfAppsUMware Thinfipp px €3.5.2>~bhin>

[146]

Chapter 5

During the download of the new version you will be presented with a progress bar.
Please note that the package never gets launched.

=

O Back - y) ? /) Search Folders Ev

Address (I 2:\ThindppWMware ThinApp 4.7.2 771812\ Captures\Mozilla Firefox (3.5, 2)\bin

Marme Size Type
File and Folder Tasks 2 @ Mozilla Firefox 106,864 KB Application
Mozilla Firefox Bak 35,840KE BAK File

= Maks & new folder

@ Publish this Folder ko the
Wieh

C:A\WINDOWS\system32\cmd.exe

Z:xThinfApp~UMuware Thinfipp 4.7.2 ?71812~Captures~Mozilla Firefox (3.5.2>~hin>..~.
e JSAppSync.exe "fFile:ss//Z i /ThinfAppsUHware ThinfApp 4.7.2 771812 /Captures-Mozill
a Firefox €3.6.3>/binsMozilla Firefox.exe" "Mozilla Firefox.exe"

Z:sThinfipp~UMuware Thinfipp 4.7.2 ?71812~Captures Mozilla Firefox (3.5.2>~bin>_

Once the update has finished the new version will be the new active package and
the old version is stored as a backup using the .bak extension.

When using AppSync on a package that uses a separate data container it's important
to remember to reference the data container as your AppSyncURL. The data container
must not share the same filename as any entry point or AppSync will fail.

fa

e ARRSYNC Parameters —-—-——--—-—-——

appsyncurL=F1Tle:/Amware-host sshared Folders/Thinappsupdates Mozi17la Firefox DaTa.dat
VAppSyncUpdateFreguency=1d

s AppsyncExpirereriod=30d

P AppsyncwarningPeriod=5d

P AppSyncwarningrreguency=_L1d

VAppsyncwarningMessage=This apg]ication will become unavailable for use in ¥remaining_daysk
JAppsynceExpiremessage=This application has been unable to contact its update server for Xex
;AppsyncuqdatedMessage=

s AppsyncClearsandboxonupdate=0

[147]

How to Distribute Updates

In this example I'm using a UNC path as my AppSyncURL, and since the package is
using a separate data container, it's the data container I refer to.

& Updates
Edit

File:

Wiew Favorites Tools Help

eBack < '\) @ pSearch H’:‘ Faolders v

address (23 ‘ivmware-hostiShared Folders\ThinappiUpdates i~ | = [
— Mame = Size | Type Drate Modified

File and Folder Tasks E D @ ozl Firefox.exe S93KE Application (32012 7:52 FM

Mozilla Firefox DATA,dat 56,332 KB DAT File 8/3/2012 7:52 PM

(29 Make & news Falder
e Publish this folder ta the
Wb

& Mozilla Firefox (VMware ThinApp)
File Edit ‘iew Favorites Tools Help

eBack - Q @ ,OSearch [E" Folders v

Address |29 C\Program Files\Mazilla Firefax (YMware Thindpp)

Mame + Size Type
nMoziIIa Firefox.exe 529 KB Application
34,880 KE DAT File

Other Places

) Thindpp
My DOCUMENES
|3 Shared Documents
a My Cornpuber

& My Metwork Places

File and Folder Tasks

(9 Make & new Folder
&% Publish this Folder to the

Both my original version and the updated package use a separate data container.
Please note that I've named the entry point and the data container differently.

& Updates

File Edit ‘iew Favorites Tools Help #

eBack @ O @ pSaarch H’Z‘ Folders v

fddress |23 Vivmware-hast\Shared Folders| ThinAppiUpdates - | Go
— Mame = Size | Tvpe Date Modified

File and Folder Tasks AL @ Mazils Firefox,exe S99KE Application 832012 7:52 PM

Mozilla Firefox DATA.dat 56,332 KB DAT File B3/2012 7152 PM

(2 Make & new Folder
€3 Publish this folder to the
Weh

™ Mozilla Firefox (VMware ThinApp)

File Edit Wiew Favorites Tools Help

@Back - O @ pSearch H—z‘ Folders v

Address |23 C\Program Files\Mazilla Firefox (¥Mware Thindpp)
Mame Size | Type
iMDzilla Firefoux,exe S99 KB Application

Other Places

) ThinApp
B My Diocurments
I Shared Documents
a My Computer

File and Folder Tasks £y

ozilla Firefox. ase S99 KB ASE File

S My Network Places = Hake 2 new Folder Mozilla Firefox DATA, dat 34,880 KB DAT File
] 5\5‘:‘25'“ it elei=r s Mozl Firefox DATA, ase S6,802KE ASE File

Mozilla Firefox (3.5.2).asd 1KE A3D File

&4 share this Folder

%) Mozilla Firefox
Edit

Eile:

Wiews History Bookmarks Tools Help

- C X | d '||?'v Google
Most Wisited |j Getting Started |5 | Latest Headlines

| | '] (untitled) | -

[148]

Chapter 5

Both the new entry point and the new data container are downloaded.

& Updates

File Edt ‘Wiew Favaorites Toaols Help @'

eBack - "\-) @ pSearch [\Ei‘ Falders v

address (2 \iwmware-hostShared Folders\ Thinapplpdates hd | Go

Mame - Size | Type Date Modified
File and Folder Tasks @ Mozila FirsFox.exe 599 KE Application B/3/2012 7:52 PM
= Mazilla Firefox DATA.dat 56,832 KB DAT File B{3j2012 7:52 FM

(2 Make a new folder
£ Publish this folder to the
Wel

& Mozilla Firefox (VMware ThinApp)

File Edit Wiew Favorites Tools Help

eBack @ .'\; @ pSearch [E" Folders v

Address (23 CiiProgram FilesiMozilla Firefox (YMware Thindpp)

Other Places

=) ThinApp
[E] My Docurnents

|3 Shared Documents 3 Mame Size Tvpe
a e File and Folder Tasks wMoziIIa E - S99KB Application
¥ 7 f| Mozilla Firefox DATA, dak 56,602 KE DAT File

Iﬂ Rename this file
@ Mawve this file
r. Copy this fils

& iy Netwark Places ozilla Firefox (3.5.2). asd 1KE ASDFile

Mozilla Firefox 4.0.1.asd 1KE ASD File

?) Mozilla Firefox
File Edit Wew Histary Bookmarks Tools Help

IjNewTab m
&) ("

Upon the next launch of the package, the user will use the updated version.

The fact that the built-in AppSync runs in the context of the user will require the
user to have the permission to modify the original version of the package. Luckily
there's a workaround for this. Using UpgradePath, you can specify an alternative
location for the AppSync log and all of the cache files. This will also hide the .asd
file so that the end users can't as easily find the file and reactivate an expired
package by deleting the log file. The end user must have permission to modify
the UpgradePath location.

In the next example I've specified the UpgradePath value in my package. ini file:

[BuildOptions]
UpgradePath=C: \ThinAppCache

[149]

How to Distribute Updates

My AppsyncURL looks like this:

AppSyncURL=file://vmware-host/Shared Folders/ThinApp/Updates/Mozilla
Firefox.exe

& Updates

File Edit Wiew Favortes Tools

Help

Qe - T piearch [[7 Folders

fiddress |23 mware-hostishared FoldersiThinppiUpdates v B
Hame = Size Type Date Madfied

File and Folder Tasks &)

(Make anew folder

@Pubish this Folder to the veb 5 Mozilla Firefox (VMware ThinApp)

File Edit View Favorites Tools Help

Qek - ©Q - [F | Osearch [roders

Address 3 Cr\Program Files\Mozila Firefox (VMware ThinApp)
Mame Size | Type Date Mol
OMuzl\\a Firefox exe 35,136 KB Application 8/3i2012]

Other Places

3 Thindpp

= ThinAppCache

File Edt View Favorites Tools Help File and Folder Tasks

Qe v) T Osesch [Zroders [F- £ Make a new Folder

& Publish this Folder to the
Address |) c:\ThinAppCache web | Genersl | She Security | Cust |
7 share ths folder eneral | Sharing ustommize

File and Folder Tasks £ Gioup or Lser names

€7 administrators (CNBMAdministrators)
€% CREATOR: DWNER

€7 Power Lisers [CMB\Power Users)
€ SrsTEM

€7 Users [CNBMsers)

Mozilla Firefox (VMware ThinApp) Properties

29 Make a new falder Other Places
& Fublish this folder to the
Wieh

[C)) Program Files
[e? share this Folder My Documents
[Sharsd Documents
g My Computer
W My Matwark Placss

Other Places

e Local Disk (C:)

(53 My Documents Permissions for sers Deny
(33 Shared Documents Full Contial O =
i My Computer Modify O
& My Network Places Fiead & Execute 0o -
List Folder Contents O
Fiead]
Details wiite R
Gl msmainninann J

For special permissions of for advanced seftings,
click Advanced

My ThinApp package, in which my user only has Read & Execute, List and Read
privileges, is located in C:\Program Files\Mozilla Firefox (VMware ThinApp).

[150]

Chapter 5

= Updates

File Edit Wiew Favorites Tools

eBack < o l} pSearch E—Fulders

Address |23 Vywmware-host\Shared Folders\ThinAppipdates
. Name -~ Sizs | Typse Date Modified
File and Folder Tasks = @ Mozila Firefox.exe 57,152 KB Application 8/3(2012 B:25 PM

Help

o

(ZIMake & new Folder
B B Mozilla Firefox (VMware ThinApp)
File Edit Wiew Favorites Tools Help

Other Flaces e Back = O @ p Search E’; Folders

= Thindpp

Address (5 CiProgram Files\Mozila Firefox (WMware ThinApp)

& ThinAppCache
. T - Sizs | Type
File Edit View Favorites Tools Help File and Folder Tasks 35,136 KB Application

Qex- O I3 pSEarth || Folders | 73] (29 Wake 2 new Folder

€3 FPublish this folder ta the
Web

Address |23 C:\ThindppCache

fd share this Folder

File and Folder Tasks (&)

Other Places

9 Make a new Folder
& Fublish this folder to the
Web

) Program Filss

{5? share this Folder () My Dacuments

I place my updated package in the AppSyncURL location.

= Updates

Fie Edt iew Fsvortes Tools Help "

oBack @ O l} pSearch E‘;Folders

address |2 Vyvmware-host|Shared Foldersi ThinappiUpdates N \ &
- Mame =~ Size Type Date Modified
File and Folder Tasks %) @ mozila Firefox.exe 57,152 KB Application 8/3/2012 B:25 PM

9Make 2 new fFolder
#¥Publish this folder to the web

= Mozilla Firefox {(Viware ThinApp)
File

oBack © Q © l@ psaarch E—‘;Folders

address |2 C:\Program Files\Mazila Firefox (Viware Thindpp)
Hame Size:
File and Folder Tasks @ mozla Firefox.exe 35,136 KB

Edit Wiew Favorites Tools Help

Other Places

I3y Thindpp

® ThinAppCache

File Edit ‘iew Favorites Tools Help

oﬁack @ o l} pSearch E‘;Folders

Address [C:iThindppCache

(29 Make a new folder
&3 Pubiish this Folder to the

%) Mozilla Firefox

. Mame = Size
File and Folder Tasks (&) =] Mozila Firsfox (3.5.2),asd 1KE
Mozilla Firefox.ase 57,122 KB

View History Bookmarks Tooks Help

("<] |~ \;‘ x @I Search Bookmarks and History

9 Maks 2 new folder

Fublish this folder to the
e ek Most Visited D Getting Started ()| Latest Headlines

[=¥ share this Folder | {untitled)

Other Places

cg@ Local Disk {C:)

[151]

How to Distribute Updates

Launching my original package will start the AppSync process. As you can see, both
the .asd file and the . ase file are now located in the UpgradePath location.

& Lipdates

File Edit View Favorites Tools Help #

eﬁack © O @ psaarch [E Folders v

Address (3 \wmware-host|Shared Folders| ThinappiUpdates v‘ G0
Mame = Size | Type Date Modified
File and Folder Tasks A @ mazils Firefoo:,exe 57,152KB Application 8/3{2012 8:25 PM

(Make arew folder
ePub\ish this Folder ko the Web

& Mozilla Firefox (VMware ThinApp)

File Edit Wiew Favorites Toadls Help

@Eack © @ o @ psaarch fE Folders v

address (3 C:\Program Files\Mazilla Firefox (WMware Thindpp)

- Mame Size
. ~

File and Folder Tasks (@ Mozl Firefoxexe 35,136 KB

Other Places

(= ThinApp

& ThinAppCache

Fil= Edit View Favortes Tools Help

=[] Renarne this file

eﬁack i O @ psaarch [E Folders v By Move this e

) Mozilla Firefox

Eile Edit Vew Hstory Bookmarks Tools Help

IjNewTab [T]
(&)][0

address (3 CAThinAppCache

Mame = Size
File and Folder Tasks o Mozll\a Firefox: ¢3.5.2).asd 1KB
Mozilla Firefos, 1 57,122 KB

Mozilla Firefoox 4.0,1.a5d 1KB

29 Make anew folder
e Publish this Folder ko the
eb

2 share this Folder

Other Places

Upon the next launch, the original package is not replaced. An in-place update
version is created in the UpgradePath location instead.

If you place thinreg. exe in your AppSyncURL location, in the same
*+ folder as the update package, a registration will happen automatically

after a successful update of your package. This helps you when your
new version of the package has new registration information, for

example, new file types.

[152]

Chapter 5

Application Linking (AppLink)

Yes, application linking can be considered or used as an update method. AppLink
was not originally designed with this in mind, but since ThinApp runtime handles
conflicting AppLink elements the way it does, it can be used to deploy updates

to packages. AppLink as an update method is more or less only suitable for
configuration changes. Since the update will be in a separate, somewhat loosely
connected file, it's not recommended for use in applying security patches. If you
don't have access to the AppLink, you will risk running an unpatched version. You
can work around this by using RequiredAppLinks, but then you run the risk of over
engineering the whole implementation. Let's repeat the AppLink conflict handling.

The last loaded conflicting element (file or registry key) will win. AppLink packages
(child packages) are loaded after the parent package. Isolation modes use a different
conflict handling; the most restrictive will win. So when using AppLink for updating
you should make sure you're in full control of the isolation modes used. You don't
want to change the isolation modes of your parent package by mistake.

The following screenshot shows a fictive example of using AppLink to update
a package:

=
- Qe -) T) s Folders [T33]-
-
Address |[C3) Z:\Thinapp|vMware Thindpp 4.7.2 7718121 Capturesicmd) ¥ Progr amFilesDir MyFakeapplication
Name Size | Type
() Back -) = 7 /' T Folders El. File and Folder Tasks A0 [TestConfigFile.ini 1KB Configuration Settings

29 Make & new Folder

axddress (239 C:\Program FilssiMyFaksApplcation (¥Mwars Thindpp) @ Pl this ot o the
Weh

Name Siez | Ty
File and Folder Tasks A0 B cmd.exe 1535K8 Ann
[Rename this File Other Places A
(G Move this file
) Copy this file “J 7eProgramFilesDir %
A M Mo =it
N Publish this File o the We = P — v o iments
(3) E-mailthis file LD AL pplication (VMware ThinApp)icmd.exe
K Delete this e C:\Progran Files\MyFakeApplication>type TestConfigFile.ini
[Hejsansvejsanl
Some ImportantParameter=1
Other Places
C:\Progran Files\MyFakefipplication>
[Program Fies

(5} My Documents
[Shared Documents
o My Computer

8 My Netwark Places

Details

[153]

How to Distribute Updates

The fictive application package is deployed locally to my client. The package only
contains a configuration file called TestConfigFile.ini and an entry point to CMD.
EXE. [have launched the CMD entry point and used the command type to display
the content of the file stored in the package. The Package. ini file of the package
contains the OptionalAppLinks=updates*.exe parameter.

& MyFakeApplication
File Edit Wiew Faworites Tools Help

@Back - I'__) Lﬁ pSearch [Ei’ Folders v

address |39 22\ Thindppi¥Mware Thinfpp 4.7.2 771812\ Captures|Copy of crmd'%:ProgramFilesDir%: \MyFakespplication

Marne = Size | Type

File and Folder Tasks 3TestC0nfigFiIe.ini 1 KB Configuration Settings

[TestConfigFile.ini - Notepad
File Edit Format “iew Help

[Hejsanswejsan]
SomeImportantParameter=1337|

I made a copy of my original project folder and modified the TestConfigFile.ini.
This will be the content of my AppLink update package. I'm still using CMD as the
entry point. The source of the entry point is of no importance in this case. We must
have one file storing the data container so the CMD entry point is as good as any.

& MyFakeApplication (VMware ThinApp)

File Edit Wiew Favorites Tools Help ;#'
@ Back ~ .'_) Lﬁ p Search u:‘ Folders v
Address |3 C:\Program Files\MyFakeApplication (¥Mware ThinApp) A | Go

Mame = Size Type Date Modified
File and Folder Tasks [Sjupdates File Falder 7}26/2012 11:51 PM
d. 1,536 KB Applicati Fl26f2012 11:37 PM
(29 Make a new folder = Bres ! RRicaton f2el

@ Publish this folder to the
ieh & updates

led Share this Folder
File Edit Wiew Favorites Tools Help

Other Places oBaCk il f\.) Lﬁ pSEarch li? peldcie '

[C3) Program Files address |[[3) C\Program FilesiMyFakedpplication (YMware Thindpp)iupdates

[My Documerts Size | Type

3 Shared Documents File and Folder Tasks 1,536 KB Application
a My Computer (27 Make a new folder

Qd Iy Metwork Places @ Publish this Folder ko the
Web

el Share this Folder

Details

[154]

Chapter 5

I create the AppLink location specified in the parent package's Package. ini file
(updates folder next to the package) and copy my updated package into it.

= BEE|
W
O Back - 4 ? 7 Search Folders m -
Address |[5) C:\Program FilesiMyFakedpplication {YMware Thindpp) b a Go
Marme Size Type [rate Modified
’ ~
File and Folder Tasks 2 updates File Falder 7/26{2012 11:51 PM
B crnd . exe 1,536 KB Application 7l26l2012 11:56 PM

(= Make anew Folder

@ S\,“:,ﬂs" : \Program Files\MyFakeApplication (VMware ThinApp)icmd.exe

fed Sharet
C:“\Program Files“MyFakefApplication>type TestConfigFile.ini
[Hejsansvejsanl
Some ImportantParameter=1337

Other Plac

) Progra C:“\Program Files“MyFakeApplication>_

[} My Doc
I Shared
o My Cor
« 3 Iy et

Details

Now running the command type to display the content of the TestConfigFile.ini
file will show the content of my child package's TestConfigFile.ini. This proves
that we can use AppLink to change elements within an existing package.

Using AppLink to handle updates to the deployed packages can be a very efficient
method. Let's say your deployed package is 1 GB in size. You need to change one
single registry key. Creating an AppLink package containing only that one registry
key will be approximately 600 KB in size. Pushing out 600 KB is much less data to
deploy to your clients than if you were to copy a whole new version of the 1 GB
large package.

[155]

How to Distribute Updates

It will require some planning ahead using AppLink for updating. You must have
activated AppLink when building your package to begin with. Creating the update
package requires some planning as well. The update package should not contain
anything but the element/elements that it's supposed to update. In the fictive
example mentioned earlier, my AppLink package's project folder looked like this:

& Copy of cmd

File:

File and Folder Tasks

(20 Make a naw Folder
e Fublish this Folder to the

Web
Other Places

I Captures
My Documents

|3 Shared Documents
a My Compuber
Qd My Mebwark Places

Details

- |BX]
Edit ‘iew Fawvorites Tools Help \”’
e Back + -'\) Lﬁ p Search [E“ Folders v
Address |3 Z:\ThinappiWMware Thindpp 4.7.2 771812YCaptures\Copy of cmd A4 | Go

Mame -~ Size | Twpe Date Modified
|50 *ProgramFilesDir s File Folder FI26f2012 1146 FM
S)bin File Folder 7127{2012 12:09 &M
(=) Support File Folder FI26[2012 11146 PM
[Fbuild.bat 3KB MS-DOS Batch File 7I26{2012 10:03 AM
3Package.ini 7KE Configuration Settings 7/27/2012 12:09 AM

. Package.ini - Motepad

File Edit Format View Help

; This file can be used to con'F"lgl;ure build and runtime options for packages
; Lines that begin with a semicolon contain only comments and do not_have an
3 For documentation and to obtain a complete 11st of options available wisit:

; http: Awvww. vimwar e, com/ nfo?id=006

H
[Compression]
CaompreassionType=Nona

[Isolation]
DirectoryIsolationMode=merged
registryIsolationModa=merged

[Buildoptions]
H MSI_Parameters
;Enable mMsIFilenama if you want to generate a windows Installer package.

It's important to keep the AppLink update package as clean as possible to make

sure you don't modify anything unintentionally. In this example, I have cleaned

out everything unnecessary. All isolation modes have been set to Merged, even the
registry isolation mode, guaranteeing that my update package will lose any isolation
mode conflict negotiations.

[156]

Chapter 5

Deploying updated packages using
VMware Horizon Application Manager

Horizon Application Manager identifies managed ThinApp packages using Horizon-
specific GUIDs built in to the package (these GUIDs are separate from the MSI-file
GUIDs mentioned earlier). You generate these GUIDs when you activate Horizon
Manager for a package. In order for Horizon Application Manager to identify a
package as an update to an existing package, the AppID of the two packages must be
the same. Horizon will also use another Package . ini parameter called VersionID to
understand which of the packages are the latest. You can manually find the AppID of
a package using the ThinApp SDK but it's not a very user-friendly method. Your best
option is therefore to run Setup Capture specifying that you are creating an update
package during the Horizon activation part of the wizard. This method will extract all
the necessary information and inject them into the new package's Package . ini file.

Let's have a look at a Horizon implementation and how to update a package
managed by Horizon Application Manager:

E VMware Horizon - Edit Application

{:} Home & Admin @ Help HZN Admin | Account | Logout

HORIZON

Dashboard Users & Groups Applications Reports Settings

Edit Application Back to Applications =
APPLICATION INFO X DELETE 0 GROUP ENTITLEMENTS 4 ADD
Mozilla Firefox (3.5.2
() This application does not have any group entitlements._ Click "Add" to add a group
L | Application ID: 1012
UUID: 41e6d3d9-1db3-49ef- 1 INDIVIDUAL USER ENTITLEMENTS 4 ADD
924f-8eb56bc64ala
Version: 1.0 User1, Test (TestUser1) Automatic EDIT | REMOVE W
ThinApp
LICENSE MANAGEMENT # EDIT
THINAPP PACKAGES
e 10 PERDEVICE APPROVAL LICENSE TRACKING

ACTIVATION -

Dene

[157]

How to Distribute Updates

Here's the currently active and deployed package. You can see a GUID listed but this
ID is not the one used to identify packages during update. The name of the package
isMozilla Firefox.exe, but since the InventoryName of the package is Mozilla
Firefox (3.5.2) this will be the name displayed in Horizon's administration interface.
The version of the package is known to Horizon as Version 1.0. The Horizon
environment uses \ \fileserver.pinata.local\ThinApp as the ThinApp repository.

f2 Horizon Connector - Windows Applications far ~ B ~ =) d# v Pagev Safety~ Took~ @~

Windows Applications Network Share

Enable Windows Apps

m

Path | Wileserver.pinata.local\ThinApp

Path to the storage location of applications

Scheduling Every hour -

Cancel E

€L Local intranet | Protected Mode: Off fh v ®100% v

[158]

Chapter 5

,." Setup Capture - Manage with Horizon

Whdware Horizon Application Manaager provides deplayment, dynamic entitlement,
and centralized uzage reporting capabilities for Windows applications vitualized
with Widware Thindpp. The Wkware Horizon platform provides the foundation for
MG unified application management with & catalog of enterprize Saas and virtualized
Windows applications, dynamic policy-based management, and access control.

v Manage with YMware Horizon &pplication Manager

Organization URL [optional] : I

¥ Thiz package iz an update of an existing base Thinapp package
Baze package location: I\\file&ewer\Thin&pp\M ozilla Firefox 3.5.2 Browse |

Help | < Back I Mext » I Cancel |

While capturing a new version of Mozilla Firefox I refer to the folder where
the old version of the package exists. This will extract the necessary GUID
and generate a new VersionID value. The new Mozilla Firefox package
now includes the necessary Horizon update information.

B Package.ini - Notepad

File Edit Farmat Wiew Help

j———————- Horizon Parameters —-—-—-———-—-—-
AppID={BEGEEFCE-08B2 ~4ECC-A23-14CAZASBEGSF |
versionIb=2
ﬁatificatianDLLs:HDrizunP1ugﬁn.dTT

[159]

How to Distribute Updates

& Mozilla Firefox 3.5.9

File Edit %iew Favorites Tools Help

eﬁack - -J - l.@ /,_]Search i Folders |v

Address IB Vifileservert ThindppiMozilla Firefox 3.5.9

Mame = | Size | Tvpe
File and Folder Tasks S .@Mozilla Firefou. exe 50,516 KE Application

t.j Make a new Folder

@ Publish this folder to the
Web

Deploy the new package to your Horizon ThinApp repository. You should place the
new package in any folder and Horizon will pick up that it's an update package since
the correct AppID and VersionID values exist.

J E VMware Horizon - Edit Application |T| B

(! Home &t Admin @ Help HZN Admin | Account | Logout

Dashboard Users & Groups Applications Reports Settings
Edit Application Back to Applications =
APPLICATION INFO ¥ DELETE 0 GROUP ENTITLEMENTS 4 DD
Mozilla Firefox (3.5.2]
{) This application does not have any group entitlements. Click "Add" to add a group.
{ Application 1D: 1012
UUID- 41e6d3d9-1dba-49ef- 1INDIVIDUAL USER ENTITLEMENTS % ADD
924f-8eb56bcB4aia
Version: 2.0 User1, Test (TestUser1) Automatic EDIT | REMOVE b
= ThinApp

LICENSE MANAGEMENT # EDIT
THINAPP PACKAGES
8 PER-DEVICE
Rlersion 20 APPROVAL LICENSE TRACKING
ACTIVATION

Done

[160]

Chapter 5

When the update package's meta data has been synchronized to Horizon, all
deployments will automatically be updated. As you can see, the version is now 2.0
within the Horizon Manager. The original version's InventoryName is still displayed
so you might want to configure the initial package accordingly.

If your deployment tool is Horizon Application Manager I would say using Horizon
to deploy updates suits all the different update categories. Similar to using MSI I

see a point in using the same process for deploying updates as used to deploy the
packages in the first place.

Summary

This concludes the chapter on how to distribute updates. You've learned how

to use different methods to deploy your new versions of ThinApp packages.
There are many different methods, each with its own strength. Pick one or two
that suits your environment and processes. You will probably not use all of them.
Remember to keep your implementation and design simple. Just because a feature
exists, it doesn't mean you must use it.

The next chapter will cover ThinApp's best practices.

[161]

Design and Implementation
Considerations using
ThinApp

In previous chapters, you've learned how to create and deploy ThinApp

packages, as well as how to create and deploy updates. Now it's time to have a
look at some different design and implementation consideration. This chapter

is to be considered as a discussion more than best practices written in stone.
ThinApp offers truly unique flexibility. The problem is that all this flexibility can
become a bit overwhelming. It's hard to give you a recommended ThinApp design
in this book, because all environments are unique.

In this chapter we'll discuss:

* Protecting your packages

* Isolation mode considerations

* Sandbox design

* ThinDirect

* Designing for a physical desktop, virtual desktop, or mixed environment

* Streaming share sizing

Design and Implementation Considerations using ThinApp

Protecting your packages

Since a ThinApp package is very portable between operating systems and clients,
it's important to protect your packages from being copied and used on unauthorized
devices. There are several different methods you can use to protect your packages:

* Using Active Directory groups

* Built-in VBScript

* Using VMware Horizon Application Manager
* Using third-party solutions

Protecting Packages with the help of Active Directory (AD) group membership is
probably the most common method. During build time, you specify AD groups
within your Package. ini file. You or your client must be a member of the correct
group or execution will be denied. This method is very robust and secure. The
downside is that it can be a bit static by nature. If you want to change the group
used for protection, you must rebuild your package.

With a VBScript, virtually any logic can be used to validate if the package is allowed
to execute or not. With ExitProcess you can terminate the package if your logic

is not fulfilled. I've seen customers using scripts querying DNS servers, verifying
the IP range, and with that allowing for per location-based entitlement. Remember,
ThinApp is not a security product so there will always be possible workarounds

to VBScript protection, but for most scenarios it's good enough.

VMware Horizon Application Manager will allow for dynamic policy management
of your ThinApp packages. If you want to change entitlement, you can do so within
the Horizon Administration web portal and the local Horizon Agent will poll for
policy changes and apply them on the fly. Without the local Horizon Agent there

is no way of executing a Horizon Enabled ThinApp package.

There are some third-party solutions available for protecting ThinApp packages.
One of the most well known is the solution from Concept Software (http://www.
softwarekey.com). The benefit of the solution from Concept Software is that it
doesn't require any locally installed components. It's agentless, just like ThinApp.
It requires you to wrap the original executables in their bootstrapper before
compiling the project folder into a package.

Most of the previous methods for protection of your packages allow for user
entitlement as well. For example, if you rely on Active Directory group for
protection, thinreg. exe will use this information and by default, only register
the packages that the user is entitled to.

[164]

Chapter 6

Protecting your environment from being attacked by viruses is, of course, of
importance. A ThinApp package could, in theory, contain a virus. If your capturing
environment is infected, you could end up virtualizing parts that are infected. While
there is no way telling how a virus will behave, there's a high probability that any
infections will be contained within the sandbox. But the execution of the virus will be
allowed. This applies to applications virtualized with ThinApp getting infected from
outside the virtual environment as well. The virus will probably execute, but registry
keys and affected files will be stored in the sandbox, all depending on your isolation
modes of course. You should therefore have antivirus software installed on all your
clients. The antivirus software can detect virus infections within your sandbox
because files are stored as normal files in there. Currently, there is no antivirus
software that can scan inside a package's virtual environment or that can understand
the package file format. Therefore, there's little to no point in allowing your antivirus
software to scan your package files. Most antivirus software will keep the operating
system from accessing the package while scanning it. This slows down the launch
time of a package dramatically. If policies keep you from excluding your packages
from being scanned on access, a possible workaround can be to make sure your

data container is stored as a separate file and not within one of your entry points.

Default isolation modes

Isolation modes are probably the most important feature of ThinApp and therefore
one of the most interesting in my opinion. When it comes to configuring your
packages, isolation modes are of course a centerpiece.

When I create a ThinApp package, I always start using WriteCopy as my default
directory isolation mode. This way all changes I do during my test runs will end up
in the sandbox. This is important because it lets you get to know the behavior of the
application, that is, learn what will end up in the sandbox. Why this is important
we will discuss in more detail in the next chapter. When I'm ready to compile my
production ready package, I usually change the default directory isolation mode to
Merged. This way, the package will act like a natively installed application. It will
for many locations honor the permissions specified on the client OS. For example,

if a user tries to save a document in the root of the C:, a denial dialog box will be
displayed to the user instead of the file getting sandboxed.

The fact that I can switch between default directory isolation modes such as this,
indicates that the default directory isolation mode has no technical importance at all
for my packages. I believe this is a good best practice. If the application must have a
specific isolation mode on a certain location, make sure your project folder contains
this setting. Countless times I've been told that a package uses either WriteCopy

or Merged as the isolation mode. There is no such statement. Most packages I've
seen use all three variations of the isolation modes. What they refer to is the default
directory isolation mode, but that is mostly of no technical importance.

[165]

Design and Implementation Considerations using ThinApp

As discussed earlier in this book, Setup Capture will create default isolation modes
for certain locations. It's possible for Setup Capture to add a folder macro to the
project folder, even though it hasn't been modified during the capturing process. This
behavior will allow most applications to run ThinApp out of the box. Another benefit
is the fact you can run these out of the box captured applications without risking your
physical environment. Most default locations use WriteCopy. A ThinApp packager is
expected to investigate all isolation modes and all folder macros. It's expected that you
delete the folder macros not used by your application (but leave $SystemSystem%\
Spool or your package will not be able to print) and adjust the isolation modes as
needed. If your packaged application requires a specific isolation mode on a location,
make sure you document this. If you add AppLink packages later, you will want to
make sure that these don't change the isolation modes unintentionally.

Sandbox considerations

To be sandboxed or not to be sandboxed? That is the question. In my opinion,

the smaller the sandbox is, the better. Just because ThinApp offers the sandbox
functionality, I can see no reason to sandbox everything. I use the sandbox when
there is a true design or application functionality reason to use it. However, client
design reasons could dictate you to store as much as possible in the sandbox. You
may not have a profile management tool in place or you have the need to keep the
client environment absolutely clean. For you to able to revert your package into a
vanilla state by simply deleting the sandbox might also be a reason.

All are very valid reasons for keeping as much as possible in the sandbox. You may
not have profile management in place or the need to keep the client environment
absolutely clean. Both are very valid reasons for keeping as much as possible in

the sandbox. But if you already have a profile management tool in place, or simply
have dedicated hardware per user and don't care if the profiles are lost, I would
challenge you to think twice before you decide to sandbox everything. Whatever your
environment looks like, you should have a good reason for sandboxing. You should
not sandbox everything simply because that's the default behavior of a ThinApp
package. Remember what was discussed earlier in this book. Any conflicting elements
already in the user's sandbox will override the content of your package. This will make
it harder for you to design your updated package.

I'm often asked if one should include a version number in the sandbox name or not.
My answer is that it depends on the situation. If you want to preserve user settings
between updates, I would get rid of the version in the sandbox name. This way, you
don't risk running Version 10 of Mozilla Firefox while the active sandbox is named
Mozilla Firefox 3.5.9. On the other hand, if you want to make sure you are in total
control of the environment when deploying a new version, you should keep the
version in the sandbox name, forcing users to create a new sandbox when launching
the latest version.

[166]

Chapter 6

All packages will have to be updated at some point in time. If modifications are
made to virtualized elements, there's not much to do but sandbox the modification.
A possible workaround could be to leave the element outside the virtualized
package. Which is okay. A complete desktop client design will incorporate both the
virtual environment within your packages and the physical environment. Too often,
a client design handles them as two completely isolated topics. The two can, and
often should, work together. When you package an application for native installation
you're taking the physical operating system into consideration. The same should

be applied on virtualized applications. There are many reasons to use application
virtualization. Isolation from the underlying operating system is one of them. If this
is your main driver for application virtualization, then there's certainly a point to
sandbox as much as possible. But if ease of deployment and updating are your main
drivers, then the isolation is not such a big deal.

Often do enterprises have a packaging policy dictating common settings for
all packages. Even if your packaging policy specifies a certain location for your
sandboxes, for example, the user's roaming profile. Your policy should allow a
different location for those few applications that create massive sandboxes and
don't need to be roamed.

I'm the first to admit that designing the perfect ThinApp implementation
is hard. Because it's perfection we are pursuing, right? At the end of the
day, the most important thing is that all decisions are made on the basis
of knowledge of the ThinApp technology. Hopefully the rest of the book
provides the necessary information for you to make a calculated decision
on how your unique implementation will look.

Implementing ThinDirect

Many customers are struggling with a one browser policy. Using one browser that
has to support all web applications often means you freeze your browser at a certain
version and keep dependencies such as, Java and others, locked down. Updating the
browser becomes a huge project that can span for a year (honestly I've seen multiple
year long projects). ThinDirect offers you a way out of this hurdle. It's often only a
couple of very critical web applications that force you to use a certain version of

a browser, having specific settings or being stuck with an outdated dependency.
Being able to switch browser on a per web application basis, seamless to the user,

is very powerful.

[167]

Design and Implementation Considerations using ThinApp

Historically, ThinDirect has been associated quite heavily with virtualizing Internet
Explorer 6 (IE6). While this still is a valid use case, I would like to move the focus
away from IE6 and different versions of the browser, and focus more on browser
settings and different dependencies. If one of your web applications requires a
certain setting, why should you apply this setting to all your browsing? Using
ThinDirect you can very well have Internet Explorer 8 (IE8) locally installed in a
very secure and locked down configuration. When the user needs to access a web
application requiring a more unsecure configuration, ThinDirect simply launches a
packaged IE8 with the correct configuration. My design proposal is to have the latest
and greatest browser, very securely configured together with the latest versions of all
dependencies. Then you use ThinApp packaged browsers with ThinDirect to handle
the exceptions.

If you are planning on using ThinDirect to offer different settings or dependencies to
your users, you should think twice before you actually virtualize the browser. If the
correct version is already natively installed, you could use an entry point to launch
the locally installed browser but within a new environment instead. This way,

you only have one browser instance to maintain and keep updated. You can find
out more about about ThinDirect in Chapter 2, Application Packaging in the section
Virtualizing Internet Explorer 6.

I would highly recommend that you use Group Policy Objects (GPO) to manage
your ThinDirect implementation. The other method of configuring ThinDirect,
using text files, are great for testing, small implementations, and running demos,
but do not really fit in a managed enterprise environment. Central management
of ThinDirect is much more commonly used and certainly more practical.

Designing for a physical client
implementation

The most common deployment scenario for physical clients is local deployment.
Most customers use deployment tools such as Microsoft SCCM or similar, and
deploy the ThinApp packages as MSIs. You can very well stream to physical devices,
but that is mostly used in special use cases. For example, you can choose streaming
because of the in-place update mechanism it offers.

Choosing local deployment offers a couple of benefits. It fits seamlessly into the
existing processes and the packages have more or less the same performance as a
locally installed version of the application.

[168]

Chapter 6

Where you decide to place your packages on your clients is an interesting discussion.
I've seen enterprises creating a specific ThinApp folder on their clients where all
ThinApps go. Another method is to deploy the packages into the default location,
thatis, C:\Program Files\ApplicationName (VMware ThinApp). My personal
preference is to deploy packages to C:\Program Files\ApplicationName, that

is, into the same folder as a natively installed version of the application. I fail to
understand why you would feel the need to specify if the application is virtualized
by its location, so using the original location seems to be the most logical choice.

The reason for ThinApp to default to an ApplicationName (VMware ThinApp)
folder name is simply to make sure you do not conflict with a natively installed
version. One good side effect when going for the C:\Program Files\
ApplicationName path is that you'll get rid of the irritating Side by Side (SxS)
events in the Microsoft Event viewer (for more info, refer to http://kb.vmware.
com/kb/2005254). These SxS events are purely informational and occur because
the Windows operating system can't find the folder that the application appears
to be running from.

& %ProgramFilesDir%

@Back @ d L’@} pSEarch i Folders v

Address |23 2 ThinAppi¥Mware ThinApp 4.7.2 771812\ CapturesiMozila Firefox (3.5.2) %ProgramFilesDir ~ | Go
Size Type Date Madified

File Folder 8/8/2012 2:20 PM
1KB Configuration Settings 6/8(2012 2:21 PM

Marne
|)Mazila FireFox
b e#attribotes

File and Folder Tasks

9 Make anew foldsr

& Mozilla Firefox
-

I Package - Notepad
File Edit Format View Help

Back -) I @] Search Folders H
o @ L s (2} reuidopt fonsT

e MSI_Parameters -——---—-——---
Address | C:iProgram FilesiMozila Firefox ;Enable msIFilename if you want to generate a windows Installer package.
Name MSIFilename=Mozilla Firefox (3.5.2).msi
- smsIManufacturer=wvmware Inc.
@ rozila Firefox sMSIProductversion=l.0
sMmsIpefaultInstallallusers=1
sMmsIRequireElevatedrrivileges=1
MsIInstallDirectory=Mozilla Firefox
smsIProductCode={a5200259-C701-A136-KCA2-BC 5035820670}
SMSIUpgradeCode={824099C2 -9F8E-B5%0-0B58-18817BESFD4 2 |
IMSISTreaming=0
sMSICompressionType=Fast
sMSLArpProductIcon=%ProgramfFilespirgMozilla Firefoxhfirefox.exe, 0

File and Folder Tasks

(29 Make a new folder
e Fublish this Falder to the
Web

lad share this Folder

Choosing to deploy the package into the same path as the original application's
path is a logical choice. A side effect is you will get rid of most of the SxS events
in your event log.

[169]

Design and Implementation Considerations using ThinApp

When deploying locally, you need to decide where to place your sandbox. A package
that is locally installed can very well use a sandbox located on a network share. If
you choose to store the sandbox on a network share, the performance of write and
read operations to the sandbox will be limited by the speed of your network and
network share. If your package makes minimum use of the sandbox your execution
should not be influenced so much. And the other way round, if your package makes
much use of the sandbox your users will probably notice a decrease in performance
of the application.

Storing the sandbox locally will offer a better application performance. The

sandbox can be roamed using the Windows roaming profile. If you use a profile
management tool, make sure the tool is configured to download the sandbox
completely (sometimes called pre fetching), or the sandbox risks getting corrupted.
Many enterprises use the roaming profile more as a backup solution for user's data/
settings rather than for offering their users a personalized desktop on different
devices. If this is the main reason to use roaming profiles, I instead recommend using
a proper backup tool. Backup tools are generally more suitable for pure backup
tasks. ThinApp supports redirecting folders, but if you redirect too heavily you can
see some side effects. If your packages use $AppData% to store the sandbox but you
redirected it, and the My Documents folder is redirected as well, you have multiple
layers of redirection on top or underneath ThinApp's virtualization layer. If your
user profile design requires folder redirections you need to verify that the design
works with your ThinApp packages.

If your sandboxes are located on a network share, there can be no firewalls between
your clients and the share. Even if the firewall supports a 1 GBps throughput, it will
add latency. This latency will impact the overall performance of your packages.

If you deploy your packages locally, you will probably deploy your AppLinks locally
as well. I don't necessarily use the same path standard as with my parent packages.
The reason is that I am much more likely to have a conflicting natively installed
runtime. Since AppLinks often are packaged runtimes, I don't want to risk deploying a
package into the folder used by a natively installed version. Often you have the latest
and greatest runtime natively installed on your clients and use ThinApp to package
the odd versions. But I don't separate them into a specific AppLink folder either, for
example, C: \AppLinks. I prefer to keep my AppLinks in the C:\Program Files
folder. I often use the default ApplicationName (VMware ThinApp) folder name to
make sure I use a unique folder. When I build my parent package, I need to know the
path to my AppLinks, so having a good naming convention and process in place is a
must. An interesting alternative for deploying your parent package and child package
in one and the same MSI file is posted on the ThinApp blog, available at http: //
blogs.vmware.com/thinapp/2012/08/deploy-thinapp-and-applink-packages-
together.html. The method could be enhanced with logic to cope with AppLinks
already deployed on the client machine but other than that, this is a great concept.

[170]

Chapter 6

One of the most frequent questions I get is "what should I virtualize?" and

"what should my Golden Image include natively?". My view on this is pretty
straightforward. An application used by all or most of your users should be natively
installed in their latest and greatest version. That goes for Microsoft Office as well
as Java. The exceptions are very good candidates for ThinApp. For example, an

old Java version or the previous version of Microsoft Office used only by a few.

An application that is only used by a small number of users, and all troublesome
applications, are good candidates for virtualization. Using this approach and my
suggestions for folder structure should get you a long way in your ThinApp design
for physical clients.

Designing for a virtual desktop
infrastructure (VDI) implementation

Virtual desktops, what a great idea! VDI offers central management of your
desktops. On paper, this is a perfect solution. In reality, it's still a great solution but
only for certain use cases. Very few enterprises can use VDI for their whole user
base, but where it's possible it can be a great solution. The holy grail in VDI is to have
only one Golden Image, shared by all users. User-unique changes are stored as delta
changes. Hardly anyone manages to get down to only one Golden Image. One thing
you want to make sure though, is that the application entitlement is not forcing you
to manage many different Golden Images.

Furthermore, application entitlement shouldn't change the user-unique delta

disk. If you achieve this, you will require much less expensive SAN storage, and

by minimizing your SAN investment, your VDI ROI (return on investment) and
TCO (total cost of ownership) calculation will become much more appealing.
Application virtualization is the only packaging technology that will allow you to
deploy applications without changing the disk content. Especially when ThinApp is
implemented using a streaming deployment method. Streaming ThinApp packages
and storing the sandbox to a network share will require no change on the disk.
ThinApp streams to memory only, no disk change is made by the ThinApp runtime.
The operating system might cache memory to disk, but this is out of the ThinApp
runtime's control and the swap file is often something you can discard anyway.

So with this in mind, streaming is a very common deployment method for VDI
implementations. But it's not the only deployment method. Local deployment can
very well be used. I would recommend it for global applications, that is, applications
put in your Golden Image. ThinApp packages can very much be a part of your
Golden Image. Streaming is still my recommendation for applications not used

by all users, and therefore is subjective to a user-specific entitlement.

[171]

Design and Implementation Considerations using ThinApp

The downside of having something in the Golden Image is that it's harder to manage.
Updates to applications often require a recompose of the desktops. It doesn't

have to, but in reality other methods can very quickly become over engineered.
Streaming has the obvious benefit of not changing the disk footprint, but when

you look at updating a streaming package using in-place update, it becomes even
more appealing. When it comes to entitlement, my favorite is to call thinreg.exe
from your login script. If your VDI environment is VMware View, you have built-in
ThinApp entitlement capabilities. The View Manager can entitle ThinApp packages
on a per pool or desktop basis.

l?&,\t’I\«‘I\.\rare\"iew;ﬁ\dmmistratclr & B - = gé; v|

Updated 08/15/2012 22:10 PM @& ThinApp Configuration

Remote Sessions 1
Local Sessions 1] Application Repository
Problem Desktops 0 —
Events o 0 & 0 Add Repusitury...‘
System Health 4 & it ?
8 0 1 0 Repository | Share path Description

Thin&pp Repository Wad\Thinipp Prod\View Repository

£ Dashboard
.ﬁ Users and Groups
¥ Inventory
Pools
(1 Desktops
L Persistent Disks
4 ThinApps
» Monitoring
» Policies
¥ View Configuration
Servers
Product Licensing and Usage
Global Settings
Registered Desktop Sources
Administrators
ThinApp Configuration

Event Configuration

Transfer Server Repository

VMware View Manager supports ThinApp entitlement. The previous screenshot
shows where you specify one or many ThinApp repositories.

[172]

Chapter 6

P VMware View Administrator -8 -0 & ‘I

S/2012 22:10 PM ThinApps

Ramote Sessions
Summary H Events |

Local Sessions

Problem Desktops

Events O
i
8

System Health

1
0
0
& o | Scan New ThinApps...| | Remowve ThinApp...| | * Add Assignment
?
Pools...
0

Filter = | Fin Desktops...

£ Dashboard
&8 users and Groups ThinApp | Vendor
¥ Inventory Mozilla Firefox (3.5.2) Mozilla Corporation

Pools Internet Explorer 8 Microsoft Corporation
(1 Desktops
ey Persistent Disks
.,J') ThinApps

» Monitoring

» Policies

¥ View Configuration New Template... -

Servers

. . Template Thinay
Product Licensing and Usage 2 2

Global Settings

Registered Decktop Sources

Administrators
ThinApp Configuration
Event Configuration

Transfer Server Repository

In the View Manager you can assign (entitle) ThinApp packages on a per pool
or desktop basis. thinreg. exe called from your login script allows you to entitle
on a per user basis.

One thing I often come across is a profile management tool being implemented quite
heavily in a VDI environment. Very often, the user's folders are being redirected to
network shares. It makes a lot of sense to redirect otherwise local folders, because
then nothing is stored on the actual virtual desktop. This allows you to use floating
pools. Floating pools are when users are not assigned to a specific desktop. All
users share the same pool of stateless desktops. ThinApp supports most folder
redirections, but I've seen situations where there's too much redirection. Redirection
of the user's $AppData% (where the sandbox is stored), and redirecting other folders
such as Favorites or My Documents, can become an issue. If you think about it,

the write or read operation is going through several redirection layers so it's not
surprising if an issue arises. Make sure you test your ThinApp packages in your
VDI design to make sure you do not run into any issues.

There are no real changes you need to implement in your packages to support a
VDI implementation. When it comes to VDI, my view is very simple. You can't
have a good virtual desktop infrastructure without ThinApp.

[173]

Design and Implementation Considerations using ThinApp

Designing for a terminal server/Citrix
XenApp implementation

Using ThinApp in a terminal server and Citrix environment is more or less identical
to running ThinApp in VDI, from a design point of view. The few considerations
you have to make for VDI is true for terminal servers (TS) as well. One thing that
might complicate a TS implementation is the fact that you are often running it on a
64-bit operating system. You may have to tweak your packages to support a 64-bit
environment. If you are using Citrix XenApp, you publish a ThinApp package in the
same way you would publish any other application on your XenApp server. When
you are asked to browse to your application, simply paste the path to your package's
entry point on the network share and you're good to go.

I definitely recommend streaming ThinApp packages onto your terminal server/
XenApp. In that case, management and support are so much easier. You can place
the network share on the same high-speed backbone as your TS environment, so
network performance is rarely a bottleneck. Your servers will be more or less clean
from application installations, which will make them very stable. Server updates

and patches are only performed for the operating system and Citrix components. No
patching of the application is required to be performed on your servers. Application
updates are handled using the in-place update method. In using streaming, your
whole Citrix environment has only one instance of the application. Updating this one
single instance will immediately update the application to all your users.

Using ThinApp on Citrix will dramatically lower your time to market - no more time
consuming manual tweaking in order to get applications installed on each of the
servers within a farm. No more time consuming regression tests. Simply verify the
functionality of your package, and off you go. thinreg. exe in the login script will
handle your user entitlement. If you use Active Directory group membership for
entitlement, thinreg. exe will register, for example, Adobe Reader 8 to one group
of users and Adobe Reader X to another. Both groups can be logged in on the same
physical terminal server and still have their own file type registrations and their own
start menus. thinreg. exe registers on a per user basis by default. You should not
use the thinreg.exe/a switch, which would register machine wide.

[174]

Chapter 6

Designing for a mixed environment

A mixed environment can be physical clients together with virtual desktops. It

can also be a physical and terminal server/Citrix XenApp environments, or any
combinations of these. One benefit with ThinApp is the possibility to have one
single package supporting all your different environments. The same package can
run on physical clients as well as on VDI desktops or Citrix environments. Creating
packages supporting many different environments is of course harder than creating
a package only supporting one environment.

ThinApp has some parameters you can change dynamically. The ability to change
the sandbox location without rebuilding your package is the most useful one. Let's
say your physical clients must store the sandbox in the $AppData%\Thinstall
folder, but your XenApp environment requires the sandboxes to be stored on a
network share. In this case you can still create the package with the default location
of the sandbox. On your Citrix servers you can specify an environment variable
(see in Chapter 1, Application Virtualiztion, the section The sandbox for more
information) overriding the sandbox location. This allows you to have one

single package supporting both environments.

You usually have different operating systems types when you have a mixed
environment. For example, your terminal servers might run a 64-bit OS while
your clients run a 32-bit OS. Some applications have a problem with the change
of the Program Files folder name on a 64-bit OS. One common workaround is
to capture the application being installed into a static path rather than into the
dynamic Program Files folder. For example, you can install the application into
a folder in the root of the C:. This path will be static regardless of whether you use
the package on a 32-bit or 64-bit environment.

Another topic on mixed environments is the location of your AppLink packages.
Using local deployment of ThinApp packages means that your AppLinks are

most likely to be located locally as well. Using a streaming deployment method,
typically a VDI/terminal server, your AppLinks are located on a network share.
One method supporting both the deployment methods with one package is to use
OptionalAppLinks pointing to both AppLink locations. You will have to make sure
your users on the physical clients can't access the AppLinks located on the network
share. This can be achieved with NTFS permissions or firewall rules.

[175]

Design and Implementation Considerations using ThinApp

Sizing of your streaming file share

ThinApp streaming is a great method of deployment. It's easy to support since it
only requires a standard Windows file server. Your ThinApp packages are easy to
maintain using the in-place update. The downside is that it's hard to know how to
size your streaming environment. That's because all networks are different, and all
packages behave differently when streaming. Two virtualized Microsoft Office 2003
packages can behave very differently from each other. So the only way to efficiently
size your streaming implementation is to investigate how your packages behave.
That said, the load on the file server is very similar to the load that your normal
document file server would bear. There's no difference from a file sharing point of
view, if the file is an Excel spreadsheet or a ThinApp package. The file server handles
the two types of files identically. If many users request the same package, the file
server will probably cache most of the package. Therefore you should size your
ThinApp streaming repository just like you would size any other file share. With
this in mind I will try to give you a couple of directions that can be helpful when
designing your streaming environment.

Your clients must have minimum 100 Mbps LAN access to the ThinApp repository.
The connection must be a reliable and a low latency connection. If you would lose
connection to the ThinApp repository while running a streamed ThinApp package,
it would be the same as losing your hard disk during execution from the
application's point of view. No Windows application can cope with that kind

of interference, so the packaged application will crash and burn. A low latency
connection is important because the default block size when streaming is 64 KB.
Many blocks will be transferred to the client when streaming a package. If your
network design were to add latency to each block, you can imagine the direct effect
on performance. I would recommend using a 1 GB LAN access for best performance.

To be able to correctly size your streaming infrastructure you will need to investigate
your packages. You have to measure the amount of data the package will consume
when being executed. You can do that using tools such as Wireshark (http: //www.
wireshark.org). Once you've learned what the package consumes, you need to
calculate how many users will launch the package at the same time. If an application
consumes 5 MB when launched, and ten users launch the application at the same time,
the load on the network will be 50 MB. It's pretty straightforward. If your ThinApp
repository contains 10 applications and you have 100 users, not all users will use all

10 ThinApp packages and especially not at the same time. The only way to know the
payload on your network and file server is to measure real-life user usage.

[176]

Chapter 6

There are a couple of things to note when it comes to streaming a package. The first
launch of a package will always be slower than the subsequent launches. Upon the
first launch the sandbox is initiated, and this will take something like a second or so.
Many applications will modify files and registry keys on the first launch, and that
may add to the extra long initial launch time. If you launch the application during
the capturing process, you'll minimize the amount of changes done during the first
launch of the package. There are applications that will open a lot of large files with
write permissions upon launch. If these files are located in the virtual environment,
then these files will have to be copied into the sandbox when the package launches.
The copying operation will be a transfer of data from your ThinApp repository to
your sandbox. This behavior will of course greatly affect your launch time. Make
sure to investigate the sandbox content during the test run of the package to learn if
the package generates a large sandbox. If the package creates a large sandbox upon
the first launch, then the package might not be a very good candidate for streaming.
Investigate if you can reconfigure the package to better be suitable for streaming,.

There are several different ThinApp streaming payloads involved in the streaming
process. The first thing that happens during the streaming process is that the
ThinApp runtime is downloaded and executed. The ThinApp runtime is about

600 KB in size. After loading the runtime, the sandbox is initiated and the package
becomes aware of the virtual environment. If you have AppLink configured, then the
AppLink package's environment will be merged into the current environment. This
merge is not a copy operation of the entire file content of the AppLink, but rather

a copy of the virtual registry. Remember that it's in the virtual registry that the file
database is located. This database will tell the runtime where files are located.

Sometimes you'll find AppLink packages demanding that quite a large amount of
data is copied into the sandbox. This merged data is located in the sandbox of the
parent package in a file called Merge . something . tvr. This file is created or updated
on each launch of your package. If the file is large it means that all that data has to be
copied on each launch of the package. Since you might have updated your AppLink
package since the last launch, the merge operation will be made upon each launch

of the parent package. There is not much you can do about that other than to make
sure that your AppLink packages are as small and clean as possible or simply decide
not to AppLink a certain package. The next payload is the launch of the application.
If the package is launched for the first time, any first launch modifications will have
to be copied to the sandbox. When the application has launched, more data will be
downloaded as required by the application. How much will be downloaded depends
on the amount that has already been loaded during launching the payload, and the
usage of the application. If a user uses a feature in the application that is not already
downloaded, the necessary blocks will have to be downloaded.

[177]

Design and Implementation Considerations using ThinApp

The sandbox location is of great importance when using a streaming deployment
method. If the package is being streamed and the sandbox is located on a network
share, you risk hitting the network twice: once for the streaming and again to read/
write the sandbox content. Let's say a file located in the virtual environment is
opened using the modify permission by the application. The file will first have to
be downloaded to the client, and then across the network again to be stored in the
sandbox. So in these certain circumstances the network performance will hit your
execution twice. If you've decided to store your sandboxes on a network share, I
recommend that you store packages and user sandboxes on different file servers.
This way you spread the load and don't hit the same server twice during the
execution of a package.

When streaming your packages you are very dependent on the availability of the
file share. Microsoft DFS is recommended for high availability. DFS also allows
you to synchronize your ThinApp repository to branch offices while still
maintaining one single namespace. DFS is the preferred method to distribute the
ThinApp repository across your organization so that all users have LAN access
to the packages. With the help of Active Directory sites your users will always be
connected to the closest DFS share.

As you have learned by now, there are quite a lot of things to consider when sizing
for a streaming deployment method. Besides ThinApp configurations there are
things such as, Server Message Block (SMB) Version 1 and 2 optimizations, that you
can apply on your file server and clients to enhance the streaming performance.

If you are interested in learning more about tuning SMB please have a look at the
following articles:

* MSDN library article:
Microsoft SMB Protocol and CIFS Protocol Overview
http://msdn.microsoft.com/en-us/library/aa365233%28v=vs.85%29.
aspx

* Jose Barreto's Blog article

FSCT test results detail the performance of Windows Server 2008 R2 File Server
configurations - 23,000 users with 192 spindles
http://blogs.technet.com/b/josebda/archive/2011/04/08/fsct-

test-results-detail-the-performance-of-windows-server-2008-r2-
file-server-configurations-23-000-users-with-192-spindles.aspx

[178]

Chapter 6

If you have poor initial launch times, the first thing to investigate is the sandbox.

If the sandbox is small, bad performance is probably due to services or fonts being
initiated during the launch, and not so much the fact you are streaming the package.
Another good test procedure is to launch your package locally. Does the ThinApp
package launch fast locally but is slow when it's launched as a streamed package?
Then the problem has to be network related, or the application is simply not suitable
for streaming.

Antivirus software configured to scan your ThinApp repository on access is
probably the worst performance killer out there. You must make sure that you
disable on-access scanning of your ThinApp packages. No antivirus software I know
of knows how to read a ThinApp package anyway, so scanning the packages has

no point. Your ThinApp repository should have read and execute permissions only
for all your users. Only the administrators should have the modify permission, so
turning on the on-access scanning should be safe. And remember, there should be no
firewalls between your clients and the ThinApp repository. The latency added by a
firewall will make your package's execution extremely slow.

Summary

In this chapter we've looked at some design and implementation considerations.
It's a complicated topic, since all environments are different. I hope this chapter
has provided you with some more insight into how to go about designing your
implementation of ThinApp.

In the next chapter we'll dive into the wonderful world of troubleshooting.

[179]

Troubleshooting

Not all applications can be successfully virtualized by just clicking on the next button
in Setup Capture. Sometimes you’ll have to troubleshoot an application in order to
get it virtualized. In this chapter I'll cover the basics of troubleshooting ThinApp
packages. Unfortunately there is no such thing as a silver bullet when it comes to
troubleshooting. There is no single easy fix to all packaging issues. All applications
are different so each package must be handled separately. In this chapter, we will
look at the following topics:

* Troubleshooting theory

» Effective test procedures

e Common tools used for troubleshooting

* ThinApp Log Monitor

* Troubleshooting tips and tricks

* Your typical every day capturing process

The theory behind troubleshooting

The theory behind troubleshooting looks the same no matter what you are
troubleshooting. In order to be successful in your troubleshooting, you must
have a structured method. The method looks like this:

1. Gather data about the issue.

2. Create a hypothesis, with the help of the collected data, about what
will solve the issue.

3. Verify if the hypothesis is true or not.
If the hypothesis is true, go to step 8.

Troubleshooting

5. If the hypothesis is wrong, do some more data collection.
6. Create a new hypothesis.

7. Verify if the hypothesis is true or not (do step 5 through 7 until you find
that your hypothesis is true).

8. Since you figured out what the root cause is, you either can or cannot solve
the issue. If the issue is something you can solve, implement the solution
and the issue is resolved.

Pretty basic stuff. This method can be used on anything that needs to be fixed. I used
to work as a sound technician before I entered the world of computers and I used
this process for troubleshooting issues with my sound system. Today, working as

a ThinApp packager, I use it to troubleshoot packages that are not running.

As I see it, there are three major ingredients involved in troubleshooting, which are
as follows:

* Data collection
* Test procedure

* Knowledge in the topic of troubleshooting

You will spend a lot of time gathering data. You will process this data using your
experience and knowledge in the subject. Since you will probably have to verify
many different hypotheses (you hardly ever get it right the first time), your test
process must be very efficient. If all three ingredients are in place, you'll manage to
troubleshoot pretty much anything they throw at you. Hopefully you have gained
knowledge in ThinApp by now, reading this book. Experience can only be gained
by getting your hands dirty. You need to package quite a few applications with
ThinApp before you get the hang of it. In the following sections of this chapter I'll
talk about different data gathering tools and techniques as well as how to form an
efficient test process.

When troubleshooting, it's hard to know where to start. You are faced with too many
variables. Is it something within the application? Is it something concerning the
ThinApp runtime? Or can it be the operating system? When doing troubleshooting
it’s important to minimize the variables. Being stuck with too many variables leaves
you to rely on pure luck while trying to find the root cause of the issue. We must take
the guesswork out of troubleshooting.

[182]

Chapter 7

Effective test procedures

It’s all about your test procedures. The first test procedure I'll explain targets
minimizing the number of variables you're facing, helping you to focus on what is
most likely the cause of the issue. The VMware ThinApp blog (https://blogs.
vmware.com/thinapp/2010/10/thinapp-troubleshooting-methods.html)
discusses the test procedure, consisting of four steps, for minimizing the variables.
The four steps should be conducted in a sequence. If one test step fails, there’s no
point conducting a new test step because the next one will fail as well. Stop at the
failing test step and try to solve why the package is failing before moving on.

The test procedure should be used when there’s an issue with a package. You're
not supposed to run through all the four steps with all your packages.

Let’s have a closer look at each step.

The Dirty Test

The Dirty Test means that when you have just finished the capture process, while the
captured application is still locally installed on your capturing machine, you launch
the newly compiled package. A package rarely fails to launch during the Dirty

Test, because the application is locally installed. If the package fails, it's most likely
due to one of two reasons. One being that there’s something wrong with the entry
point. Things to look at first are the Source, WorkingDirectory or CommandLine
parameters. The second possible reason for it to fail is that the ThinApp runtime has
an issue running this application. If this is the case, it suddenly becomes extremely
complicated. While there may be workarounds, such as loading components outside
of the virtual environment, the VMware ThinApp developers quite often need to
have a look at the issue. To get help from VMware you must file a support ticket.
Filing a support ticket often involves uploading logfiles, the project folder, and
original installation media. Basically, what is required is a method of reproducing
the issue. If not reproducible in any other way you need to allow remote
troubleshooting if you want to have the issue looked at.

[183]

Troubleshooting

The Washed Test

The next step in your test procedure is the Washed Test. The Washed Test still uses
your capturing environment with the application locally installed, but this time you
go into the Add or Remove Programs control panel and uninstall the application.
Once it’s uninstalled, you test run your package. As we all know, an uninstallation
will most likely leave components behind. If the application you captured consists
of multiple components, uninstall one at a time and test the package after each
component uninstallation. Let’s say you captured application A together with its
dependency Java 1.6.26. Uninstall Java, and if the package still functions you can go
ahead and uninstall application A. If the package now fails you can be pretty certain
the issue is not the virtualization of Java. It has to be related to the components

of application A. Now, you can focus on the application A, and discard anything
related to Java. This way you’'ve managed to minimize the variables.

The Clean Test

If the Dirty Test and Washed Test are both successful, it’s time for the Clean Test.
When doing the Clean Test, it’s crucial not to introduce any new variables. You
should run the test on a clean instance of your capturing environment. Simply
revert your capturing virtual machine to the snapshot used when starting your
capturing process. If the package fails during this test it indicates that there are
components installed by the application that are not captured in the virtual
environment. Most of the time you can notice this during the Washed Test.

But since the uninstallation of an application hardly ever uninstalls everything
completely, the Clean Test is still very important. Another important reason

to conduct the Clean Test is to make sure that the application can be packaged
using ThinApp. If your ThinApp package runs on a clean machine, you know
the application works within the virtualized environment of ThinApp. You can
therefore discard the ThinApp runtime as the root cause to why the application
isn’t running as expected in your production environment.

[184]

Chapter 7

The Production Test

Our last test is to run the package on a production environment. Your production
environment may consist of many different operating systems and platforms. You
must verify the package on all systems. If the package fails during this phase it must
be due to some environmental issue. The Clean Test proved that the package is
working, so the source of the issue must be located outside of the package. With that
being said, the fix might very well be to change the configuration of the package.

Try to limit all variables normally found on the production environment. Limit

the amount of locally installed applications. Minimize group policies applied

to the client. Hopefully these steps will give you a general idea about where the
issue resides. If your production environment is a different operating system,

try capturing the application on the same operating system. If possible, install the
application natively. This might provide some more data for you to process during
the troubleshooting process.

After you've gathered data and limited the variables using the previous test
procedures, you have hopefully come up with a hypothesis. It's now time to test
your hypothesis, proving whether or not it is true. I prefer to run as many tests

as possible within the virtual environment. This way, I'll learn immediately if my
hypothesis is true or not. Since all changes are located in the sandbox, it will be
easy to revert my testing by simply deleting the sandbox. If I manage to figure out

a fix, I can very easily merge my modified sandbox into the project folder using
sbmerge. exe. Since I don’t have to rebuild the project folder for each test, I will save
a lot of time. Not all modifications can be applied using this method. For example,
there is no easy method of changing the isolation mode on the fly. Changing many
Package. ini files and isolation modes will force you to rebuild your whole project
folder. Typical tools to use when modifying the running virtual environment are
entry points to cmd. exe and regedit . exe. With these I can place myself inside the
virtual environment and copy files, change registry keys, and do whatever else my
hypothesis dictates. Limit the amount of changes you apply between test runs. You
do not want to change too much or you may end up fixing the first issue but adding
a second issue.

[185]

Troubleshooting

Let’s have a look at a very simple example of packaged Microsoft Project 2003
giving an MSI error when launched on a Windows 7, 64-bit operating system.
The application was captured using a Windows XP, 32-bit environment:

gtnmputer Management

=10l x|

e «
= e |Deta\\s |
& | It 1D | Task Categor -
B Detection of product {90340409-6000-1103-8CFE-0150048383CA}, feature 'ProjectComman’, 000 Mone
component {BF40TAT0-DIID-1101-A17D-00A0CI0ABS0FY failed. The resource 'CiWindows 040 Mone q
aystern 32UMSVBVIMED.DLL' does not exist, 001 More 5 Onen Saved Log...
004 Mone ¥ Create Custom Yiew. .,
i)
File Edt V¥ew Insert Format Tools Project Window Help Type a question forhelp « @ X
i d G B9 =R @ [- -/B U g
g e Aaaliesfiam = = e -
Source: Msilnstaller Logge: 0 |Tashs - |Resowces - |Track - |Report - =
EventID: 1004 Task C
Level: Wéarning Keyo
User localhostitfrei Cornpt _“
5 OpCade: Microsoft
i Idare Inforrnation: Eventlog Online Help oft Office ProjectatSiiEE, %]
| Ermor 1719, The ‘windows |nstaller Service could not be
l . accessed. This can occur if the Windows Installer is not
corectly installed. Contact your support personnel for
Capy assistance.
&l I | I ok
eneral | Details
___—— 03
Detection of praduct {30 Copyright@ 1390-2003 Microsoft Corporation, All ights reserved.
component {BF4DTATO-
Mswstern3 2 MSYEBYMED.D

MS Project 2003 gives you an MSI self repair issue when running on Windows 7.

The MSI self repair is due to msvbvmé60.d11 being missing or, in this case, actually

being available but in the wrong version.

“;(_)v | + Thindpp * WMware Thindpp 4.7.2 771512 ~

Captures = Microsoft Project 2003 = bin

= Libraries
ThinApp' ¥Mware ThinApp 4.7.2 771812\ Captures’

C:Jcopy cintempsmsvbumbB.dl]l c:sWindowsssystem32

1 file<s? copied.

-
Organize * Mew Folder
¢ Favorites Mame « Date modified Type
B Desktop BN crd.exe 23.08.2012 11:50 application
4 Downloads t@jMicrosoFt Office Project 2003, exe 23.08,2012 11:50 Application
| Recent Places || Micrasoft Project 2003.dat 23.08,2012 11:50 DAT File
Qregedit.exe 23.08.2012 11:50 Application

Overvyrite c:“Windows\systemd2insvhum6B@.d11? (Yes~ No-Alld: v

o [

[186]

Chapter 7

My MS Project 2003 package has entry points for regedit .exe and cmd. exe.

Launching the cmd . exe entry point allows me to copy an older version of msvbvmé0.
d11, replacing the newer one available in Windows 7. The change is only affecting
my virtual environment. Modifications are stored in the sandbox.

‘g()v | - Thindpp = WMware Thindpp 4.7.2 771812 - Captures = Microsoft Project 2003 - bin - lml I Search bin

Organize * Mew Folder

' Favorites Marme “ Date modified Type | Size
B Deskiop B crd.exe 23.08.2012 11:50 Application 43 KB
& Downlaads ,_£>_7| Micrasaft OFfice Project 2003, exe 23.08.2012 11:50 Application 126 KB
5 Recent Places || Micrasaft Praject 2003, dat 23.08,2012 11:50 DAT File 460,225 KB
Q re

— Libraries

- ~ AppData = Roaming = Thinstall « Microsoft Project 2003 = %:SystemSystem™s

C:~Jcopy c:stempsmsvhumbB.dll c:
Overurite cizWindowsssystem32imsuhbu
1 file<s) co d.

Organize * Includein library * Sharewith = Mew folder

. . Name = Dake modified

.. Favorites
Bl Desktop %) msvbyma0,dil 14.04,2005 14:00
4 Dowrloads

= Recent Places

- Libraries
i| Documents
@ Music
| Pictures

a Wideos

1M Computer

[187]

Troubleshooting

The file I copied using the cmd. exe entry point will end up in the sandbox.

Microsoft Project - Projeckl
‘@ Fle Edt Windaw
N HA = B WREEN - HE}L‘@ @ !E~F¢=§howv Arial

E - | Resources = | Track - | Report v!

Wiew Insert Formak Tools Project Help Type a question for help

vS-BIg!

Getting Started v X

@ [r

Microsoft Office Online

(1]

Task Mame

‘ Duration

19 Aug 12

26 Ay

M2

02 Sef |

S M [T [

T[F[s

sM[TwT[F[S

SM|_|

* Connect to Microsoft Office
Online

* Get the lakest news about using
Project

* Automatically update this list
from the web

Mare. ..

Search for:

| |

Example: "Print more than one copy”

Open
[j Open...

,_] Create a new project..,

7

Mz
Ext | [caps| [mom] [scAl [ove | g

| Ready | [

Once the correct version of msvbvmé0.d11 has been copied into the correct location,
I can exit the cmd . exe and immediately verify if the issue was fixed by launching
Microsoft Project. MS Project launches without starting any MSI self-repairs. No
rebuilding of my project folder was necessary.

[188]

Chapter 7

To implement this fix into your project, simply run sbmerge. exe and rebuild
the project folder. For this method of applying changes to the current virtual
environment to work the best, you should make sure that your package uses
WriteCopy as the default directory isolation mode. You never know where
you’ll be doing changes, so it would be safest to sandbox everything.

Common troubleshooting tools

The tools you use for troubleshooting are often referred to as troubleshooting tools.

I prefer to call them data collecting tools. I've yet to see a troubleshooting tool that
presents me with a dialog box, and tells me what the root cause of the issue is. All
tools used to troubleshoot are tools that provide you with as much data as possible.
Using your experience and knowledge, you filter through the data and can hopefully
find the root cause of the issue. When you turn to these data collecting tools you'll
spend a significant amount of time digesting all the data.

Whatever tool you are accustomed to using when packaging a traditional MSI
package, should and can be used for troubleshooting ThinApp packages. Here’s
a list of common tools that I use. You may have others and you should be able to
continue using those.

Process Explorer

Process Explorer from Sysinternals, now owned by Microsoft, is a great tool
for finding out what is running on your machine. It is free and available here:
http://technet.microsoft.com/en-us/sysinternals/bb896653.

Troubleshooting with the help of Process Explorer often means I run it on two
machines, one where the application is natively installed and one where I run my
packaged version. Then I compare the process list and look for differences. Please
notice that it may be easier if your package is configured using ProcessExternalNam
eBehavior=0Original.

[189]

Troubleshooting

If something is keeping your sandbox locked and you need to find out what process
it is, Process Explorer is perfect. Run Process Explorer and search for . rw (part of the
name of the registry files within the sandbox). Whatever is accessing the . rw files is
what’s keeping your sandbox from not closing cleanly.

BB =EE e N I

Frocess FID CPU Description Company Mame b
= T] Syatem ldle Process 0 9843
] Interrupts nfa 1.56 Hardware Interupts
T|DPCs L =
ERmET: 8% Process Explorer Search
Sl k:
u Handle or DLL substring: | .mw | [Search] [Cancel]
= g
7 Frocess Type Handle ar DLL
Mozilla Firef... 1495 DLL C:hDocuments and Settingzhzerdpplication D atahThinstall. .
Mozlla Firef... 1496 Handle ChDocuments and SettingshJserdpplication D atahThinstall...
Mozilla Firef... 1496 Handle C:h\Documents and Settingshsersapplication O atahThinstall...
Mozilla Firef... 1496 Handle C:h\Documents and Settingshservdpplication D atabThinstall...
iy TPALtoLan... | 1452 TPAutoConnect User Agent ThinPrint Al
[alg.exe 1708 Application Laver Gateway 5... Microsoft Corporatian
[Flzass.exe B34 L54 Shell [Espart Werzsion) icrozoft Corporation
=] g eplorer, exe 1632 windows Explarer icrozoft Carporation
[andll32 exe 1788 Bunalll as andoo bicrozoft Corporation v

CPU Usage: 1.56% Commit Charge: 14.62% Processes: 26 Paused

[190]

Chapter 7

Searching for . rw will show you what's keeping the sandbox opened.

85 Process Explorer, - Sysinternals: www.sysinternals.com [CNB\ser]

File ©Options Miew Process Find DLL Users Help

Ba=rEsax ad NN HE B

Process FID CPU Description Company Mame ~

= CIDIS TRAutoConnS... | 1104 TPAutoContect Printer Creat... ThinPrint 4G
GOB TPAuteCon... | 1452 TPAutoConnect User &gent ThinPrint 4G

E alg exe 1708 Application Layer Gatewayp 5. Microsoft Corporation

ﬁ lzazs.exe B84 LS4 Shell [E #part Yersion) Microzoft Corporation

= J explorer. exe 1632 Windows Explorer Microzoft Corporation

|_] rundll32. exe 1788 Fun a DLL as an App Microsoft Corporation
m‘-f’l‘-ﬂ ware ray. exe 1736 Whdware Toolz tray application Yhware, Inc.
m vmtoolzd. exe 1804 Yhiware Tools Core Service Whware, Inc.

L procexp.exe 1596 1.49 Sysinternals Process Explorer Suzinternals - v, syzinter. .

kozilla Firefox. ex)
wWindow

MHame Set Priority
ADVAPIF2.dI
CLECATO.DLL
comct 32 dl
COMDLGIZ.dI
COMAes.dl
cookies. zqlite-shm
CRYPT3Z.dI Debug
CRYPTULAI b
chype.nls
dbghelp.dil

55 Del
Kill Process Tree Shift+Del
Resktark

Suspend

Properties...
| Search Online... Crrl4+M

refox

Mozilla Corparation

Compary Mame

ticrozoft Corporation
Microzoft Corporation
ticrozoft Corporation
ticrozoft Corporation
Microzoft Corporation

ticrozoft Corporation
ticrozoft Corporation

tlicrozoft Corporation

DMSAPLAI DM5 Client &P DLL

fechent.dll

YWindows MT File Encroption Client. ..

ticrozoft Corporation
ticrozoft Corporation

Yersion

5.01.2600.5512
2001.12.4414.0700
£.00.2300.5512
6.00.2300.5512
2001.12.4414.0700

5.131.2600.5512
5.131.2600.5512

5.01.2600.5512
5.01.2600.5512
5.01.2600.5512

CPU Usage: 4.48% Commit Charge: 14.67% Processes; 26

Double-clicking on the process name in the search result will take you to the process
and then you can kill it.

Things keeping the sandbox from closing down are often services that are not
shutting down, or if the application is a Microsoft one it’s often due to ctfmon.exe
Or mdm. exe running.

[191]

Troubleshooting

Process Monitor

Process Monitor is yet another tool from Sysinternals, http://technet.
microsoft.com/en-us/sysinternals/bb896645. This tool shows you all registry
and file access. This tool can be very helpful when troubleshooting a wide range of
issues. The problem with the tool is that it creates a massive amount of data. Luckily
it does include a filtering option, which you should learn how to use. If you suspect
that the issue is registry related you can look only at registry access. You can also
filter out actions made by processes that are of no interest to your troubleshooting.

= Process Monitor - Sysinternals; www.sysinternals.com

File Edit Event Filter Tools Options Help

EH ABPE TAS® B &5 #HB[iam

) winlogon exe
lm winlogor. exe
wiinlonok ewe

522 #¥Reqlperkey

525 @ Reqlperkey
628 @% Feqluenivalue
E28 #% BenClncek s

HELM'SOFT'waRE \Microsoftiiindow..
HELM'SOFTWwWaARE \Microsoftiiwindow...

HEL BV S OFTWARE Mhicraeaf i aSfind o

Time... | Process Mame FID Operation Path Fiesult Dretail
svchost exe 1028 ';:lEreateFile CAWIMDOW S WinS ws SUCCESS Desired docess: K.
zvchost exe 1028 A QuenFilelntem. . T NDOWS winG «5 SUCCESS IndexMurber: Ox1...
svchoshexe 1028 A ClossFile C A/ INDOWSNWinS 25 SUCCESS
svchost exe 1028 Sh CreateFile C:/INDOWS winS x5 <B6_MICROS... SUCCESS Desired dccess: R
svchost exe 1028 L_-:‘QueryFilelntem... Can/IMDOWS\WinS 25«86 _Microsoft.... SUCCESS IndesMumber; Ox1...
zvchost exe 1028 BA CloseFils CanIMDOWS WIS 25«86 _Micrasaft.... SUCCESS
svchost exe 1028 Sk Createfile C:Aw/INDOWS\PrefetchiwhIPRYSE E.. SUCCESS Desired Access: G
svchost exe 1028 ';-‘lEreateFile AWM DOWS\Prefetch SUCCESS Desired docess: 5.
avchost exe 1028 atloseFile Caw/AMDOW S \Prefetch SUCCESS
svchost exe 1028 BhwiiteFile C:Aw/AMDOW S \PrefetchyWwMIPRYSE E.. SUCCESS Offzet: 0, Length: 3...
svchost exe 1028 A CloseFile C:Aw/INDOWS\PrefetchiywhIPRYSE E.. SUCCESS
winlogon, exe E28 ﬁHegDpenKey HELCU SUCCESS Desired docess: K.
winlogon. exe E23 ﬁHegDpenKe}l HECU\AppEvents\Schemes\appsh. Def.. SUCCESS Desired Access B
winlogon.exe 528 #%Reqluenalue HECU\AppEvents\Schemes\Appsh.Def... SUCCESS Type: REG_S5Z, Le...
winlogon. exe 625 @%FealloseKey HKCU“AppEvents\Schemes'dppsh.Def... SUCCESS
winlogon, exe E28 ﬁHegEIoseKey HELCU SUCCESS
winlogon. exe 522 @8Req0perkey HKCU SUCCESS Desired Access B

winlogon.exe HECU AppEvents\S chemeshappsh. Del.. . MAME NOT FOUMD Desired Access: B...
winlogon. exe E28 ﬁHegQuer}l\Falue HECUA[Default) NAME NOT FOUND Length: 536
winlogon. exe E28 ﬁHegEIoseKey HELCU SUCCESS

winlogon.exe 522 @¥Reglperkey HELM\S oftwars\Microsoftiwindows\C... SUCCESS Desired Access: B

NAME MOT FOUMD Desired &coess: A...

SUCCESS Type: AEG_SZ. Le...
CIICCESS

Showing 16,282 of 39,384 events (41%) Backed by virtual memory

The previous image shows Process Monitor in action.

I always run Process Monitor natively, outside the virtual environment. Process
Monitor uses a device driver, which can’t be launched by the ThinApp runtime.

[192]

Chapter 7

Dependency Walker

Dependency Walker is another great tool. It can be downloaded from here:
http://www.dependencywalker.com Dependency Walker will show you any
missing dependencies an application may have on a system. It can be launched either
from inside the virtual bubble, with the help of a cmd. exe entry point, or launched
outside. It's important not to run Dependency Walker on the package, that is, one

of the entry points. Dependency Walker should investigate the dependencies of the
application’s original . exe file and not the dependencies of ThinApp runtime. You
will always get at least a couple of false positives running Dependency Walker.
Search the web for more information about the missing dependencies and you’ll
soon learn which ones you can discard.

- Dependency Walker - [IEXPLORE]

B File Edit Wiew Options Profile ‘Window Help

FH 2R HE Sy EEBED N

[1EXPLORE E; PI__ | ordinal ~ [Hint [Function | Entry Point
+- [MSVCRT.DLL
+- [KERMEL3Z.DLL
+-] USER3Z.DLL
- [sSHLWAPLDLL
A| ADVAPI32.DLL
] GDI32.0LL E | ordinal~ [Hint [Function | Entry Pairt__|
+- A] KERMEL3Z.DLL B |1 ¢ox0001) | 0(0x0000) | DIGEELCID | 0x00002394 |
A] MSYCRT.DLL
A] USER32.0LL
Z&] OLE3Z.DLL 3
~ | Module File: Time Stamp | Link. Time Stamp | File: Size: | Attr. | Link Checksum | Real Checksum | CPU | Subs:
8@ MS1avA.DLL Error opening file, The system cannot find the file specified (2},
2@ | MPR.DLL 04/14/2005 2:00p | 04/14/2008 2:10a 59,904 | A 0x00013C37 | 0x00013C87 %86 | Consi
O |ADvAPI3Z.DLL | 04/14/2008 2:00p | 04/14/2008 2:09a| 617,472 (A 0x0009B625 | 0x0009B625 %86 | Consiy
£ >

‘Warning: At least one delay-load dependency module was not found.
‘Warning: At least one module has an unresolved import due to a missing export function in a delay-load dependent module.

For Help, press F1

Here’s a test of the natively installed iexplore.exe. Two files are reported as
having issues. This is normal and you’ll soon learn which errors to discard.

Dependency Walker is a very powerful tool when troubleshooting Windows XP
legacy applications and why they do not run on Windows 7.

Microsoft Event Viewer

Don’t forget about the Event Viewer. Sometimes the issue is reported in the Event Log,.
Although, SxS error can be discarded most of the time. Most SxS issues occur because
the operating system cannot find the path reported by the application. Simply create
the application’s original folder in Program Files and the SxS events go away.

[193]

Troubleshooting

Error messages

Sometimes, you get an error message from the application. Read what it says! It can
often be valuable information for your troubleshooting.

ThinApp Log Monitor

The ThinApp Log Monitor is a great log tool. It's great because it captures everything
that happens within the virtual environment. That being said, it’s close to impossible
to find the issue because of all of the data it provides. I must be honest; I rarely use
the ThinApp Log Monitor. It is my last resort when no other troubleshooting tool
gives me any valuable data. You will often find ThinApp Log Monitor logs of 2GB

or more, and that is in a clear text format. You can imagine the massive amounts

of data contained in each of these files.

ThinApp Log Monitor can be found in the ThinApp utilities folder. You need to
launch Log Monitor prior to launching the package for logging to start. Let’s create
a log using Log Monitor:

& ViMware ThinApp 4.7.2 771812
File Edit Wiew Faworites Tools Help a.

@ Back - -_) lE p Seatch H_] Folders v
fAddress |25 2:\Thinappi¥Mware Thindpp 4.7.2 771612 v | Go

Mame = Size Type Diate Modified
File and Folder Tasks [)Captures File: Folder 8/23j2012 11:45 AM
Flappsyne

@ Rename this file

[Move this file

Copy this file

& Publish this file ta the 'web
() E-mail this File

B cepture VMware ThinApp Log Monitar Yersion 4.7.2-771812 =]
Cdi_dump
FLILA

E.: log_monitar
3LDQF\ItEf The following list shows trace files that have been created since Log Monitar has started.

logging. dil

Log Monitar canverts .trace files to text readable

Delete this file = .
x [Z] open_source_licenses IFEEzEs Log File Name Last Modfied Size [kbutes Delete File
-
link. ;
Er?n Kill &pp
Other Places (eSS
+* Setup Capture
=3 Thindpp [Fsnapshat
@ My Documents }snapshnt
[shared Documents 1B template [Suspend
a My Camputer 3Th\nApp
= - Fthinappcanverter P 3 [Compress
.d TS 3Th\I‘IADDCUI‘WErtEr = —
ThinDirect .
ﬁ! Input trace fils: | ‘ [Browse...]

ThinDirect, adm
Ethinreg

o tlink

+* vftaol
i - [_Cercel |
e lic Gienerate text brace report Full report W

.+ vregtool

Details

Clutput repart file: | ‘

[194]

Chapter 7

Start by launching log_monitor.exe found in the ThinApp utilities folder.

Edit View Favorites Tools Help -#'

eBack - _) Lf pSearch {C‘ Folders v

Address |[22) Z:\Thinappiviware ThinApp 4.7.2 7718121 CapturesiMozilla Firefox (3.5, 2)kin v | Go
Mame Size | Type Date Modified
File and Folder Tasks A @ mozills Firefox 56,112 KB Application #21)2012 2:30 PM

Filz

) ol Viware ThinApp Log Monitor Version 4.7.2-771812
@ Move this File
Copy this File Log Monitor converts trace files to text readable

e Publish this file: b the Wb
@ E-mail this File The following list shows trace files that have been created since Log Monitor has started.
K Delete this file Process Log File Name Last Modified Size [kbytes| Delete File

firefox.exe firefor exe.01cd8123aeb9e70-72c.... 0 secs ago 20772k

Muozilla Firefos.exe Mozilla Firetos.exe. 01 cdB8123add?7... Kill &pp
Other Places
I3 Mezila Firefox (3.5.2)
[EJ My Docurnents
|53 Shared Documents [Suspend
3 1y Computer [] Compress
W My Network Places £] | L

Input trace file: | ‘ [Browse...]

Details

Generate text race report Full report

Output report file: |

Next, navigate to your package and launch it. You will notice that the log is being
generated immediately. When the package is hosted on a network share, you will
see at least two processes listed. Only one is the actual execution of the application.
The biggest one is normally the log you want.

[195]

Troubleshooting

You will also notice that the performance of the package becomes much slower
than normal. Running Log Monitor is very resource intensive.

VYiMware ThinApp Log Monitor Version 4.7.2-771812

Log konitor converts trace files to text readable

The following list thows trace files that have been created since Log Monitor has started.

Process Log File Hame Last Modified Size [kbytes Delete Fils
firefox. exe firefox. exe. 01cd31 23aeb9e7i0-72c. .. 19 secs ago 172218k
Mozilla Firefor.exe Mozila Firefos.exe. 01 cd8123add77.. Kill &pp
1 5uspend
[Compress
(_ | 111}] i|

Input trace file: |Z: ST hindppiWhlware Thindpp 4.7.2 771812\ Capturesikozilla Fir | [Browsze. .]

Output report file: |Z: \Thindppihware Thindpp 4.7.2 77181 2\CapturesiMozilla Fir |

[Generate text trace report] FU" report

The log that is being generated is in a binary format. You need to convert it into
a text file in order to be able to read it. Click on the trace of interest and click on
Generate text trace report.

Viware ThinApp Log Monitor Version 4.7.2-771812

Lag Monitar converts trace files to text readable

The following list shows trace files that have been created since Log Monitor has stated.

i Progress
fi

Generating Trace Repart

[III]

Cancel

TRpUT Tace Tie: (& T e TR T 27T A it} Ay e | | | [Hrowse. _]

[~

Dutput report file: |Z:'\ThinA|3|3Wh'1ware Thindpp 4.7.2 77181 2\CapturestMozilla Fir |

[Generate text trace report] FuII report

[196]

Chapter 7

Generating the text version of the logfile is often a time consuming process.

File Edit ‘“iew Favorites Tools

Help

eBack - -\-) L@ pSearch HE‘ Folders v

Address |23 2\ ThinAppi¥Mware Thindpp 4.7.2 7718121 CapturesiMozilla Firefoz (3.5, 2))bin A | Go

Size | Type Date Modified
File and Folder Tasks 245,967 KB Text Document Bl23(2012 1:39 PM
Ej Make & new Folder firefox.exe.01cd8123aeb9e7f0-72¢ trace 172,216 KB TRACE File 82312012 1:38 PM
_) wMoziIIa Firefox 53,112 KB Application B/21)2012 2:30 PM
%] S\ﬂs“ this folder to the Mozila FireFox.exe.010d5123add77730-368 race 291KE TRACE File 8/23/2012 1:37 PM

Other Places

Once the text file is generated you will find it next to the package files together with
the binary versions. Once converted to text, you can safely delete the binary versions.
You will not need them anymore.

. 2)\bin\firefox.exe.01cdB1 ?Jash9e 71072t

= TextPad - ZAThinkpp\Whiware Thinkpp 4,7.2 77181 A\CapturesWMoziila Firsfox (1.5
Fle Edt Seach Vew Took Meoocs Configre Window Help
DEE BSRE } RO M2 DY UR TER e o
0 Mechease o
Wlmmm T2e. -
[T7551397-ontdll Al RtlTnitializecriticaloection | TRORCLOR=sutruct

7520397 c-ntd1l dll =k | #=e77ROGCCH
FIE2¢397-onedll dll THOEABDR- 5 truct

oo
000339

115¢d

i
7752397 c~ntdll d11 :?cSllald RtllmuaineCrnxcaLﬂ:uun =>long=0h {
7752£397-5ntd1l d11 Bl i{
7752£397¢-ntdll 411
nwrn? sntdll dll

BellnitializefriticalSection
BtllnitializaCriticalSsction
RellpitializeCriticslSec ¥
5id RellmstializeCraticalSection = long=Ok {#=#77606)
nuuurysy:tulmomucm (SYSTEM ucruumnuu CLASS =emunil), QG =2
Hed) "mLIM!ATlOﬂ_mm =enun{0}. r'vom --1z!unh m.c

?i‘ul?ﬂ'ﬂ sntdll dll R\lIm‘ lizeCriticalSect And) t (®en?76060 {*DebugInfc==0hinull pointex

7?.;120'!2{ ntdll dl1 Rellni lizeCriticalSect Ands) t i h (®=877606060h {'DebusIn(o-'HDi‘:
F4imfh1=3RFCRTA d11 T drante [ainidoa] JBeFaho rerrant {unsigned long DatalsOh, unsigned short Datai=Oh. unsigs

raveeth o ADUABIE A1t 2paaRses wn\n.}....-x Lacalh > iuulnlvu— available ==)

FIeTE2E8c-ADVARLI2 dil: 77dduzy2 ItenFuncticalis ype available ==}

774fefilc-RPCRTY d11l - 77eT6254 lhudetu =>1long=0! de--lZ!GFﬂh »struct {unsigned long Datal=3D743510h. unsigned short

7;'.,12e'm +PSERIZ. d1l :7edlalfs RegisterClassV+
41 35md=sntdll dll FcHl0313 Rellwageltheader (RWCDULE «774m0000k, strict {)
Todidamiiman ail Rt TnngmbitHeadmr =smen? 74RN0EGR=1 WORD Signat struct Fi truct
Ted19914-ntdll dll RbllnitlnicodeSteing (#=e12EIFTh=) (USHORT Lesgth=dh. USHORT Ma: alengiheoh, FUE1
Tedl9914c-ntdll dll ReilnitUnicodeString -svordevoad | IFOR-rstruct (USHORT Lemqthel T Maximunle
UJE'RJZ dll :7e413939-5nedll d11 Rt!Fxndl:twauomCuntext_scuun"‘ernﬂj (ULOKG =0h. ess0hcnull pointers rbad ptr>. ULOWG =1
ng —»long=CO150001h (ULONG =0h. '-'ﬂMnull Duu\tur} ik
FEHO sigthe 1ERh nLengt
* HORT

USERIZ 411 ?eil?"]ﬂ{ ntdll dll

Flllnllﬂﬂu:x]nﬁ\r)ng TwemlIEdERR-rats
RriInitUnicodeString rdevond | #= U (USHORT Lengthe2dh.
RbiInitUnicodeSteing 2EA7Bh-rat CUFSHO sath=6880h. USHORT Max
USER3Z dll :7edlaldic-nedll dll EtllnitUricodeStrann - void=void (e=elZEAT8R-rstruct (USHOKRT LengtheZah. HERSET HasaunLe
OSERIZ d11 :Ted13%ed-sntdll d11 :7c310319 %t Huguﬂt]hadax 1'.! -?HuﬂﬂDOh stru:(. {)
t

USERIZ 411 :7edl99ed<-ntdll . dl1 1 7e910219 . struct Fi
Fegister’lassd na ThreadindClass' =» Oec03§
aled? dll 775120980 -USERIZ d11 Pedladfa RegisterClassis
oled? dll FIEIZE04-IUSERIZ A1l TedZdlal |m'nnlnm!nu'nﬂl|
Edy USERIZ dll :Tedl9938-omedll dll o Pe¥154E1 wesQhonull pointer: cbad prrr, ULONG =31
DSERIZ d1l - 7ed13939¢-ntdll d11 cTcSdEL Rt!Fxndl:twauomCuntext_scuun"‘ernﬂJ —)IDM-CUhDOUlh (ULONG =0h. wewlhenull pointers kg
R NEFEI3 A1T Jadiated_snedll 417 72910018 BriTaanal TE a774an0nnk. =+
¥
463 43

Opening up the logfiles shows the massive amount of data available to you.

You shouldn’t use Notepad . exe to investigate the logfiles. Notepad can’t handle
large text files. My personal favorites are TextPad (http://www.textpad.

com) on Windows and TextWrangler (http://www.barebones.com/products/
TextWrangler) on MacOS. Both are capable of handling really large text files
and have the option to color code the text for easier reading.

[197]

Troubleshooting

You should use the same version of Log Monitor as the one that your ThinApp
package is compiled with. If you need to figure out which version of ThinApp runtime
your package has, simply launch the package with the -ThinstallVersion switch.

J

OBack - . ir 7 Search Folders E\v

Address |5 2 ThindppiYMware Thindpp 4.7.2 771812 Captures|\ Mozilla Firefox (3.5, 23 bin
Marne Size Type
File and Folder Tasks 2 @ Mazilla Frefox 55,112 KE Application

& —) _[o]x

C:“Documents and Settings“User>"Z:“ThinfApp~UMware ThinfApp 4.7.2 ?M812-Captures"
Mozilla Firefox (3.5.2>“bin“Mozilla Firefox.exe" -ThinstallUersion

C:~Documents and SettingssUser>

Version

YMware Thindpp Runkime Yersion 4.7.2-771812
Builk Jul 3 2012

Launching a package with the -ThinstallVersion switch will provide you with the
ThinApp runtime of the package.

Believe it or not, there’s a structure to the logfile that the Log Monitor creates. Your
starting point should be the end of the logfile where you'll find the Potential Errors
Detected section. Here, all the log entries with possible issues are listed. Sometimes
you find missing dlls or registry keys reported. If you encounter a log entry of
interest, you can search for the log entry ID (the first number on each row) to find the
original location in the logfile and investigate what happened before the error and
thereby hopefully figure out the root cause. Errors identified by Log Monitor will
be marked with *** for easier identification. You will probably never see a logfile
without any entries in the Potential Errors Detected section. The execution could
be checking for a registry key that is not there. An error would be registered but the
application might not really care and happily continue executing. Exceptions and
MSI errors are of extra interest if they are found in this section.

[198]

Chapter 7

The first section of the Log Monitor lists some environmental information about the
client where you captured the log.

The vast majority of the logfile contains the API section. Here you can see all the API
calls with any of the parameters used, such as input parameters, output parameters,
exit records, and more. ThinApp runtime logs runtime messages as well. An API log
entry looks something like this:

947264 072c 05d8 MOZCRT19.d11:781399b2->kernel32.dl1:7c8097d0
TlsGetValue (DWORD dwTlsIndex=16h)

Here, 947264 is the event ID, MOZCRT19.d11 is source dll making the API call, - >
indicates the direction of the API call, <- indicates a response, and kernel32.d11 is
the destination dll.

Here’s an output from a trace I did a while ago. This was a Windows XP legacy
application not executing on Windows 7. The real application name has been
changed. Here, the issue is presented to you in clear text:

Log Monitor trace:

048200 00000000 00000a00 Can’t load library MSVCP50.dl1l which is
implicitly loaded by C:\Application A\DLLIAP.dll, err=53

049742 00000000 00000a00 Can’t load library DLLIAP.dll which is
implicitly loaded by C:\Application A\Application A.exe, err=53

Solution:

In this case, the solution was simply to copy MSvVCP50.d11 into the $SystemSystem%
folder and rebuild the project.

Troubleshooting tips and tricks

Here are a couple of tips and tricks regarding troubleshooting. Just some shortcuts
that have helped me out a few times:

* Launch the application from within a CMD . EXE entry point: One
troubleshooting method is to have the application locally installed and
launch the application from within a cMD . EXE entry point of an empty
project. You can create an empty project by simply running Setup Capture
and step through the wizard without altering your capturing environment at
all. If you fail to launch the natively installed application by using this empty
package’s CMD. EXE entry point, this may indicate that ThinApp runtime can’t
execute the application.

[199]

Troubleshooting

Move suspected files into the support folder: If the package crashes, it’s
sometimes due to the fact that captured DLLs are not able to run on a certain
operating system. One of the first things that I would try when facing this
issue is to move the content of $SystemRoot% and $SystemSystem$ into the
support folder, found in the project folder, and rebuild. This will exclude the
files from being a part of the package’s virtual environment. If the package
behaves differently, I add groups of the moved content back into the original
folder macro (bringing them back into the virtual environment). I rebuild
and test run the package between each modification. Hopefully I'm able to
find the DLL that is causing the issue. I use the same process, moving content
to the support folder, when I clean up my project folder. This way, if I get a
little overeager, I can revert my modifications.

Launch the application from a cMD. EXE entry point of the package: I use
this method to verify if I have an entry point issue or not. This is a different
procedure than the first bullet point. Here, the cMD . EXE entry point is
running within the same virtual environment as the packaged application.
The test looks like this:

1. Launch the cMD. EXE entry point.

2. Navigate to the folder where the executable is, for example, c:\
Program Files\Mozilla Firefox.

3. Launch the application, for example, run firefox.exe.

If the application now launches successfully, it indicates that something
is wrong with the entry point. The first things to investigate are
WorkingDirectory and CommandLine parameters.

Register the package: Sometimes, you have to register the package for it to
be fully functional. Simply run thinreg. exe to register the package on your
test machine. You don’t have to create an MSI file just in order to register the
package. Running thinreg. exe will be enough.

Change the process name behavior: Some applications get confused when
they can’t find its processes listed in the Task Manager as running. By
default, ThinApp packages hide the original process names. Try adding pr
ocessExternalNameBehavior=0Original to your Package.ini and the
original process names will be listed.

Common DLL often needed when migrating Windows XP applications

to Windows 7: If you are migrating a legacy Windows XP application to
Windows 7, there are a few DLLs that often need to be included in the
package. These DLLs are shared resources, such as libraries. Try adding one
or a few of the following DLLs from Windows XP to your project folder and
the $sSystemSystem$ folder macro:

[200]

Chapter 7

MFCxx.DLL
MFCxxU.DLL
MSVBMxx .DLL
MSVCRT .DLL
MSVCRT20 .DLL
MSVCRT40 .DLL
MSVCPxx .DLL
COMADDIN.DLL
COMCAT .DLL
COMCTL32.DLL
COMDLG32 .DLL
COMMDLG .DLL

xx are to be replaced with numbers, for example, 40, 42, 50 or 60.

Your everyday capturing process

My suggestion, when it comes to how your everyday capturing process should look,
is to not run all four test steps in the test procedure discussed in the Effective test
procedures section. As most of your packages will run just fine, always running all the
test steps is not needed. Your capturing process should support troubleshooting if
needed but be as efficient as possible.

Your typical capturing process is as follows:

1. Capture the application.
2. Perform the Dirty Test.

1. Running the Dirty Test will verify if the application can run
virtualized at all.

Investigate the sandbox (get to know the application).
Delete the sandbox; this will show if any processes are being left
behind running.
3. If the previous steps are successful, do a snapshot of your virtual machine
(you might need to return to it for performing the Washed Test).
4. Conduct a Production environment Test.

1. On failure, go back to the snapshot created in step 3 and run the
Washed and Clean tests.

[201]

Troubleshooting

Summary

In this chapter you have learned about some basic ThinApp troubleshooting
methods and tools. Troubleshooting is often hard. But the more you practice the
easier it becomes. The hardest part is to get the time needed to conduct successful
troubleshooting. Your first troubleshooting session will probably take a long time.
But after a while you will find that troubleshooting becomes easier and quicker.

Next, you'll find References covering the Packaging. ini parameters and the physical
locations of all folder macros.

[202]

Folder macros

The following table shows the supported folder macros in ThinApp 4.7.2, and their
locations. Windows XP, Windows Server 2003 R2, and older operating systems are
considered legacy versions, while Microsoft Vista, Windows Server 2008, and the
later versions are listed as modern versions of Windows in the following table:

References

Macro name

Legacy Windows location

Modern Windows location

$Drive C%

%$Profiles%
$Profile%

%$AppData%

%$Cookies%

%Desktop%

$Favorites%

C:\

C:\Documents and
Settings\
C:\Documents and
Settings\Username)\

C:\Documents and
Settings\Username\
Application Datal\

C:\Documents and
Settings\Username)
Cookies\

C:\Documents and
Settings\Username\
Desktop\
C:\Documents and

Settings\Username)\
Favorites\

C:\
C:\Users

C:\Users\Username\

C:\Users\Username\
AppData\Roaming\

C:\Users\Username\
AppData\Roaming\
Microsoft\Windows\
Cookies\

C:\Users\Username\
Desktop\

C:\Users\Username\
Favorites\

References

Macro name

Legacy Windows location

Modern Windows location

%$Local AppData%

%CDBurnArea%
$History$%
$TEMP%

%$Internet Cache%

%$Personal%

%Recent%

%$NetHood%

$PrintHood%

%$SendTo%

$Programs%

C:\Documents and
Settings\Username\
Local Settings)\
Application Datal\

C:\Documents and
Settings\Username)\
Local Settings\
Application Datal\
Microsoft\CD
Burning\

C:\Documents and
Settings\Username\
Local Settings\
History\

C:\Documents and
Settings\Username\
Local Settings\Temp\

C:\Documents and
Settings\Username\
Local Settings\
Temporary Internet
Files\

C:\Documents and
Settings\Username\My
Documents\

C:\Documents and
Settings\Username\My
Recent Documents)\

C:\Documents and
Settings\Username)\
NetHood\

C:\Documents and
Settings\Username\
PrintHood\

C:\Documents and
Settings\Username\
SendTo\
C:\Documents and

Settings\Username\
Start Menu\Programs\

C:\Users\Username\
AppDatal\Local\

C:\Users\Username\
AppData\Local\Microsoft\
Windows\Burn\

C:\Users\Username\
AppData\Local\Microsoft\
Windows\History\

C:\Users\Username\
AppDatal\Local\Temp\

C:\Users\Username\
AppData\Local\Microsoft\
Windows\Temporary
Internet Files\

C:\Users\Username\
Documents\

C:\Users\Username\
AppData\Roaming\
Microsoft\Windows\Recent)\

C:\Users\Username\
AppData\Roaming\
Microsoft\Windows\Network
Shortcuts\

C:\Users\Username\
AppData\Roaming\
Microsoft\Windows\Printer
Shortcuts\

C:\Users\Username\
AppDatal\Roaming\
Microsoft\Windows\SendTo\
C:\Users\Username\
AppData\Roaming\
Microsoft\Windows\Start
Menu\Programs\

[204]

Appendix

Macro name

Legacy Windows location

Modern Windows location

%$AdminTools%

¥Startup%

$Templates%

%$Common AppData%

%$Common Desktop%

% Common
Documents$%

%$Common
Favorites%

%$Common
StartMenu%

%$Common Programs$

%Common
AdminTools%

%$Common Startup%

%Common
Templates$%

C:\Documents and
Settings\Username\
Start Menu\Programs\
Administrative
Tools\

C:\Documents and
Settings\Username\
Start Menu\Programs\
Startup\

C:\Documents and
Settings\Username)\
Templates\

C:\Documents and
Settings\All Users\
Application Datal\

C:\Documents and
Settings\All Users\
Desktop\

C:\Documents and
Settings\All Users\
Documents\

C:\Documents and
Settings\All Users\
Favorites)\

C:\Documents and
Settings\All Users\
Start Menu\

C:\Documents and
Settings\All Users\
Start Menu\Programs\

C:\Documents and
Settings\All Users\
Start Menu\Programs\
Administrative
Tools\

C:\Documents and
Settings\All Users\
Start Menu\Programs\
Startup\
C:\Documents and
Settings\All Users\
Templates\

C:\Users\Username\
AppData\Roaming\
Microsoft\Windows\
Start Menu\Programs\
Administrative Tools\

C:\Users\Username\
AppDatal\Roaming\
Microsoft\Windows\Start
Menu\Programs\Startup\
C:\Users\Username\
AppData\Roaming\
Microsoft\Windows\
Templates)\

C:\ProgramData\

C:\Users\Public\Desktop\

C:\Users\Public\
Documents\

C:\Users\Username\
Favorites

C:\ProgramData\Microsoft\
Windows\Start Menu\

C:\ProgramData\Microsoft\
Windows\Start Menu\
Programs\

C:\ProgramData\Microsoft\
Windows\Start Menu\
Programs\Administrative
Tools\

C:\ProgramData\Microsoft\
Windows\Start Menu\
Programs\Startup\

C:\ProgramData\Microsoft\
Windows\Templates\

[205]

References

Macro name

Legacy Windows location

Modern Windows location

$ProgramFilesDir%

$Program Files
Common$%

%SystemRoot%
$Fonts%

%$Resources%

%$Resources
Localized$%

$SystemSystem%

$Drive M%

C:\Program Files\
or C:\Program Files
(x86) \

C:\Program Files\
Common Files\

C:\Windows\
C:\Windows\Fonts\
C:\Windows\
Resources\

C:\Windows\
Resources\<language
ID>\
C:\Windows\System32\
or C:\Windows\
SysWOW64 \

M:\

C:\Program Files\ or C:\
Program Files (x86)\

C:\Program Files\Common
Files\ or C:\Program
Files (x86)\Common Files\

C:\Windows\
C:\Windows\Fonts\

C:\Windows\Resources\

C:\Windows\
Resources\<language_ID>

C:\Windows\System32\ or
C:\Windows\SysWOW64\

M:\

Package.ini parameters

The list of all known Package. ini settings are listed in this section. The ThinApp
Package.ini Parameters Reference Guide (http://www.vmware.com/pdf/thinapp47_
packageini_reference.pdf) offers even more detail on most of the parameters.

Since Version 4.7.2 of ThinApp, all Package. ini settings are case insensitive.
If you're using a version prior to 4.7.2, I recommend that you consider all
parameters to be case sensitive.

* AccessDeniedMsg: A message is displayed to the user if they're not entitled
to use the package. This works hand-in-hand with PermittedGroups.

Example:

[BuildOptions]

AccessDeniedMsg=You do not have permission to use this

application.

. AddPageExecutePermission:TheAddPageExecutePermission}nﬂanuﬁer
allows legacy applications that don't support a DEP-protected environment,
to execute on DEP-enabled operating systems such as Windows XP SP2 and

the later versions.

[206]

Appendix

Example:

[BuildOptions]
AddPageExecutionPermission=1 (default O0)

AllowExternalKernelModeServices: ThinApp runtime can start
external kernel driver services as long as the file exists on the physical
filesystem. The default setting is not to allow ThinApp runtime to launch
these external services.

Example:

[BuildOptions]
AllowExternalKernelModeServices=1 (default=0)

AllowExternalProcessModifications: Using the
AllowExternalProcessModifications parameter, you can allow the
ThinApp runtime to create and run kernel driver services. The service
executable file must exist on the physical filesystem.

Example:

[BuildOptions]
AllowExternalProcessModifications=1 (default 0)

AllowUnsupportedExternalChildProcesses: ThinApp runtime

does not support running 64-bit child processes within the virtual
environment. Therefore, ThinApp will by default execute 64-bit child
processes outside of the virtualized environment. You can disable this with
AllowUnsupportedExternalChildProcesses. When it's disabled, no 64-bit
child processes will be able to run.

Example:

[BuildOptions]
AllowUnsupportedExternalChildProcesses=0 (default 1)

AnsiCodePage: This parameter gets its value from the capturing machine.
It represents the language (in a numeric format) of your capturing machine.
This parameter doesn't allow for language translations.

Example:

[BuildOptions]
AnsiCodePage=1252

[207]

References

AppSyncClearSandboxOnUpdate: AppSyncClearSandboxOnUpdate will
delete the sandbox upon a successful AppSync update. The default behavior
is to not delete the sandbox.

Example:

[BuildOptions]
AppSyncClearSandboxOnUpdate=1 (default=0)

AppSyncExpireMessage: A message is displayed to the user when a package
has expired using the AppSyncExpirePeriod parameter.

Example:

[BuildOptions]

AppSyncExpireMessage=This application has been unable to contact
its update server for %expire days% day(s), so it is unavailable
for use. Check your network connection and try again.

AppSyncExpirePeriod: AppSyncExpirePeriod specifies if the package
should expire after a certain amount of days of not being able to contact
the specified AppSyncURL.

Example:

[BuildOptions]
AppSyncExpirePeriod=30 (AppSyncExpirePeriod=never disables
expiration of the Package)

AppSyncUpdatedMessage: A message is displayed to the user after a
successful AppSync update.

Example:

[BuildOptions]
AppSyncUpdatedMessage=Your application have now been updated to
the latest version.

AppSyncUpdateFrequency:TheAppSyncUpdateFrequency}xuanuﬁer
decides how often AppSync should check for an updated version of the
package. Remember that AppSync will only happen when the package

is in use.
Example:
[BuildOptions]

AppSyncUpdateFrequency=0 (AppSync will check for updates every
time the Package is launched,default value is 1d)

[208]

Appendix

AppSyncURL: The AppSyncURL parameter specifies the location of update
packages, using the AppSync update feature. AppSyncURL supports three
protocols —HTTP, HTTPS, and FILE.

Example:

[BuildOptions]
AppSyncURL=file://ServerName/ShareName/NewPackage.exe

or
AppSyncURL=http://www.myUpdates.com/Updates/NewPackage.exe

AppSyncWarningFrequency: This parameter specifies how often the
AppSyncWarningFrequency value will be displayed, ahead of the
expiration of the package.

Example:

[BuildOptions]
AppSyncWarningFrequency=1d

AppSyncWarningMessage: This parameter specifies the message displayed
to the user before the package expires due to the AppSyncExpirePeriod
parameter.

Example:

[BuildOptions]

AppSyncWarningMessage=This application will become unavailable

for use in %remaining days% day(s) if it cannot contact its update
server. Check your network connection to ensure uninterrupted
service.

AppSyncWarningPeriod: The parameter specifies how many days
ahead of package expiration the AppSyncWarningMessage string will
start to be displayed. The frequency of the message is decided using the
AppSyncWarningFrequencyFmranuﬁen

Example:
[BuildOptions]
AppSyncWarningPeriod=5d

AutoShutdownServices: By default, ThinApp runtime will shutdown any
services started within the virtual environment when the last non-service
process is shutdown. You can disable this feature if you want to keep the
services running,.

Example:

[BuildOptions]
AutoShutdownServices=0 (default=1)

[209]

References

AutoStartServices: Normally, all virtualized services will start upon
package launch. This may be quite time consuming, so you might want
to consider disabling the auto-start of services.

Example:

[BuildOptions]
AutoStartServices=0 (default=1)

Blocksize: You can change the default block size used when compressing
the package. The default block size is 64 KB. Valid block sizes are 128 KB, 256
KB, 512 KB, or 1 MB. You can change the block size for individual folders
within your project by adding the Blocksize parameter to the folder's
##Attributes. ini file.

Example:

[Compression]
BlockSize=128k (k means KB and m means MB, e.g. 1lm = 1MB)

CachePath: CachePath is the location of the ThinApp package cache. The
cache location is where virtualized fonts will be copied to in the physical
environment prior to activation. This parameter can be overridden with
the help of the $THINSTALL CACHE_DIR% environment variable.

Example:

[BuildOptions]
CachePath=C:\ThinAppCache (default is the user's local profile)

CapturedUsingVersion: CapturedUsingVersion indicates which
version of ThinApp is used to capture the application. You should
not delete the parameter.

Example:

[BuildOptions]
CapturedUsingVersion=4.7.1-677178

ChildProcessEnvironmentDefault: By default, all child processes will be
loaded within the virtual environment. Sometimes, this slows down the load
process and you might want to consider loading child processes externally.
Most of the time, you only want to load certain processes externally. In those
cases, use the ChildProcessEnvironmentExceptions parameter instead.

Example:

[BuildOptions]
ChildProcessEnvironmentDefault=External (default=virtual)

[210]

Appendix

ChildProcessEnvironmentExceptions:
ChildProcessEnvironmentExceptions are used to add exceptions

to the childProcessEnvironmentDefault parameter. Often, you leave
ChildProcessEnvironmentDefault as the default, loading child processes
virtually, and add the specific processes you want to load externally as
ChildProcessEnvironmentExceptions. We separate processes by using

a semicolon.

Example:

[BuildOptions]
ChildProcessEnvironmentExceptions=WINWORD.EXE; EXCEL.EXE; POWERPNT.
EXE; OUTLOOK. EXE; MOC. EXE

CommandLine: CommandLine is used to add hardcoded parameters to your
entry point's source executable.

Example:

[Entry Point Section]
CommandLine="%ProgramFilesDir%\Mozilla Firefox\firefox.exe" -safe-
mode

Comment: Comment is specified per entry point, and determines what will be
displayed when the user hovers the mouse over a shortcut to the entry point.
If nothing is specified, the path to the entry point is displayed.

Example:

[Entry Point Section]
Comment=This is your default browser

CompressionType: The CompressionType parameter specifies if you
want to compress the package or not. Back in the Thinstall days it was

not only compression on and off, we were also offered None, Fast and
Small compression. No one really used the Small algorithm so when
VMware acquired Thinstall, they got rid of the Small option. By default,
only files other than executables and dlls are compressed. You can

change this behavior by using the optimizedFor parameter. You can add
CompressionType to a project folder's ##Attributes. ini file to compress
only that folder.

Example:

[Compression]
CompressionType=Fast (default=None)

[211]

References

DirectoryIsolationMode: DirectoryIsolationMode specifies the default
filesystem's isolation mode. The default isolation mode will be used if

no isolation mode has been specified on a location. Valid parameters are
WriteCopy or Merged. You should not use Full as your default directory
isolation mode because you would probably hide too much of the native
system from the package.

Example:

[Isolation]
DirectoryIsolationMode=WriteCopy

DisablecCutPaste: Using this parameter will disable the ability to copy/cut
and paste information out from the package.

Example:

[BuildOptions]
DisableCutPaste=1 (default=0)

DisableCutPasteMsg: This parameter specifies the text that will be pasted
instead of the original data when using DisableCutPaste=1.

Example:

[BuildOptions]
DisableCutPasteMsg=Administrator has disabled Cut and Paste for
application %1s

Disabled: This parameter is used to specify if an entry point should be
created or not.

Example:

[Entry Point Section]
Disabled=1 (0 will create the Entry Point)

DisablePrinting: By using this parameter you can disable printing from a
package. The end result, that the user can't print, is very similar to using the
HidePrinters parameter.

Example:

[BuildOptions]
DisablePrinting=1 (default=0)

[212]

Appendix

DisableRegistryTransaction: With ThinApp Version 4.5, the way the
ThinApp runtime stores the virtual registry within the sandbox was changed.
In Version 4.5, the registry is stored using a transactional log. This should
make the sandbox more robust and less likely to become corrupted. The
legacy method uses a flat file with a backup file containing the last known
good version. At times you can have a performance issue when using the
new format, especially when storing the sandbox on a network share. If this
is the case, try using the legacy method instead. I don't recommend that you
change this setting on all of your packages; it's something you should decide
on a package-by-package basis.

Example:

[BuildOptions]
DisableRegistryTransaction=1 (default=0)

DisableTracing: This parameter will disable the possibility of using the Log
Monitor to debug the execution of the package.

Example:

[BuildOptions]
DisableTracing=1 (default 0)

ExcludePattern: ExcludePattern will allow you to exclude certain files

and folders from being compiled into the package. This way you can keep the
installer cache within your project folder, but keep them from bloating your
packages. Please note that ExcludePattern uses its own Package. ini section
called [FileList]. You can add the parameter into ##Attributes.ini files as
well. This way, the exclusion will only be active on that specific folder.

Example:

[FileList]
ExcludePattern=\.cab, \.msi

ExternalCOMObjects: By default, ThinApp will keep virtualized COM
objects virtual. If you suspect that an application implements COM objects
that are incompatible with ThinApp runtime, you can have them load
externally, outside of the virtualized environment. This is quite rare, and
more or less only implemented when you have an issue and you're told by
VMware support to use this feature. The parameter uses the CLSID keys.

Example:
[BuildOptions]

ExternalCOMObjects={8BC3F05E-D86B-11D0-A075-
00C04FB68820}; {7D096C5F-AC08-4F1F-BEB7-5C22C517CE39}

[213]

References

ExternalDLLs: Using the ExternalDLLs parameter, you can specify
virtualized DLLs that should be loaded by the system rather than the
ThinApp runtime. This is very handy if your application uses DLLs that
ThinApp runtime doesn't support, for example, DLLs requiring hooking.

Example:

[BuildOptions]
ExternalDLLs=one.dll;another.dll

FileTypes: The FileTypes parameter will tell thinreg. exe what file type
extensions to register to the entry point.

Example:

[Entry Point Section]
FileTypes=.htm.html.shtml.xht.xhtml

ForcedVirtualLoadPaths: The ForcedvirtualLoadPaths parameter

tells ThinApp runtime to load physical DLLs within the virtual environment.
This parameter is useful when an application must load external system
DLLs that depend on DLL files located in the package.

Example:

[BuildOptions]
ForcedVirtualLoadPaths=%ProgramFilesDir%\LocallyInstalledApp\
LoadMe.dll

HidePrinters: The HidePrinters parameter offers the same end result
as the DisablePrinting parameter, that is, the end user can't print from
the packaged application. HidePrinters will hide all printers for the
virtualized application.

Example:

[BuildOptions]
HidePrinters=1 (default=0)

Icon: The Icon parameter will allow you to specify an icon for your
entry point.

Example:

[Entry Point Section]

Icon=%ProgramFilesDir%\Mozilla Firefox\MyOwnIcon.ico

or

Icon=%ProgramFilesDir%\Mozilla Firefox\firefox.exe,2 (Icon
supports specifying specific icon within a file.)

[214]

Appendix

IgnoreDDEMessages: You can block DDE messages from getting passed into
the virtualized application. By default, DDE messages are passed from the
operating system into the virtual environment.

Example:

[BuildOptions]
IgnoreDDEMessages=1 (default=0)

InventoryName: Setup Capture picks up the value of InventoryName during
the capturing process. Setup Capture investigates the HKLM\ SOFTWARE\
Microsoft\Windows\CurrentVersion\Uninstall and HKCU\SOFTWARE\
Microsoft\Windows\CurrentVersion\Uninstall registry keys to learn the
name of the application captured. If you capture multiple installers in one
capture, you will probably have to modify the InventoryName parameter

to reflect the true application name. InventoryName is used to prepopulate
many Package . ini settings, such as SandboxName, MSIFilename, and many
more. InventoryName is also used to populate the Add or Remove Programs
window when registering the ThinApp package.

Example:

[BuildOptions]
InventoryName=Mozilla Firefox (3.5.7)

InventoryIcon: InventoryIcon is the application icon displayed on the
Horizon Application Manager's workspace.

Example:

[BuildOptions]
InventoryIcon=%ProgramFilesDir%\Mozilla Firefox\firefox.exe, 0

IsolatedMemoryObjects: The IsolatedMemoryObjects parameter can
help when two applications, using the same shared memory object, conflict
with each other. One example can be when you have one version of the
application natively installed and another version virtualized.

Example:

[BuildOptions]
IsolatedMemoryObjects=*outlook*; Some Other Object

[215]

References

IsolatedSynchronizationObjects: The
IsolatedSynchronizationObjects parameter allows you to isolate
synchronization objects, for example: OpenMutex, CreateMutex,
OpenSemaphore, CreateSemaphore, OpenEvent, and CreateEvent.
If you have an issue and find any of these in the Log Monitor trace
you might want to try isolating synchronization objects.

Example:

[BuildOptions]
IsolatedSynchronizationObjects=*outlook*;Some Other Object

LoadDotNetFromSystem: If your package includes .NET Framework, you

can tell the package to discard the virtualized .NET and load the system .NET
Framework on Windows 7 machines. This way, your package containing an
older version of .NET can support both Windows XP and Windows 7.

Example:

[BuildOptions]
LoadDotNetFromSystem=Win7

LocaleIdentifier: LocaleIdentifier is a numeric ID identifying the
language (locale) and will affect the layout and formatting of your virtualized
application. By default, the locale of your capturing environment will be in
your Package.ini.

Example:

[BuildOptions]
LocaleIdentifier=1033

LocaleName: The LocaleName parameter displays the name of the locale
when you capture an application. This parameter is not added to package.
ini by default.

Example:

[BuildOptions]
LocaleName=en-EN

LogPath: The LogPath parameter specifies where the Log Monitor trace file
will be created.

Example:

[BuildOptions]
LogPath=C:\Temp

[216]

Appendix

MetaDataContainerOnly: The MetaDataContainerOnly parameter indicates
that the entry point is only used as a data container.

Example:

[Entry Point Section]
MetaDataContainerOnly=1

MSIArpProductIcon: MSIArpProductIcon specifies the icon displayed in the
Add or Remove Programs control panel window.
Example:

[BuildOptions]
MSIArpProductIcon=%ProgramFilesDir%\Mozilla Firefox\firefox.exe, 0

MSICompressionType: You can decide to compress the MSI file content to
preserve disk space. Supported values are None or Fast.

Example:

[BuildOptions]
MSICompressionType=None

MSIDefaultInstallAllUsers: This parameter specifies if the ThinApp
generated MSI should be installed machine wide or per user.

Example:

[BuildOptions]
MSIDefaultInstallAllUsers=0 (Default are 1, 2 will first try
to install machine wide but if not able to revert to per user
installation.)

MSIFilename: When this is activated within your Package . ini file, the
ThinApp build process will generate an MSI file to be used for deployment
of the ThinApp package. The value of the parameter specifies the name of
the file generated.

Example:

[BuildOptions]
MSIFilename=Mozilla Firefox (3.5.7).msi

[217]

References

MSIInstallDirectory: MSIInstallDirectory specifies the name of the
folder where the ThinApp package will be deployed. By default, the name
of the folder includes "(VMware ThinApp)". This is to make sure it won't
conflict with any natively installed versions of the same application.

Example:

[BuildOptions]
MSIInstallDirectory=Mozilla Firefox (3.5.7) (VMware ThinApp)

MSIManufacturer: The MSIManufacturer will populate the manufacturer
property in Add or Remove Programs when registering the package. The

default value will be whatever company name you used when registering
your capturing environment.

Example:

[BuildOptions]
MSIManufacturer=Peter Bjork

MSIProductCode: Setup Capture will generate a unique Globally Unique
Identifier (GUID) to identify the application deployed to your clients.
Together with MSTProductversion, it allows Windows installer to update
already deployed packages with new versions. Normally, you should leave
this parameter unmodified.

Example:

[BuildOptions]
MSIPrOductCode={FA347819—9E28—3A88—BB20—46E3F1435C94}

MSIProductVersion: MSIProductVersion is used to identify a new version
of the package. If you raise the number, the build process will automatically
create an update package capable of uninstalling previous versions of the
package and deploy the new version automatically.

Example:

[BuildOptions]
MSIProductVersion=2.0 (default=1.0)

MSIProperty.: With MSIProperty. you can add your own properties
to the MSI file generated by ThinApp.

Example:

[BuildOptions]
MSIProperty.MyCustomProperty=AnyValueYouWant

[218]

Appendix

MSIRequireElevatedPrivileges: MSIRequireElevatedPrivileges
specifies whether installing the MSI file requires elevated privileges or not.
If required, the user will get a UAC prompt on Vista or newer operating
systems. Installing per user only should not require elevated privileges.

Example:

[BuildOptions]
MSIRequireElevatedPrivileges=0 (default=1)

MSIStreaming: This parameter was called MSIUseCabs in previous versions
of ThinApp. MSIStreaming tells the build process if it should include the
package in the MSI file it generates or keep the package files outside. When
the package files are stored within the MSI file, the filesystem is virtualized
within the MSI file. This makes it impossible to use MSI editing tools like
Orca to change the MSI file. If you keep the package files outside the MSI
file (MSIStreaming=1), it will be possible to modify the MSI file using a
traditional MSI editing tool. When using VMware View Manager to entitle
ThinApp packages, MSIStreaming=1 will allow for a streaming deployment.

Example:

[BuildOptions]
MSIStreaming=1 (default=0)

MSIUpgradeCode: The MSIUpgradeCode parameter works together with the
MSIProductVersion and the MSIProductCode parameters to identify if an
MSI package is an update to an existing deployment. You can often leave this
parameter unmodified, only changing the MSIProductVersion parameter,
and the build process will automatically generate an update MSI file.

Example:

[BuildOptions]
MSIUpgradeCode= { 8AO7FD29—1500—3A60—27AD—C761175F7F79}

NetRelaunch: NetRelaunch was introduced as a workaround to Symantec
Antivirus interfering with the streaming of ThinApp packages. Nowadays,
NetRelaunch is activated by default. When active, the package will relaunch
itself upon streaming. This way, only a small part of the package will be
accessed and therefore scanned by your antivirus initially. I know no real
reason for changing this parameter. Just leave it as default. What you

should do is to make sure to disable on-access antivirus scanning of

your ThinApp repository.

Example:

[BuildOptions]
NetRelaunch=1 (this is the default value)

[219]

References

* NotificationDLLs: When using the NotificationDLLs parameter, the
ThinApp runtime will call a third-party DLL to provide notification of
events, for example, startup and shutdown. This parameter is used when
using Horizon Application Manager for entitlement.

Example:

[BuildOptions]
NotificationDLLs=HorizonPlugin.dll

* NotificationDLLSignatures: The NotificationDLLSignatures
parameter works hand-in-hand with the NotificationDLLs parameter
to verify the signature of the DLL. If the DLL lacks the signature, ThinApp
runtime will not load the file.

Example:

[BuildOptions]
NotificationDLLSignatures=VMware, Inc.

* ObjectTypes: ObjectTypes will specify which COM object types thinreg.
exe will register on the local operating system when registering a package.
Setup Capture will pick up any object types registered during your capturing
process and add the information to your entry point section.

Example:

[Entry Point Section]

ObjectTypes=Word.Application;Word.Application.12;Word.
Application.8;Word.Backup.8;Word.Basic;Word.Basic.8;Word.
Basic.9;Word.Document ; Word.Document .12 ;Word.Document . 8;Word.
DocumentMacroEnabled;Word.DocumentMacroEnabled.12;Word.
Picture;Word.Picture.8;Word.RTF.8;Word.Template;Word.
Template.1l2;Word.Template.8;Word.TemplateMacroEnabled;Word.
TemplateMacroEnabled.12;Word.Wizard.8

* OptimizedFor: This parameter goes hand-in-hand with the
CompressionType parameter. Using OptimizedFor, you can change from
the default behavior of only compressing files other than executables
and dlls. optimizedFor=Disk will compress all files. The downside of
compressing all files is decreased performance. The package will launch
slower if all files are compressed. Compressing all files will also disable
the ThinApp runtime's memory sharing functionality.

Example:

[Compression]
OptimizedFor=Disk (default=Memory)

[220]

Appendix

OptionalAppLinks: OptionalAppLinks will activate AppLink functionality
in your package. OptionalAppLinks will integrate to the child packages
found but will allow for package launch if no AppLinks can be found.

Example:

[BuildOptions]
OptionalAppLinks=C:\Program Files\Java Runtime\java.exe

outDir: The outDir parameter specifies where the output from the build
process will be stored.

Example:

[BuildOptions]
OutDir=bin

PermittedComputersSIDs: PermittedComputersSIDs specifies which
computer SIDs are allowed to execute the package. It works similar to
PermittedGroups, but is computer-based rather than user-based.

PermittedComputersAccessDeniedMsg: This parameter specifies the
message displayed to the end user if their computer isn't allowed to
launch the ThinApp package.

Example:

[BuildOptions]
PermittedComputersAccessDeniedMsg=Your machine is not entitled to
run this application.

PermittedGroups: PermittedGroups is used to protect your packages.
Only a user, who is a member of the Active Directory groups specified with
PermittedGroups, will be able to use the package. The parameter supports
adding the group's SID instead of group name. PermittedGroups can be
applied package wide and/or per entry point.

Example:

[BuildOptions]
PermittedGroups=ThinApp Users

or

[Entry Point Section]
PermittedGroups=Mozilla Firefox Users

[221]

References

* PermittedGroupSIDs: PermittedGroupSIDs can be used to SpeCify
an Active Directory group's SID for protecting a package.

Example:

[BuildOptions]
PermittedGroupSIDs=Enter the group's SID

* PreventDllInjection: PreventDllInjection prevents a DLL from being
loaded into a process when another process is calling setwindowHook to
set a global hook using the DLL.

Example:

[BuildOptions]
PreventDllInjection=1 (default=0)

* ProcessExternalNameBehavior: By default, the original process name is
hidden by the ThinApp runtime. This will allow most whitelist security
products to work with ThinApp packages. The reason is that the name in
the process list is the same as the filename on disk. You can change this
using the ProcessExternalNameBehavior parameter.

Example:

[BuildOptions]
ProcessExternalNameBehavior=Original (default=WhitelistFriendly)

* Protocols: Protocols specifies which protocols will be registered to an
entry point. Setup Capture will pick up the protocols registered during the
capturing process.

Example:

[Entry Point Section]
Protocols=FirefoxURL; ftp;http;https

. QualityReportingEnabledzTheQualityReportingEnabledpannne&m
specifies whether the package will deliver anonymous data to VMware or
not. QualityReportingEnabled=1 will send data to VMware.

Example:
[BuildOptions]

QualityReportingEnabled=0 (The package will not deliver any data
to VMware)

[222]

Appendix

QualityReportingTag: The anonymous data passed to VMware using
QualityReportingEnabled=1 can be tagged to identify the origin of the
package. This is done using the QualityReportingTag parameter, and to
my knowledge it's only used within the ThinApp Factory. More information
about ThinApp Factory can be found here: http://labs.vmware.com/
flings/thinapp-factory.

Example:

[BuildOptions]
QualityReportingTag="ThinAppFactory"

ReadOnlyData: This parameter specifies the file that is the data container.
There can only be one data container per package.

Example:

[Entry Point Section]
ReadOnlyData=Package.ro.tvr

RegistryIsolationMode: The default registry isolation mode is always
WriteCopy. Using the RegistryIsolationMode parameter allows you to
change the default isolation mode.

Example:

[BuildOptions]
RegistryIsolationMode=Merged (default=WriteCopy)

RemoveSandboxOnExit: This parameter allows you to wipe the sandbox
clean on every exit of the package.

Example:

[BuildOptions]
RemoveSandboxOnExit=1 (default=0)

RemoveSandboxOnStart: RemoveSandboxOnStart is a new parameter.

Like its sister parameter; RemoveSandboxOnExit, it will delete the sandbox
content. RemoveSandboxOnStart will delete the sandbox on each start of the
Package. This can be handy if you want to make sure the sandbox is always
cleared. Using only the RemoveSandboxOnExit parameter might not be
enough. If the packaged application crashes, RemoveSandboxOnExit will

not receive a correct exit code from the application and will therefore not
delete the sandbox.

Example:

[BuildOptions]
RemoveSandboxOnStart=1 (default=0)

[223]

References

RequiredAppLinks: RequiredAppLinks will activate AppLink functionality
in your package. RequiredAppLinks will deny package launch if it cannot
access the AppLink package.

Example:

[BuildOptions]
RequiredAppLinks=C:\Program Files\Oracle Client\OracleClient.exe

ReserveExtraAddressSpace:TheReserveExtraAddressSpaceFmranuﬁer
specifies the amount of extra address space to reserve for the captured
executable file.

Example:

[Entry Point Section]
ReserveExtraAddressSpace=512K

RetainAllIcons: To save disk space, ThinApp removes unused icons from
the package. You can decide to keep the icons if needed.

Example:

[Entry Point Section]
RetainAllIcons=1 (default=0)

Runt imeEULA: Runt imeEULA is probably the least used Package. ini
parameter you will find. Activating Runt imeEULA will display the VMware
ThinApp EULA when launching the package. VMware doesn't require that
you display the EULA so I honestly do not see any point in ever activating
the parameter.

Example:

[BuildOptions]
RuntimeEULA=1 (default=0)

SandboxCOMObjects: You can modify the SandboxCOMObjects parameter to
make COM objects, registered within the virtual environment, visible outside
the virtual environment. By default, virtual COM objects are not visible in the
physical environment.

Example:

[BuildOptions]
SandboxCOMObjects=1 (default=0)

[224]

Appendix

SandboxName: The SandboxName parameter specifies the name of
the sandbox.

Example:

[BuildOptions]
SandboxName=Mozilla Firefox

SandboxNetworkDrives: By default, network drives are not sandboxed. You
can activate sandboxing of network drives using SsandboxNetworkDrives=1.

Example:

[BuildOptions]
SandboxNetworkDriveg=1 (default=0)

SandboxPath: This parameter specifies the location of the sandbox.

Example:

[BuildOptions]
SandboxPath=C:\Sandboxes

SandboxRemovableDisk: Removable disks are not sandboxed by default.
This parameter allows you to change this behavior.

Example:

[BuildOptions]
SandboxRemovableDisk=1 (default=0)

Services: ThinApp allows virtualized services to be registered, and thereby
starts during the boot of the operating system, on the native system. The
service still lives within the virtual environment. To be able to register

a service natively, you need to activate the service as an entry point and
activate the service parameter. The value of the Services parameter is the
name of the service. Setup Capture will grab information on any services
registered during the capturing process and prepopulate your package. ini
file with the correct values. The service entry point is disabled by default.
You must register machine wide in order for the service to be registered
correctly. This means using thinreg. exe with the /a switch.

Example:

[Entry Point Section]
Services=Apache2.2

[225]

References

® SetVirtualModuleFileNameInPeb: SetVirtualModuleFileNameInPeb=0
(default) sets the entry point file path in Process Environment Block
(PEB), and applies it to all virtual child processes. When using
SetVirtualModuleFileNameInpeb=1 (default value in ThinApp Version
4.5 - 4.6), PEB contains the virtual EXE's file path, which doesn't exist
on the physical operating system. This means Windows Explorer can't
always find the correct icon to use. You should very rarely have to use
this parameter.

Example:

[BuildOptions]
SetVirtualModuleFileNameInPeb=0

* Shortcut: The Shortcut parameter tells the entry point in which file the
data container is stored.

Example:

[Entry Point Section]
Shortcut=Mozilla Firefox.exe

* Shortcuts: The Shortcuts parameter is used when registering a package,
and specifies where shortcuts will be created.

Example:

[Entry Point Section]
Shortcuts=%Desktop%; $Programs%\Mozilla Firefox

* Source: The Source parameter identifies the target of the entry point, that
is, what will be launched within the virtual environment. The source can be
located either within or outside the virtual environment. The source does not
have to be an executable as long as the file type extension is registered to an
application.

Example:

[Entry Point Section]
Source=%ProgramFilesDir%\Mozilla Firefox\firefox.exe

* StatusbarDisplayName: With the help of the statusbarDisplayName
parameter you can change the application name displayed in the ThinApp
splash screen.

Example:

[BuildOptions]
StatusbarDisplayName=Mozilla Firefox

[226]

Appendix

StripVersionInfo: By default, the ThinApp package will keep the entry
point target's version information and add them to the entry point. You
can strip the version information using the SstripversionInfo parameter.

Example:

[Entry Point Section]
StripVersionInfo=1 (default=0)

ThinDirectWhitelistOnlyfTheThinDirectWhitelistOnly}xﬂanuﬁer
allows you to specify whether or not a browser package should redirect back
to the default browser. The default behavior is to redirect the user to the
default browser if visiting any URL not ThinDirected to the package.

Example:

[BuildOptions]
ThinDirectWhitelistOnly=0 (default=1)

UACRequestedPrivilegesLevel: You can modify the
UACRequestedPrivilegesLevel parameter to specify which privileges your
package requires on an operating system supporting User Account Control
(UACQ). Possible values are: asInvoker (default), requireAdministrator,
or highestAvailable. highestAvailable will use the highest privilege
possible avoiding UAC prompt.

Example:

[BuildOptions]
UACRequestedPrivilegesLevel=highestAvailable

UACRequestedPrivilegesUiAccess: This parameter specifies access or no
access to protected user interface elements. Possible values are false or true.

Example:

[BuildOptions]
UACRequestedPrivilegesUiAccess=false (no access to protected
elements)

UpgradePath: UpgradePath is an interesting parameter. When using in-place
update it will be used to specify where the package searches for updated
versions of itself. If your package uses AppSync, UpgradePath will be the
location where the AppSync cache, log, and update package is stored.

Example:

[BuildOptions]
UpgradePath=C:\Updates

[227]

References

* Version.:The Version. parameter populates the version tab of the
entry point's file properties with custom information.

Example:

[Entry Point Section]
Version.AnythingYouWant=VeryImportantValue

Mozilla Firefox.exe Properties

arch || Folders , Generall "Wersion |E0mpatibilily

4.7.2 hotfixlCapturesiMozila /| | File version: 1913728 i
M Dezcription: — Firefox
Bl o exe
gInternet Explarer exe Copyright; DFirefox and Mozilla Developers, according ot
.Mozilla Firefox.exe
ﬁregedit.exe Other wersion information
Itern name: W alue:
Irtersial Name A | | Testing
Language B

Leqgal Trademarks

Dliiinal File: name

Froduct Mame

Froduct Yersion
ThindppBuildDateTim
ThinApplicensze
Thindpptersion —

I 0k H Cancel l Apply

You can add your own file version properties. The Package. ini settings of
the previous picture are as follows:

[Mozilla Firefox.exel]
Source=%ProgramFilesDir%\Mozilla Firefox\firefox.exe
ReadOnlyData=Package.ro.tvr
Version.Peter=Testing

[228]

Appendix

VirtualComputerName: ThinApp can virtualize the hostname. This is
handy when the packaged application refers to the hostname where it
was originally installed. Virtualizing the hostname can help in making the
package portable. Another workaround may be to capture the application
on a machine using LOCALHOST as the hostname. The default behavior is to
pass the native hostname to the virtualized application.

Example:

[BuildOptions]
VirtualComputerName=MACHINE1l

VirtualDrives: ThinApp can virtualize drives. By default, the C-drive of
your capturing environment is virtualized. This way, the serial number of
the C-drive is virtualized. This helps in making some legacy applications
portable. VirtualDrives uses a couple of parameters to define the virtual
drive it creates. Drive= specifies the drive letter of the virtual drive. Serial=
specifies the serial number of the virtual drive. serial= is not required.
Type-= specifies what kind of drive ThinApp will pretend that the virtual
drive is. Possible values are REMOVABLE, RAMDISK, CDROM, and FIXED. Your
package can only have one VirtualDrives parameter active. You separate
each virtual drive with a semicolon.

Example:

[BuildOptions]
VirtualDrives=Drive=a, Serial=00del968, Type=REMOVABLE; Drive=c,
Serial=647c820d, Type=FIXED; Drive=d, Serial=647c¢820d, Type=CDROM

VirtualElevation: VirtualElevation=1 means the ThinApp

runtime will lie to the app and tell it that it's running as an elevated

process. VirtualElevation=0 means ThinApp runtime will pass the

true elevation status to the application. So this is a bit different from
UACRequestedPrivilegesLevel, which really affects the elevation status.
VirtualElevation only affects what ThinApp runtime will tell the process.

Example:

[BuildOptions]
VirtualElevation=1

[229]

References

VirtualizeExternalOutOfProcessCOM:

VirtualizeExternalOutOfProcessCOM specifies if ThinApp will run an
external process, called by using COM, within the virtual environment or
not. By default, such a process is run within the virtualized environment.

Example:

[BuildOptions]
VirtualizeExternalOutOfProcessCOM=0 (default=1)

WorkingDirectory: The WorkingDirectory parameter specifies what will
be the working directory for the application launched. If not specified, the
working directory will be the location of the package.

Example:

[Entry Point Section]
WorkingDirectory=%ProgramFilesDir%\Mozilla Firefox

Wowé64: The Wowe4 parameter tries to simulate a 32-bit environment when
the package is running on a 64-bit operating system. If your 32-bit
application has a problem running on a 64-bit system you can try to activate
this parameter. It will only help a few applications but is still worth trying.

Example:

[BuildOptions]
Wow64=0

XYZ=AnyValue: You can add anything to Package. ini and it will be
accessible via vb-scripting or the ThinApp SDK. This way, you can
pick up custom settings with your script.

Example:

[BuildOptions]
MyNameIs=Peter Bjork

There are a couple of Package. ini parameters related to VMware Horizon
Application Manager. You'll find them in your package . ini under the Horizon
Parameters headline.

AppID=genid: AppID is a unique application identifier used by Horizon
to be able to track and manage the package.

NotificationDLLs=HorizonPlugin.dll: The NotificationDLLs
parameter tells the ThinApp runtime that it has to ask the HorizonPlugin.
d11 for entitlement before allowing execution of the package.

[230]

Appendix

®* HorizonOrgUrl=http://www.MyHorizonXYZ.com: The HorizonOrgUrl
value should point to your Horizon Workspace URL. When specified, the
end user will be presented with a link to download the Horizon Agent,
if it's not already installed on the same machine that the ThinApp package
is executed on.

* VersionID=:VersionID is used by Horizon to identify updated versions
of already managed packages.

Environment variables and ThinApp

runtime switches

* THINSTALL_BIN: It specifies the location of the ThinApp utilities
folder. You can find out more information about the THINSTALL_BIN
environment variable in Chapter 1, Application Virtualization.

[2]

Wariable name; THIMSTALL_BIM

‘ariable walue: Z2:\Thinappl¥Mware ThinApp ¢.7.2 771812

[oK] [Cancel

* %TS_NO_FONTS%: Specifying the $TS_NO_FONTS% environment
variable will disable virtualized fonts. The environment variable's value
is of no importance. Having a lot of virtualized fonts might slow down
the performance of your package. Specifying $Ts_NO_FONTS% allows you
to launch the package with no fonts. This way, you can easily compare
performance with or without fonts included in the package.

Changing the sandbox location

With the help of an environment variable, you can override the sandbox

location. Supported environment variables are $THINSTALL SANDBOX_DIR% and
$SandboxName SANDBOX DIRS%. These environment variables are discussed more in
depth in the The sandbox section in Chapter 1, Application Virtualization.

e OTHINSTALL_CACHE_DIR%: You use this environment variable to
override the cachepPath Package. ini parameter. For more information about
the cachePath, please see the Package.ini parameters section in this appendix.

[231]

References

* %TS_OPTIONS%: $TS_OPTIONSY% is created automatically by ThinApp
runtime and only exists in the virtual environment. It points to the
entry point.

* %TS_ORIGINY%: $TSs_ORIGIN% environment variable only exists within the
virtual environment. $TS_ORIGIN% points to the package's data container.

ThinApp runtime switches

There is to my knowledge only one switch that the ThinApp runtime will listen
to, and that is -ThinstallVersion. The ThinstallVersion switch will show you
which ThinApp runtime version the package contains. All other switches added
to a package will be passed through to the virtualized executable (the source of
the entry point).

Open:

File Edit ‘Wiew Favorikes Tools Help

eBack - -_:] Lﬁ pSearch H:’ Folders v

Address (23 2 ThinApplYMware Thindpp 4.7.2 7718121 Capturesi\Mozilla Firefox (3.5, 71kin
Mame Size | Tvpe
.Mozilla Firefox.exe 35,904 KB Application

File and Folder Tasks

Iﬂ Renarme this file

Type the name of a program, folder, document, or
Internet resource, and Windows will open it Far you, YMware Thindpp Runtime Yersion 4.7.2-771812

Built Jul 3 2012

QK |

| ox (3.5, 70binMozilla Firefox, exe" -ThinskallYersion |

[Ok][Cancel][Browse, ..]

[232]

Appendix

Summary

In this appendix, I have covered the Package. ini supported folder macros,
environment variables, and ThinApp runtime switches. This appendix can
be used as a reference for all possible package . ini setting.

This concludes the book on ThinApp 4.7 Essentials. I hope you found the book useful
and that it will help you with your daily ThinApp packaging.

If you are looking for more ThinApp information, can I recommend the official
VMware ThinApp blog, http://blogs.vmware.com/thinapp. Since it's a blog,
articles will be archived per month published and you will have to search to find
what you are looking for. There are some categories you can sort on, but not all
articles are created with a category. Personally, use http://google.com to search
the blog. I've found Google to be much more precise in its search result than the
blog's own search engine.

The ThinApp community, http://communities.vmware.com/community/vmtn/
desktop/thinapp, is another great resource for information.

[233]

Symbols

7-Zip 7
%TS_NO_FONTS% 231

A

AccessDeniedMsg parameter 206
Active Directory (AD) group

used, for protecting ThinApp package 164
AddPageExecutePermission parameter 206
AllowExternalKernelModeServices param-

eter 207
AllowExternalProcessModifications param-
eter 207

AnsiCodePage parameter 207
AppID=genid parameter 230
application

recapturing 112
application dependencies

on another virtualized application 88

to locally installed applications 87

to runtime 86

types 86
Application Linking. See AppLink
application packaging 41, 42
applications

registering, thinreg.exe file used 103-109
Application Sync. See AppSync
application virtualization

about 5

benefits 6
AppLink

about 28, 153

conflict resolution, for isolation modes 30

Index

overview 29, 30

using, for package updation 153-156
AppLink flavors, ThinApp

Optional AppLink 31

Required AppLink 32
AppSync

about 35, 139, 140

activated package example 142,-152

Package.ini parameters 141
AppSyncClearSandboxOnUpdate param-

eter 208

AppSync.exe file 35
AppSyncExpireMessage parameter 208
AppSyncExpirePeriod parameter 208
AppSyncUpdatedMessage parameter 208
AppSyncUpdateFrequency parameter 208
AppSyncURL parameter 209
AppSyncWarningFrequency parameter 209
AppSyncWarningMessageparameter 209
AppSyncWarningPeriod parameter 209
automated browser redirection 167, 168
AutoShutdownServices parameter 209
AutoStartServices parameter 210

B

BlockSize parameter 210
build machine 10

Cc

CachePath parameter 210

capture and build environment 54-56
CapturedUsingVersion parameter 210
Capture.ini file 35

ChildProcessEnvironmentDefault
parameter 210

ChildProcessEnvironmentExceptions
parameter 211

Citrix XenApp 90

Citrix XenApp implementation

ThinApp packages, designing for 174

Clean Test 184

COM+ 7

CommandLine parameter 211

Comment parameter 211

CompressionType parameter 211

Concept Software 164

D

data container 10, 57, 58, 60, 61
DCOM 7

delta changes 171
Dependency Walker 193

deployment scenarios, ThinApp packages

local 89

streaming 90-93
DirectorylIsolationMode parameter 212
Dirty Test 183
DisableCutPasteMsg parameter 212
DisableCutPaste parameter 212
Disabled parameter 212
DisablePrinting parameter 212

DisableRegistryTransaction parameter 213

DisableTracing parameter 213
Distributed File System (DFS) 92
Dropbox 102

E

Enter License Key dialog box 127
entry points 10, 57

Error messages 194

ExcludePattern parameter 213
External COMODbjects parameter 213
ExternalDLLs parameter 214

F

files, ThinApp utilities folder
AppSync.exe 35
Capture.ini 35

LogkFilter.ini 35
relink.exe 35
sbmerge.exe 35
Setup Capture.exe 35, 36
snapshot.exe 37
snapshot.ini 37
template.msi 37
ThinAppConverter.exe 38
ThinAppConverter.ini 38
ThinApp.ini 38
ThinDirect.adm 38
ThinDirect.msi 38
thinreg.exe 38
tlink.exe 39
vitool.exe 39
vregtool.exe 39
FileTypes parameter 214
folder macros
%AdminTools% 205
% AppData% 203
%CDBurnArea% 204
%Common AdminTools 205
%Common AppData% 205
%Common Desktop% 205
%Common Documents% 205
%Common Favorites% 205
%Common Programs% 205
%Common StartMenu % 205
%Common Startup% 205
%Common Templates% 205
%Cookies% 203
%Desktop% 203
%Drive_C% 203
%Drive_M% 206
%Favorites% 203
%Fonts% 206
%History% 204
%Internet Cache% 204
%Local AppData% 204
%NetHood % 204
%Personal% 204
%PrintHood % 204
%Profile% 203
%Profiles% 203
%Program Files Common% 206
%ProgramFilesDir% 206
%Programs% 204

[236]

%Recent% 204
%Resources% 206
%Resources Localized% 206
%SendTo% 204
%Startup% 205
%SystemRoot% 206
%SystemSystem% 206
%TEMP% 204
%Templates% 205
about 26
ForcedVirtualLoadPaths parameter 214
Full deployment 100
Full isolation mode 19, 20

G

Global Hook DLLs 7

Globally Unique Identifier. See GUID
Golden Images 100

Group Policy Objects (GPO) 168
GUID 132,218

H

HidePrinters parameter 214

high availability (HA) 92
hooking API calls 8

Horizon Application Manager 112
HorizonOrgUrl parameter 231

Icon parameter 214
IgnoreDDEMessages parameter 215
in-place update method

about 134

using 134

working 135-139
Internet Explorer 6

virtualizing 74-77
Inventorylcon parameter 215
InventoryName parameter 215
IsolatedMemoryObjects parameter 215
IsolatedSynchronizationObjects

parameter 216

isolation modes

about 18, 165, 166

differences 19

Full 19, 20

Merged 18

specifying, in virtual registry 20-25
WriteCopy 19, 165

L

linked clone 93
LoadDotNetFromSystem parameter 216
local area network (LAN) 91

local deployment 89

Localeldentifier parameter 216
LocaleName parameter 216
LogFilter.ini file 35

log monitor 35

LogPath parameter 216

Merged isolation mode 18
MetaDataContainerOnly parameter 217
Microsoft Event Viewer 193
mixed environment

ThinApp packages, designing for 175
MSI

used, for distributing packages 94-96

using, for updates distribution 132, 133
MSIArpProductlcon parameter 217
MSICompressionType parameter 217
MSIDefaultInstallAllUsers parameter 217
MSIFilename parameter 217
MSlIInstallDirectory parameter 218
MSIManufacturer parameter 218
MSIProductVersion parameter 218
MSIProperty parameter 218
MSIRequireElevatedPrivileges parameter

219

MSIStreaming parameter 219
MSIUpgradeCode parameter 219

N

NetRelaunch parameter 219
NotificationDLLSignatures parameter 220
NotificationDLLs parameter 220, 230

[237]

(0

ObjectTypes parameter 220
OptimizedFor parameter 220
Optional AppLink 31
OptionalAppLinks 221
OutDir parameter 221

P

Package.ini file 64-73, 164
package.ini.log_monitor.exe file 35
package.ini parameters
about 206
AccessDeniedMsg 206
AddPageExecutePermission 206
AllowExternalKernelModeServices 207
AnsiCodePage 207
ApplD=genid 230
AppSyncClearSandboxOnUpdate 208
AppSyncExpireMessage 208
AppSyncExpirePeriod 208
AppSyncUpdatedMessage 208
AppSyncUpdateFrequency 208
AppSyncURL 209
AppSyncWarningFrequency 209
AppSyncWarningMessage 209
AppSyncWarningPeriod 209
AutoShutdownServices 209
AutoStartServices 210
BlockSize 210
CachePath 210
CapturedUsingVersion 210
ChildProcessEnvironmentDefault 210
ChildProcessEnvironmentExceptions 211
CommandLine 211
Comment 211
CompressionType 211
DisableCutPasteMsg parameter 212
DisableCutPaste parameter 212
Disabled parameter 212
DisablePrinting parameter 212
DisableRegistryTransaction parameter 213
DisableTracing 213
ExcludePattern parameter 213
External COMObjects parameter 213
ExternalDLLs parameter 214
FileTypes 214

ForcedVirtualLoadPaths parameter 214
HidePrinters parameter 214
HorizonOrgUrl 231
Icon parameter 214
IgnoreDDEMessages 215
InventoryName 215
InventoryName parameter 215
IsolatedMemoryObjects 215
IsolatedSynchronizationObjects parameter
216
LoadDotNetFromSystem parameter 216
Localeldentifier parameter 216
MetaDataContainerOnly 217
MSICompressionType parameter 217
MSIDefaultInstallAllUsers parameter 217
MSIFilename 217
MSIInstallDirectory 218
MSIManufacture 218
MSIProductVersion 218
MSIProperty parameter 218
MSIRequireElevatedPrivileges 219
MSIStreaming parameter 219
MSIUpgradeCode 219
NetRelaunch parameter 219
NotificationDLLs 220, 230
NotificationDLLSignatures 220
ObjectTypes 220
OptimizedFor parameter 220
Optional AppLinks 221
OutDir parameter 221
PermittedComputersAccessDeniedMsg 221
PermittedComputersSIDs 221
PermittedGroups 221
PermittedGroupSIDs 222
PreventDllInjection 222
ProcessExternalNameBehavior 222
Protocols 222
QualityReportingEnabled 222
QualityReportingTag 223
ReadOnlyData 223
RegistrylsolationMode 223
RemoveSandboxOnExit 223
RemoveSandboxOnStart 223
RequiredAppLinks 224
ReserveExtraAddressSpace 224
RetainAlllcons 224
RuntimeEULA 224

[238]

SandboxCOMObjects 224

SandboxName 225

SandboxNetworkDrives 225

SandboxPath 225

SandboxRemovableDisk 225

Services 225

SetVirtualModuleFileNamelnPeb 226

Shortcut parameter 226

Shortcuts parameter 226

Source 226

StatusbarDisplayName 226

StripVersionlnfo 227

ThinDirectWhitelistOnly 227

UACRequestedPrivilegesLevel 227

UACRequestedPrivilegesUiAccess 227

UpgradePath 227

Version. 228

VersionID 231

Virtual ComputerName 228, 229

VirtualDrives 229

VirtualElevation 229

VirtualizeExternal OutOfProcessCOM 230

WorkingDirectory 230

Wowb64 230

XYZ 230
packages

distributing, MSI used 94-96
packaging tips

32 bit versus 64 bit 80

application, running 82

AppLink, avoiding 82

auto update 81

project folders, saving 81

sandbox, investigating 81

services 81
PEB 226
PermittedComputersAccessDeniedMsg

parameter 221

PermittedComputersSIDs parameter 221
PermittedGroupSIDs parameter 222
PermittedGroups parameter 221
physical client implementation

ThinApp packages, designing for 168-171
PreventDllInjection parameter 222
Process Environment Block. See PEB
Process Explorer 189,191

ProcessExternalNameBehavior parameter
222
Process Monitor 192
Production Test 185-188
project folder
about 61-64
modifying 114
Protocols parameter 222

Q

QualityReportingEnabled parameter 222
QualityReportingTag parameter 223
Quest ChangeBASE 38

R

ReadOnlyData parameter 223
RegistryIsolationMode parameter 223
Relink 35

relink.exe file 35
RemoveSandboxOnExit parameter 223
RemoveSandboxOnStart parameter 223
Required AppLink 32
RequiredAppLinks parameter 224
ReserveExtraAddressSpace parameter 224
RetainAlllcons parameter 224
RuntimeEULA parameter 224

S

SaaS 98
sandbox

about 12

considerations 166, 167
SandboxCOMODbjects parameter 224
sandbox considerations

for updated packages 128, 129
sandbox contents

example 13-17
sandbox location

changing 231
sandbox merge

about 114-118

using 119-125
SandboxName parameter 225
SandboxNetworkDrives parameter 225

[239]

SandboxPath parameter 225
SandboxRemovableDisk parameter 225
Submerge 35
sbmerge.exe 119
sbmerge.exe file 35
Server Based Computing (SBC) 90
Server Message Block (SMB) 178
Services parameter 225
Setup Capture.exe file 35, 36
Setup Capture tool 35, 36
Setup Capture wizard

about 42

running 42-53
SetVirtualModuleFileNameInPeb 226
Shortcut parameter 226
Shortcuts parameter 226
Side by Side (SxS) 169
snapshot.exe file 37
snapshot.ini file 37
Software as a Service. See SaaS
Source parameter 226
StatusbarDisplayName parameter 226
storage area network (SAN) 93
streaming 90, 176
streaming deployment

using 90, 91, 93
streaming file share

sizing 176-178
StripVersionInfo parameter 227

T

template.msi file 37
terminal servers (TS)

about 174

ThinApp packages, designing for 174
test procedures

about 183

Clean Test 184

Dirty Test 183

Production Test 185-188

Washed Test 184
TextPad 197
TextWrangler 197
ThinApp

about 6

advantages 6

default isolation modes 165, 166
isolation modes 18, 19

overview 7

packages protecting 164, 165
sandbox, considerations 166, 167

ThinApp 4.7.2

folder macros 203

ThinApp architecture 7, 8
ThinApp capture process 77-79
ThinApp Converter 38
ThinAppConverter.exe file 38
ThinAppConverter.ini file 38
ThinApp Factory 38
ThinApp.ini file 38

ThinApp Log Monitor

about 194-199
locating 194

ThinApp package

accessing, ways 102
building 10
compiling 10
protecting 164, 165

ThinApp package, protecting

about 164

Active Directory (AD) group used 164

third-party solutions used 164

VBScript used 164

VMware Horizon Application Manager
used 164

ThinApp packages

deployment scenarios 89

designing, for Citrix XenApp implementa-
tion 174

designing, for mixed environment 175

designing, for physical client implementa-
tion 168-171

designing, for terminal server 174

designing, for virtual desktop infrastructure
(VDI) implementation 171-173

streaming file share, sizing 176-178

ThinApp runtime

about 126
updating 126, 127

ThinApp runtime switches 232
ThinApp utilities folder

about 11, 33, 34
files 35-38

[240]

ThinApp, vocabulary

build machine 10

capture machine 9

capturing process 9

data container 10

entry points 10

folder macros 11

package 10

project folder 9

read and write data 11

read-only data 11

runtime 11

utilities folder 11
ThinDirect

about 38, 168

implementing 168
ThinDirect.adm file 38
ThinDirect.msi file 38
thinreg.exe file

about 38, 95,103,164, 174

used, for registering applications 103-109
THINSTALL_BIN 231
THINSTALL_BIN environment variable 34
ThinstallVersion switch 198
third-party solutions

used, for protecting ThinApp package 164
troubleshooting

about 181

capturing process 201

common tools 189

data collection 182

knowledge 182

test procedure 182

theory 181,182

tips 199, 200, 201
troubleshooting tools

Dependency Walker 193

Error messages 194

Microsoft Event Viewer 193

Process Explorer 189, 191

Process Monitor 192

U

UACRequestedPrivilegesLevel
parameter 227

UACRequestedPrivilegesUiAccess
parameter 227
update
categories 111, 131
update categories
about 111,131
configuration changes 112,131
hotfixes 112,131
major updates 111, 131
minor updates 111, 131
patching 112,131
ThinApp runtime updates 112
ThinApp Runtime updates 132
updated packages
deploying, VMware Horizon Application
Manager used 157-161
UpgradePath parameter 227
User Account Control (UAC) 227

\'

VBScript
used, for protecting ThinApp package 164
VB Scripting
about 82, 83
AddForcedVirtualLoadPath function 84
ExecuteExternalProcess function 85
ExecuteVirtualProcess 85
ExitProcess function 84
ExpantPath function 84
GetCommandLine 85
GetCurrentProcessName 85
GetEnvironmentVariable 85
GetFileVersionValue 85
GetOSVersion 85
OnPFirstParentExit function 83
OnFirstParentStart function 83
OnFirstSandboxOwner function 83
OnlLastProcessExit function 83, 84
RemoveSandboxOnExit 85
VersionlD parameter 231
Version. parameter 228
Virtual ComputerName parameter 228, 229
virtual desktop infrastructure (VDI) 93,171
virtual desktop infrastructure (VDI)
implementation
ThinApp packages, designing for 171-173

[241]

virtual desktops 171
VirtualDrives parameter 229
VirtualElevation parameter 229
virtual filesystem 25, 27
VirtualizeExternal OutOfProcessCOM
parameter 230
virtual registry
about 27,28
isolation modes, specifying in 20-25
VMware Horizon Application Manager
about 98
used, for protecting ThinApp package 164
used, for updated packages deploying 157,
159, 160, 161
using 98, 99
VMware View
about 100
using 100, 101, 102
vregtool.exe file 13

w

Washed Test 184
wide area network (WAN) 91
Wireshark

URL 176
WorkingDirectory parameter 230
Wow64 parameter 230
WriteCopy isolation mode 19,165

X

XYZ parameter 230

[242]

. (I
enterprise
professional expertise distilled

PUBLISHING

Thank you for buying
VMware ThinApp 4.7 Essentials

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub . com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

enterprise 8

professional expertise distilled

"PUBLISHING

VMware View 5 Desktop

Virtualization Solutions
ISBN: 978-1-84968-112-4 Paperback: 288 pages

A complete guide to planning and designing
solutions based on VMware View 5

. e i : 1. Written by VMware experts Jason Langone and

o T Andre Leibovici, this book is a complete guide
VMware View 5 Desktop to planning and designing a solution based on
Virtualization Solutions VMware View 5

2. Secure your Visual Desktop Infrastructure
(VDI) by having firewalls, antivirus, virtual
enclaves, USB redirection and filtering and
smart card authentication

3. Work with the JRockit Mission Control 3.1/4.0
tools suite to debug or profile your Java
applications

Citrix XenServer 6.0

Administration Essential Guide
ISBN: 978-1-84968-616-7 Paperback: 364 pages

Deploy and manage XenServer in your enterprise
to create, integrate, manage, and automate a virtual
datacenter quickly and easily

1. This book and eBook will take you through
Citrix XenServer 6.0 . deploying XenServer in your enterprise,
Administration Essential Guide and teach you how to create and maintain
your datacenter.

2. Manage XenServer and virtual machines
Danlele Tosatto using Citrix management tools and the
command line.

3. Organize secure access to your infrastructure
using role-based access control.

Please check www.PacktPub.com for information on our titles

"PUBLISHING

Getting Started with
Citrix XenApp 6.5

[PACKT]-_'-:'n-:-rpni._e:fs

enterprise 8

professional expertise distilled

Getting Started with Citrix

XenApp 6.5
ISBN: 978-1-84968-666-2 Paperback: 478 pages

Design and implement Citrix farms based on
XenApp 6.5

1. Use Citrix management tools to publish
applications and resources on client devices
with this book and eBook

2. Deploy and optimize XenApp 6.5 on Citrix
XenServer, VMware ESX, and Microsoft
Hyper-V virtual machines and physical servers

3. Understand new features included in XenApp
6.5 including a brand new chapter on advanced
XenApp deployment covering topics such as
unattended install of XenApp 6.5, using dynamic
data center provisioning, and more

Microsoft Application
Virtualization Advanced Guide

Augusto Alvarez

Microsoft Application

Virtualization Advanced Guide
ISBN: 978-1-84968-448-4 Paperback: 474 pages

Master Microsoft App-V by taking a deep dive into
advanced topics and acquire all the necessary skills
to optimize your application virtualization platform

1. Understand advanced topics in App-V; identify
some rarely known components and options
available in the platform

2. Acquire advanced guidelines on how to
troubleshoot App-V installations, sequencing,
and application deployments

3. Learn how to handle particular applications,
adapting companys’ policies to the
implementation, enforcing application licenses,
securing the environment, and so on

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Application Virtualization
	Application virtualization
	ThinApp overview
	ThinApp architecture
	Common ThinApp vocabulary
	Capturing process
	Capture machine
	Project folder
	Package
	Data container
	Entry point
	Compiling or building your ThinApp package
	Build machine
	ThinApp utilities folder
	ThinApp runtime
	Read-Only data
	Read and write data
	Folder macros

	The sandbox
	Isolation modes
	Merged
	WriteCopy
	Full
	Example 1
	Example 2
	Example 3

	The virtual filesystem
	The virtual registry
	Application Linking (AppLink)
	AppLink conflict resolution for isolation modes
	Optional AppLink
	Required AppLink

	The ThinApp utilities folder and its content
	Summary

	Chapter 2: Application Packaging
	Packaging
	Running the Setup Capture wizard
	The capture and build environment
	Entry points and the data container
	The project folder
	The Package.ini file
	Isolation modes considerations
	Virtualizing Internet Explorer 6
	Recommended ThinApp capture process
	Some packaging tips
	32 bit versus 64 bit
	Services
	Auto update
	Save your project folders
	Make sure you investigate the sandbox
	When capturing, you are capturing
	The application must run when 100 percent natively installed
	Never start with AppLink

	VB Scripting
	Packaging applications with dependencies
	Dependencies on runtimes
	Dependencies on locally installed applications
	Dependencies on another virtualized application

	Summary

	Chapter 3: Deployment of ThinApp packages
	Different deployment scenarios
	Using streaming deployment
	Using MSI to distribute packages
	Using VMware Horizon Application Manager
	Using VMware View
	Using alternative media and methods
	Using thinreg.exe to register your applications
	Summary

	Chapter 4: Updating and Tweaking Your ThinApp Project
	Different categories of updates
	Recapturing an application
	Modifying the project folder
	Sandbox merge
	Updating the ThinApp runtime
	Sandbox considerations for updated packages
	Summary

	Chapter 5: How to Distribute Updates
	Different categories of updates
	Using MSI to distribute updates
	Using an in-place update method
	Application Synch (AppSync)
	Application Linking (AppLink)
	Deploying updated packages using VMware Horizon Application Manager
	Summary

	Chapter 6: Design and Implementation Considerations using ThinApp
	Protecting your packages
	Default isolation modes
	Sandbox considerations
	Implementing ThinDirect, automated browser redirection
	Designing for a physical client implementation
	Designing for a virtual desktop infrastructure (VDI) implementation
	Designing for a terminal server/Citrix XenApp implementation
	Designing for a mixed environment
	Sizing of your streaming file share
	Summary

	Chapter 7: Troubleshooting
	The theory behind troubleshooting
	Effective test procedures
	The Dirty Test
	The Washed Test
	The Clean Test
	Production Test

	Common troubleshooting tools
	Process Explorer
	Process Monitor
	Dependency Walker
	Microsoft Event Viewer
	Error messages

	ThinApp Log Monitor
	Troubleshooting tips and tricks
	Your everyday capturing process
	Summary

	Appendix : References
	Folder macros
	Package.ini parameters
	Environment variables and ThinApp runtime switches
	Changing the sandbox location
	ThinApp runtime switches

	Summary

	Index

