
The Book

Log management made easy

James Turnbull

logstash

Version: v1.4.2.1 (bce6609) 1

The Logstash Book

James Turnbull

July 11, 2014
Version: v1.4.2.1 (bce6609)
Website: The Logstash Book

http://www.logstashbook.com

Contents

Foreword 1
Who is this book for? . 1
Credits and Acknowledgments . 1
Technical Reviewers . 2

Jan-Piet Mens . 2
Paul Stack . 2

Technical Illustrator . 2
Author . 3
Conventions in the book . 3
Code and Examples . 3
Colophon . 4
Errata . 4
Trademarks . 4
Version . 4
Copyright . 4

Chapter 1 Introduction or Why Should I Bother? 6
Introducing Logstash . 7
Logstash design and architecture . 8
What's in the book? . 10
Logstash resources . 10
Getting help with Logstash . 11
A mild warning . 11

Chapter 2 Getting Started with Logstash 12
Installing Java . 12

On the Red Hat family . 13

i

Contents

On Debian & Ubuntu . 13
Testing Java is installed . 13

Getting Logstash . 14
Starting Logstash . 14

Our sample configuration file . 15
Running the Logstash agent . 16
Testing the Logstash agent . 17

Summary . 19
Chapter 3 Shipping Events 20

Our Event Lifecycle . 21
Installing Logstash on our central server 22

Install Logstash . 22
Installing a broker . 24
Elasticsearch for search . 27
Creating a basic central configuration 33
Running Logstash as a service . 35

Installing Logstash on our first agent . 37
Our agent configuration . 38
Installing Logstash as a service . 41

Sending our first events . 42
Checking Elasticsearch has received our events 44
The Logstash Kibana Console . 46

Summary . 53
Chapter 4 Shipping Events without the Logstash agent 54

Using Syslog . 55
A quick introduction to Syslog . 55
Configuring Logstash for Syslog . 56
Configuring Syslog on remote agents 59

Using the Logstash Forwarder . 68
Configure the Logstash Forwarder on our central server 69
Installing the Logstash Forwarder on the remote host 74

Other log shippers . 82
Beaver . 82

Version: v1.4.2.1 (bce6609) ii

Contents

Woodchuck . 83
Others . 83

Summary . 84
Chapter 5 Filtering Events with Logstash 85

Apache Logs . 86
Configuring Apache for Custom Logging 87
Sending Apache events to Logstash . 94

Postfix Logs . 97
Our first filter . 98
Adding our own filters . 104
Extracting from different events . 108
Setting the timestamp . 112

Filtering Java application logs . 115
Handling blank lines with drop . 116
Handling multi-line log events . 119
Grokking our Java events . 121

Parsing an in-house custom log format . 125
Summary . 133

Chapter 6 Outputting Events from Logstash 136
Send email alerts . 136

Updating our multiline filter . 137
Configuring the email output . 137
Email output . 139

Send instant messages . 140
Identifying the event to send . 140
Sending the instant message . 142

Send alerts to Nagios . 144
Nagios check types . 144
Identifying the trigger event . 144
The nagios output . 146
The Nagios external command . 147
The Nagios service . 148

Outputting metrics . 149

Version: v1.4.2.1 (bce6609) iii

Contents

Collecting metrics . 150
StatsD . 152
Setting the date correctly . 152
The StatsD output . 153
Sending to a different StatsD server . 158

Summary . 159
Chapter 7 Scaling Logstash 160

Scaling Redis . 162
Installing new Redis instances . 163
Test Redis is running . 165
Configuring Redis output to send to multiple Redis servers 165
Configuring Logstash to receive from multiple Redis servers 166
Testing our Redis failover . 167
Shutting down our existing Redis instance 169

Scaling Elasticsearch . 169
Installing additional Elasticsearch hosts 170
Monitoring our Elasticsearch cluster . 174
Managing Elasticsearch data retention 175
More Information . 179

Scaling Logstash . 180
Creating a second indexer . 181

Summary . 182
Chapter 8 Extending Logstash 183

Anatomy of a plugin . 184
Creating our own input plugin . 187
Adding new plugins . 191
Writing a filter . 193
Writing an output . 195
Summary . 198

Index 199

Version: v1.4.2.1 (bce6609) iv

List of Figures
1 Copyright . 4
1.1 The Logstash Architecture . 9
3.1 Our Event Lifecycle . 21
3.2 The Logstash web interface . 47
3.3 The Logstash web interface's light theme 48
3.4 Query results . 49
3.5 Specific events . 49
3.6 Basic query . 50
3.7 Advanced query . 51
3.8 Customizing the dashboard . 52
3.9 Adding a panel . 52
3.10The Dashboard control panel . 53
4.1 Syslog shipping to Logstash . 60
5.1 Apache log event . 95
5.2 Querying for 404 status codes . 96
5.3 Postfix log filtering workflow . 115
5.4 Tomcat log event workflow . 124
5.5 The Grok debugger at work . 128
6.1 Java exception email alert . 139
6.2 Jabber/XMPP alerts . 143
6.3 Apache status and method graphs . 156
6.4 Apache bytes counter . 157
6.5 Apache request duration timer . 158

v

List of Figures

7.1 Logstash Scaled Architecture . 161
7.2 Logstash Redis failover . 163
7.3 Elasticsearch scaling . 170
7.4 The Paramedic Elasticsearch plugin . 175
7.5 Logstash indexer scaling . 180
8.1 Cow said "testing" . 198

Version: v1.4.2.1 (bce6609) vi

Listings
2.1 Installing Java on Red Hat . 13
2.2 Installing Java on Debian and Ubuntu 13
2.3 Testing Java is installed . 13
2.4 Downloading Logstash . 14
2.5 Sample Logstash configuration . 15
2.6 Running the Logstash agent . 16
2.7 Logstash startup message . 17
2.8 Running Logstash interactively . 17
2.9 A Logstash JSON event . 18
2.10 A Logstash plain event . 18
3.1 Adding the Elasticsearch GPG key . 23
3.2 Adding the Logstash APT repository 23
3.3 Updating the package list . 23
3.4 Installing Logstash via apt-get . 23
3.5 Installing Redis on Debian . 24
3.6 Installing EPEL on CentOS and RHEL 25
3.7 Installing Redis on Red Hat . 25
3.8 Changing the Redis interface . 25
3.9 Commented out interface . 26
3.10 Binding Redis to a single interface . 26
3.11 Starting the Redis server . 26
3.12 Testing Redis is running . 26
3.13 Telneting to the Redis server . 27
3.14 A Logstash index . 28
3.15 Showing the current Elasticsearch mapping 29
3.16 Showing index-specific mappings . 29

vii

Listings

3.17 Downloading Elasticsearch . 30
3.18 Installing Elasticsearch . 30
3.19 Starting Elasticsearch . 31
3.20 Initial cluster and node names . 31
3.21 New cluster and node names . 32
3.22 Restarting Elasticsearch . 32
3.23 Checking Elasticsearch is running . 32
3.24 Elasticsearch status information . 33
3.25 Elasticsearch status page . 33
3.26 Creating the central.conf file . 34
3.27 Initial central configuration . 34
3.28 Starting the central Logstash server 36
3.29 Checking the Logstash server is running 36
3.30 Logstash log output . 36
3.31 Adding the Yum GPG key . 37
3.32 Adding the Logstash Yum repository 37
3.33 Install Logstash via yum . 38
3.34 Creating the Logstash agent configuration 38
3.35 Logstash event shipping configuration 39
3.36 File input globbing . 40
3.37 File recursive globbing . 40
3.41 Watching the shipper Logstash logstash.log file 43
3.42 Watching the cental Logstash logstash.log file 43
3.43 Testing Redis is operational . 43
3.44 Connecting to Maurice via SSH . 43
3.45 A Logstash login event . 44
3.46 Querying the Elasticsearch server . 45
3.47 Launching the Logstash Kibana web interface 46
3.48 Logstash web interface address . 47
4.1 A Syslog message . 55
4.2 Adding the `syslog` input . 57
4.3 The `syslog` input . 57
4.4 Restarting the Logstash server . 58
4.5 Syslog input startup output . 58
4.6 Configuring RSyslog for Logstash . 61

Version: v1.4.2.1 (bce6609) viii

Listings

4.7 Specifying RSyslog facilities or priorities 61
4.8 Restarting RSyslog . 62
4.9 Monitoring files with the imfile module 62
4.10 Syslog–NG s_src source statement . 64
4.11 New Syslog–NG destination . 64
4.12 New Syslog–NG log action . 64
4.13 Restarting Syslog–NG . 65
4.14 Configuring Syslogd for Logstash . 65
4.15 Restarting Syslogd . 66
4.16 Testing with logger . 67
4.17 Logstash log event from Syslog . 68
4.18 Checking for openssl . 70
4.19 Generating a private key . 70
4.20 Generating a CSR . 70
4.21 Signing our CSR . 71
4.22 Copying the key and certificate . 71
4.23 Cleaning up . 71
4.24 Adding the Lumberjack input . 72
4.25 The Lumberjack input . 73
4.26 Restarting Logstash for Lumberjack 73
4.27 Checking Lumberjack has loaded . 74
4.28 Downloading the Forwarder . 74
4.29 Installing the developer tools . 75
4.30 Installing Go on Ubuntu . 75
4.31 Installing prerequisite Forwarder packages 75
4.32 Installing FPM . 75
4.33 Creating a Forwarder DEB package 75
4.34 Forwarder make output . 76
4.35 Installing the Forwarder . 76
4.36 Creating the Forwarder configuration directory 76
4.37 Copying the Forwarder's SSL certificate 77
4.38 Creating logstash-forwarder.conf . 77
4.39 The logstash-forwarder.conf file . 78
4.40 Testing the Forwarder . 79
4.41 Test the Forwarder . 79

Version: v1.4.2.1 (bce6609) ix

Listings

4.42 The Forwarder connection output . 80
4.43 Forwarder events . 80
4.44 Installing the Forwarder init script . 81
4.45 The Forwarder defaults file . 81
4.46 Starting the Forwarder . 82
4.47 Checking the Forwarder process . 82
4.48 Installing Beaver . 83
5.1 An Apache log event . 86
5.2 The Apache LogFormat and CustomLog directives 88
5.3 Apache VirtualHost logging configuration 88
5.4 The Apache Common Log Format LogFormat directive 89
5.5 Apache custom JSON LogFormat . 90
5.6 Adding the CustomLog directive . 91
5.7 Restarting Apache . 91
5.8 A JSON format event from Apache . 93
5.9 Apache logs via the file input . 94
5.10 Apache events via the Logstash Forwarder 94
5.11 A Postfix log entry . 97
5.12 Unfiltered Postfix event . 98
5.13 File input for Postfix logs . 99
5.14 Postfix grok filter . 99
5.15 The grok pattern for Postfix logs . 100
5.16 The syntax and the semantic . 100
5.17 The SYSLOGBASE pattern . 100
5.18 The SYSLOGPROG pattern . 101
5.19 The PROG pattern . 101
5.20 Postfix date matching . 101
5.21 Converting semantic data . 102
5.22 The Postfix event's fields . 102
5.23 A fully grokked Postfix event . 103
5.24 Partial Postfix event . 104
5.25 Creating the patterns directory . 104
5.26 Creating new patterns . 105
5.27 Adding new patterns to grok filter . 105
5.28 Postfix event grokked with external patterns 106

Version: v1.4.2.1 (bce6609) x

Listings

5.29 A named capture for Postfix's queue ID 107
5.30 Adding new named captures to the grok filter 107
5.31 Postfix event filtered with named captures 108
5.32 Postfix event . 109
5.33 Updated grok filter . 109
5.34 Postfix component tagged events . 109
5.35 Nested field syntax . 110
5.36 A grok filter for qmgr events . 110
5.37 The /etc/logstash/patterns/postfix file 111
5.38 A partial filtered Postfix event . 112
5.39 The date filter . 113
5.40 Postfix event timestamps . 114
5.41 File input for Tomcat logs . 116
5.42 A Tomcat log entry . 116
5.43 A drop filter for blank lines . 117
5.44 Examples of the conditional syntax . 118
5.45 Conditional inclusion syntax . 118
5.46 Using the multiline codec for Java exceptions 119
5.47 A Java exception . 120
5.48 Another Java exception . 121
5.49 A multiline merged event . 121
5.50 A grok filter for Java exception events 122
5.51 Our Java exception message . 122
5.52 Grokked Java exception . 123
5.53 Alpha log entry . 125
5.54 File input for our Alpha logs . 126
5.55 Single Alpha log entry . 127
5.56 A Grok regular expression for Alpha 127
5.57 Alpha grok filter . 129
5.58 Alpha date filter . 130
5.59 Alpha environment field . 131
5.60 Setting the line field to an integer . 132
5.61 A filtered Alpha event . 133
6.1 The Tomcat multiline file input and codec 137
6.2 The email output plugin . 138

Version: v1.4.2.1 (bce6609) xi

Listings

6.3 The content of our email . 138
6.4 The file input for /var/log/secure . 140
6.5 Failed SSH authentication log entry 140
6.6 Failed SSH authentication grok filter 141
6.7 Failed SSH authentication Logstash event 142
6.8 The xmpp output plugin . 143
6.9 A STONITH cluster fencing log event 145
6.10 Identify Nagios passive check results 145
6.11 The grokked STONITH event . 146
6.12 The Nagios output . 146
6.13 The Nagios output with a custom command file 147
6.14 A Nagios external command . 148
6.15 A Nagios service for cluster status . 149
6.16 JSON format event from Apache . 151
6.17 The Apache event timestamp field . 152
6.18 Getting the date right for our metrics 153
6.19 The statsd output . 154
6.20 Incremental counters . 154
6.21 Apache status metrics in Graphite . 155
6.22 Apache method metrics in Graphite 155
6.23 The apache.bytes counter . 156
6.24 The apache.duration timer . 157
6.25 The StatsD output with a custom host and port 158
7.1 Installing Redis . 164
7.2 Binding Redis to the external interface 164
7.3 Start the Redis instances . 164
7.4 Test Redis is running . 165
7.5 Multi instance Redis output configuration 165
7.6 Restarting the Logstash agent for Redis 166
7.7 Multiple Redis instances . 167
7.8 Restart the Logstash agent . 167
7.9 Stopping a Redis instance . 168
7.10 Redis connection refused exception 168
7.11 Stopping a second Redis instance . 168
7.12 Remote agent event sending failures 169

Version: v1.4.2.1 (bce6609) xii

Listings

7.13 Shut down Redis . 169
7.14 Stop Redis starting . 169
7.15 Installing Java for Elasticsearch . 171
7.16 Download Elasticsearch . 171
7.17 Install Elasticsearch . 171
7.18 Elasticsearch cluster and node names 172
7.19 Grinner cluster and node names . 172
7.20 Sinner cluster and node names . 172
7.21 Restarting Elasticsearch to reconfigure 172
7.22 Checking the cluster status. 173
7.23 Installing Paramedic . 174
7.24 The Paramedic URL . 174
7.25 Deleting indexes . 176
7.26 Optimizing indexes . 177
7.27 Optimizing all indexes . 177
7.28 Getting the size of an index . 177
7.29 Installing curator . 178
7.30 Deleting indexes with Curator . 178
7.31 Closing indexes using Curator . 179
7.32 Getting Curator help . 179
7.33 Setting up a second indexer . 181
7.34 The stock /etc/default/logstash file 181
7.35 The updated /etc/default/logstash file 182
8.1 The stdin input plugin . 185
8.2 Requiring the Logstash module . 186
8.3 Requiring the LogStash::Inputs::Base class 186
8.4 The plugin class . 186
8.5 The namedpipe framework . 187
8.6 The namedpipe framework plugin options 188
8.7 The namedpipe input configuration 189
8.8 The namedpipe input . 190
8.9 Creating plugins directories . 191
8.10 Adding the namedpipe input . 192
8.11 Running Logstash with plugin support 192
8.12 Registering the namedpipe input . 192

Version: v1.4.2.1 (bce6609) xiii

Listings

8.13 Our suffix filter . 193
8.14 Configuring the addsuffix filter . 194
8.15 An event with the ALERT suffix . 195
8.16 Installing CowSay on Debian and Ubuntu 195
8.17 Installing CowSay via a RubyGem . 195
8.18 The CowSay output . 196
8.19 Configuring the cowsay output . 197

Version: v1.4.2.1 (bce6609) xiv

Foreword

Who is this book for?
This book is designed for SysAdmins, operations staff, developers and DevOps
who are interested in deploying a log management solution using the open source
tool Logstash.
There is an expectation that the reader has basic Unix/Linux skills, and is familiar
with the command line, editing files, installing packages, managing services, and
basic networking.

NOTE This book focuses on Logstash version 1.2.0 and later. It is not recom-
mended for earlier versions of Logstash.

Credits and Acknowledgments
• Jordan Sissel for writing Logstash and for all his assistance during the writing
process.

• Rashid Khan for writing Kibana.
• Dean Wilson for his feedback on the book.
• Aaron Mildenstein for his Apache to JSON logging posts here and here.
• R.I. Pienaar for his excellent documentation on message queuing.

1

http://www.logstash.net
http://untergeek.com/2012/10/11/getting-apache-to-output-json-for-logstash/
http://untergeek.com/2013/09/11/getting-apache-to-output-json-for-logstash-1-2-x/

Foreword

• The fine folks in the Freenode #logstash channel for being so helpful as I
peppered them with questions, and

• Ruth Brown for only saying "Another book? WTF?" once, proof reading the
book, making the cover page and for being awesome.

Technical Reviewers
Jan-Piet Mens
Jan-Piet Mens is an independent Unix/Linux consultant and sysadmin who's
worked with Unix-systems since 1985. JP does odd bits of coding, and has
architected infrastructure at major customers throughout Europe. One of his
specialities is the Domain Name System and as such, he authored the book
Alternative DNS Servers as well as a variety of other technical publications.

Paul Stack
Paul Stack is a London based developer. He has a passion for continuous inte-
gration and continuous delivery and why they should be part of what developers
do on a day to day basis. He believes that reliably delivering software is just as
important as its development. He talks at conferences all over the world on this
subject. Paul's passion for continuous delivery has led him to start working closer
with operations staff and has led him to technologies like Logstash, Puppet and
Chef.

Technical Illustrator
Royce Gilbert has over 30 years experience in CAD design, computer support,
network technologies, project management, business systems analysis for major
Fortune 500 companies such as; Enron, Compaq, Koch Industries and Amoco Corp.
He is currently employed as a Systems/Business Analyst at Kansas State University

Version: v1.4.2.1 (bce6609) 2

http://twitter.com/jpmens
http://mens.de
mailto:ksuroyce@yahoo.com

Foreword

in Manhattan, KS. In his spare time he does Freelance Art and Technical Illustra-
tion as sole proprietor of Royce Art. He and his wife of 38 years are living in and
restoring a 127 year old stone house nestled in the Flinthills of Kansas.

Author
James is an author and open source geek. James authored the two books about
Puppet (Pro Puppet and the earlier book about Puppet). He is also the author of
three other books including Pro Linux System Administration, Pro Nagios 2.0, and
Hardening Linux.
For a real job, James is VP of Services & Support for Docker. He was formerly VP
of Technical Operations for Puppet Labs. He likes food, wine, books, photography
and cats. He is not overly keen on long walks on the beach and holding hands.

Conventions in the book
This is an inline code statement.
This is a code block:

Listing 1: A sample code block

This is a code block

Long code strings are broken with ↩.

Code and Examples
You can find all the code and examples from the book on the website or you can
check out the Git repo.

Version: v1.4.2.1 (bce6609) 3

http://www.amazon.com/gp/product/1430230576/ref=as_li_ss_tl?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=217145&creative=399349&creativeASIN=1430230576
http://www.amazon.com/gp/product/1590599780?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590599780
http://www.amazon.com/gp/product/1430219122?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1430219122
http://www.amazon.com/gp/product/1590596099?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590596099
http://www.amazon.com/gp/product/1590594444?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590594444
http://www.logstashbook.com/code/index.html
https://github.com/jamtur01/logstashbook-code

Foreword

Colophon
This book was written in Markdown with a large dollop of LaTeX. It was then
converted to PDF and other formats using PanDoc (with some help from scripts
written by the excellent folks who wrote Backbone.js on Rails).

Errata
Please email any Errata you find here.

Trademarks
Kibana and Logstash are trademarks of Elasticsearch BV. Elasticsearch is a regis-
tered trademark of Elasticsearch BV.

Version
This is version v1.4.2.1 (bce6609) of The Logstash Book.

Copyright

Figure 1: Copyright

Some rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, electronic, mechan-
ical or photocopying, recording, or otherwise for commercial purposes without
the prior permission of the publisher.

Version: v1.4.2.1 (bce6609) 4

https://learn.thoughtbot.com/products/1-backbone-js-on-rails
mailto:james+lserrata@lovedthanlost.net

Foreword

This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License. To view a copy of this license, visit here.

© Copyright 2014 - James Turnbull <james@lovedthanlost.net>
ISBN: 978-0-9888202-1-0
Version: v1.4.2.1 (bce6609)

Version: v1.4.2.1 (bce6609) 5

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:james+thelogstashbook@lovedthanlost.net

Chapter 1

Introduction or Why Should I
Bother?

Log management is often considered both a painful exercise and a dark art. In-
deed, understanding good log management tends to be a slow and evolutionary
process. In response to issues and problems, new SysAdmins are told: "Go look at
the logs." A combination of cat, tail and grep (and often sed, awk or perl too)
become their tools of choice to diagnose and identify problems in log and event
data. They quickly become experts at command line and regular expression kung-
fu: searching, parsing, stripping, manipulating and extracting data from a humble
log event. It's a powerful and practical set of skills that strongly I recommend all
SysAdmins learn.
Sadly, this solution does not scale. In most cases you have more than one host and
multiple sources of log files. You may have tens, hundreds or even thousands of
hosts. You run numerous, inter-connected applications and services across multi-
ple locations and fabrics, both physically, virtually and in the cloud. In this world
it quickly becomes apparent that logs from any one application, service or host
are not enough to diagnose complex multi-tier issues.
To address this gap your log environment must evolve to become centralized. The
tools of choice expand to include configuring applications to centrally log and
services like rsyslog and syslog-ng to centrally deliver Syslog output. Events
start flowing in and log servers to hold this data are built, consuming larger and

6

Chapter 1: Introduction or Why Should I Bother?

larger amounts of storage.
But we're not done yet. The problem then turns from one of too little information
to one of too much information and too little context. You have millions or billions
of lines of logs to sift through. Those logs are produced in different timezones,
formats and sometimes even in different languages. It becomes increasingly hard
to sort through the growing streams of log data to find the data you need and
harder again to correlate that data with other relevant events. Your growing
collection of log events then becomes more of a burden than a benefit.
To solve this new issue you have to extend and expand your log management
solution to include better parsing of logs, more elegant storage of logs (as flat files
just don't cut it) and the addition of searching and indexing technology. What
started as a simple grep through log files has become a major project in its own
right. A project that has seen multiple investment iterations in several solutions
(or multiple solutions and their integration) with a commensurate cost in effort
and expense.
There is a better way.

Introducing Logstash
Instead of walking this path, with the high cost of investment and the potential of
evolutionary dead ends, you can start with Logstash. Logstash provides an inte-
grated framework for log collection, centralization, parsing, storage and search.
Logstash is free and open source (Apache 2.0 licensed) and developed by Ameri-
can developer and Logging Czar at Dreamhost, Jordan Sissel. It's easy to set up,
performant, scalable and easy to extend.
Logstash has a wide variety of input mechanisms: it can take inputs from
TCP/UDP, files, Syslog, Microsoft Windows EventLogs, STDIN and a variety of
other sources. As a result there's likely very little in your environment that you
can't extract logs from and send them to Logstash.
When those logs hit the Logstash server, there is a large collection of filters that
allow you to modify, manipulate and transform those events. You can extract the

Version: v1.4.2.1 (bce6609) 7

http://logstash.net/
http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/jordansissel
http://www.semicomplete.com/

Chapter 1: Introduction or Why Should I Bother?

information you need from log events to give them context. Logstash makes it
simple to query those events. It makes it easier to draw conclusions and make
good decisions using your log data.
Finally, when outputting data, Logstash supports a huge range of destinations,
including TCP/UDP, email, files, HTTP, Nagios and a wide variety of network
and online services. You can integrate Logstash with metrics engines, alerting
tools, graphing suites, storage destinations or easily build your own integration
to destinations in your environment.

NOTE We'll look at how to develop practical examples of each of these input,
filter and output plugins in Chapter 8.

Logstash design and architecture
Logstash is written in JRuby and runs in a Java Virtual Machine (JVM). Its archi-
tecture is message-based and very simple. Rather than separate agents or servers,
Logstash has a single agent that is configured to perform different functions in
combination with other open source components.
In the Logstash ecosystem there are four components:

• Shipper: Sends events to Logstash. Your remote agents will generally only
run this component.

• Broker and Indexer: Receives and indexes the events.
• Search and Storage: Allows you to search and store events.
• Web Interface: A Web-based interface to Logstash called Kibana.

Logstash servers run one or more of these components independently, which al-
lows us to separate components and scale Logstash.
In most cases there will be two broad classes of Logstash host you will probably
be running:

Version: v1.4.2.1 (bce6609) 8

Chapter 1: Introduction or Why Should I Bother?

• Hosts running the Logstash agent as an event "shipper" that send your appli-
cation, service and host logs to a central Logstash server. These hosts will
only need the Logstash agent.

• Central Logstash hosts running some combination of the Broker, Indexer,
Search and Storage and Web Interface which receive, process and store your
logs.

Figure 1.1: The Logstash Architecture

NOTE We'll look at scaling Logstash by running the Broker, Indexer, Search and
Storage and Web Interface in a scalable architecture in Chapter 7 of this book.

Version: v1.4.2.1 (bce6609) 9

Chapter 1: Introduction or Why Should I Bother?

What's in the book?
In this book I will walk you through installing, deploying, managing and extending
Logstash. We're going to do that by introducing you to Example.com, where you're
going to start a new job as one of its SysAdmins. The first project you'll be in
charge of is developing its new log management solution.
We'll teach you how to:

• Install and deploy Logstash.
• Ship events from a Logstash Shipper to a central Logstash server.
• Filter incoming events using a variety of techniques.
• Output those events to a selection of useful destinations.
• Use Logstash's Kibana web interface.
• Scale out your Logstash implementation as your environment grows.
• Quickly and easily extend Logstash to deliver additional functionality you
might need.

By the end of the book you should have a functional and effective log management
solution that you can deploy into your own environment.

NOTE This book focusses on Logstash v1.2.0 and later. This was a major,
somewhat backwards-incompatible release for Logstash. A number of options
and schema changes were made between v1.2.0 and earlier versions. If you are
running an earlier version of Logstash I strongly recommend you upgrade.

Logstash resources
• The Logstash site (Logstash's home page).
• The Logstash cookbook (a collection of useful Logstash recipes).
• The Logstash source code on GitHub.
• Logstash's author Jordan Sissel's home page, Twitter and GitHub account.

Version: v1.4.2.1 (bce6609) 10

http://kibana.org/
http://www.logstash.net/
http://cookbook.logstash.net/
https://github.com/logstash/logstash/
http://www.semicomplete.com/
https://twitter.com/jordansissel
https://github.com/jordansissel

Chapter 1: Introduction or Why Should I Bother?

Getting help with Logstash
Logstash's developer, Jordan Sissel, has a maxim that makes getting help pretty
easy: "If a newbie has a bad time, it's a bug in Logstash." So if you're having
trouble reach out via the mailing list or IRC and ask for help! You'll find the
Logstash community both helpful and friendly!

• The Logstash documentation.
• The Logstash cookbook.
• The Logstash users mailing list.
• The Logstash bug tracker.
• The #logstash IRC channel on Freenode.

A mild warning
Logstash is a young product and under regular development. Features are
changed, added, updated and deprecated regularly. I recommend you follow
development at the Jira support site, on GitHub and review the change logs for
each release to get a good idea of what has changed. Logstash is usually solidly
backwards compatible but issues can emerge and being informed can often save
you unnecessary troubleshooting effort.

Version: v1.4.2.1 (bce6609) 11

http://logstash.net/docs/latest/
http://cookbook.logstash.net/
https://groups.google.com/forum/?fromgroups#!forum/logstash-users
https://logstash.jira.com/secure/Dashboard.jspa
https://logstash.jira.com/secure/Dashboard.jspa
https://github.com/logstash/logstash/

Chapter 2

Getting Started with Logstash

Logstash is easy to set up and deploy. We're going to go through the basic steps of
installing and configuring it. Then we'll try it out so we can see it at work. That
will provide us with an overview of its basic set up, architecture, and importantly
the pluggable model that Logstash uses to input, process and output events.

Installing Java
Logstash's principal prerequisite is Java and Logstash itself runs in a Java Virtual
Machine or JVM. So let's start by installing Java. The fastest way to do this is via
our distribution's packaging system, for example Yum in the Red Hat family or
Debian and Ubuntu's Apt-Get.

TIP I recommend we install OpenJDK Java on your distribution. If you're run-
ning OSX the natively installed Java will work fine (on Mountain Lion and later
you'll need to install Java from Apple).

12

Chapter 2: Getting Started with Logstash

On the Red Hat family
We install Java via the yum command:

Listing 2.1: Installing Java on Red Hat

$ sudo yum install java-1.7.0-openjdk

On Debian & Ubuntu
We install Java via the apt-get command:

Listing 2.2: Installing Java on Debian and Ubuntu

$ sudo apt-get -y install openjdk-7-jdk

Testing Java is installed
We can then test that Java is installed via the java binary:

Listing 2.3: Testing Java is installed

$ java -version
java version "1.7.0_09"
OpenJDK Runtime Environment (IcedTea7 2.3.3)(7u9-2.3.3-0ubuntu1↩
~12.04.1)

OpenJDK Client VM (build 23.2-b09, mixed mode, sharing)

Version: v1.4.2.1 (bce6609) 13

Chapter 2: Getting Started with Logstash

Getting Logstash
Once we have Java installed we can grab the Logstash package. Although Logstash
is written in JRuby, its developer releases tarball containing all of the required
dependencies. This means we don't need to install JRuby or any other packages.
At this stage no distributions ship Logstash packages but you can easily download
them from the Elasticsearch site.

TIP If we're distributing a lot of Logstash agents then it's probably a good idea
to use Logstash packages.

For our initial getting started we can download and unpack the tarball:

Listing 2.4: Downloading Logstash

$ wget https://download.elasticsearch.org/logstash/logstash/↩
logstash-1.4.2.tar.gz

$ tar zxvf logstash-1.4.2.tar.gz

NOTE At the time of writing the latest version of Logstash is 1.4.2.

Starting Logstash
Once we have the tarball unpacked we can change into the resulting directory
and launch the logstash binary and a simple, sample configuration file. We're
going to do this to demonstrate Logstash working interactively and do a little bit
of testing to see how Logstash works at its most basic.

Version: v1.4.2.1 (bce6609) 14

http://www.elasticsearch.org/blog/apt-and-yum-repositories/

Chapter 2: Getting Started with Logstash

Our sample configuration file
Firstly, let's create our sample configuration file. We're going to call ours sample↩
.conf and you can see it here:

Listing 2.5: Sample Logstash configuration

input {
stdin { }

}

output {
stdout {
codec => rubydebug

}
}

Our sample.conf file contains two configuration blocks: one called input and one
called output. These are two of three types of plugin components in Logstash that
we can configure. The last type is filter that we're going to see in later chapters.
Each type configures a different portion of the Logstash agent:

• inputs - How events get into Logstash.
• filters - How you can manipulate events in Logstash.
• outputs - How you can output events from Logstash.

In the Logstash world events enter via inputs, they are manipulated, mutated or
changed in filters and then exit Logstash via outputs.
Inside each component's block you can specify and configure plugins. For exam-
ple, in the input block above we've defined the stdin plugin which controls event
input from STDIN. In the output block we've configured its opposite: the stdout
plugin, which outputs events to STDOUT. For this plugin we've added a configura-
tion option: codec with a value of rubydebug. This outputs each event as a JSON
hash.

Version: v1.4.2.1 (bce6609) 15

Chapter 2: Getting Started with Logstash

NOTE STDIN and STDOUT are the standard streams of I/O in most applications
and importantly in this case in your terminal.

Running the Logstash agent
Now we've got a configuration file let's run Logstash for ourselves:

Listing 2.6: Running the Logstash agent

$ cd logstash-1.4.2
$ bin/logstash agent --verbose -f sample.conf

NOTE Every time you change your Logstash configuration you will need to
restart Logstash so it can pick up the new configuration.

We've used the logstash binary from our download directory. We've specified
three command line flags: agent which tell Logstash to run as the basic agent, -↩
-verbosewhich turns on verbose logging and -fwhich specifies the configuration
file Logstash should start with.

TIP You can also specify a directory of configuration files using the -f flag, for
example -f /etc/logstash will load all the files in the /etc/logstash directory.

Logstash should now start to generate some startup messages telling you it is
enabling the plugins we've specified and finally emit:

Version: v1.4.2.1 (bce6609) 16

http://en.wikipedia.org/wiki/Standard_streams

Chapter 2: Getting Started with Logstash

Listing 2.7: Logstash startup message

Pipeline started {:level=>:info}

This indicates Logstash is ready to start processing logs!

TIP You can see a full list of the other command line flags Logstash accepts here.

Testing the Logstash agent
Now Logstash is running, remember that we enabled the stdin plugin? Logstash
is now waiting for us to input something on STDIN. So I am going to type "testing"
and hit Enter to see what happens.

Listing 2.8: Running Logstash interactively

$ bin/logstash agent --verbose -f sample.conf
output received {:event=>#<LogStash::Event:0x3ca2a090 @cancelled↩
=false, @data={"message"=>"testing", "@timestamp"=>"2013-08-25↩
T17:27:50.027Z", "@version"=>"1", "host"=>"maurice.example.com↩
"}>, :level=>:info}

{
"message" => "testing",
"@timestamp" => "2013-08-25T17:27:50.027Z",
"@version" => "1",
"host" => "maurice.example.com"

}

You can see that our input has resulted in some output: a info level log message
from Logstash itself and an event in JSON format (remember we specified the

Version: v1.4.2.1 (bce6609) 17

http://logstash.net/docs/latest/flags

Chapter 2: Getting Started with Logstash

debug option for the stdout plugin). Let's examine the event in more detail.

Listing 2.9: A Logstash JSON event

{
"message" => "testing",
"@timestamp" => "2013-08-25T17:27:50.027Z",
"@version" => "1",
"host" => "maurice.example.com"

}

We can see our event is made up of a timestamp, the host that generated the
event maurice.example.com and the message, in our case testing. You might
notice that all these components are also contained in the log output in the @data
hash.
We can see our event has been printed as a hash. Indeed it's represented internally
in Logstash as a JSON hash.
If we'd had omitted the debug option from the stdout plugin we'd have gotten a
plain event like so:

Listing 2.10: A Logstash plain event

2013-08-25T17:27:50.027Z maurice.example.com testing

Logstash calls these formats codecs. There are a variety of codecs that Logstash
supports. We're going to mostly see the plain and json codecs in the book.

• plain - Events are recorded as plain text and any parsing is done using
filter plugins.

• json - Events are assumed to be JSON and Logstash tries to parse the event's
contents into fields itself with that assumption.

We're going to focus on the json format in the book as it's the easiest way to work
with Logstash events and show how they can be used. The format is made up of
a number of elements. A basic event has only the following elements:

Version: v1.4.2.1 (bce6609) 18

Chapter 2: Getting Started with Logstash

• @timestamp: An ISO8601 timestamp.
• message: The event's message. Here testing as that's what we put into
STDIN.

• @version: The version of the event format. This current version is 1.

Additionally many of the plugins we'll use add additional fields, for example the
stdin plugin we've just used adds a field called host which specifies the host
which generated the event. Other plugins, for example the file input plugin
which collects events from files, add fields like path which reports the file of the
file being collected from. In the next chapters we'll also see some other elements
like custom fields, tags and other context that we can add to events.

TIP Running interactively we can stop Logstash using the Ctrl-C key combina-
tion.

Summary
That concludes our simple introduction to Logstash. In the next chapter we're
going to introduce you to your new role at Example.com and see how you can use
Logstash to make your log management project a success.

Version: v1.4.2.1 (bce6609) 19

http://en.wikipedia.org/wiki/ISO_8601

Chapter 3

Shipping Events

It's your first day at Example.com and your new boss swings by your desk to tell
you about the first project you're going to tackle: log management. Your job is
to consolidate log output to a central location from a variety of sources. You've
got a wide variety of log sources you need to consolidate but you've been asked
to start with consolidating and managing some Syslog events.
Later in the project we'll look at other log sources and by the end of the project all
required events should be consolidated to a central server, indexed, stored, and
then be searchable. In some cases you'll also need to configure some events to be
sent on to new destinations, for example to alerting and metrics systems.
To do the required work you've made the wise choice to select Logstash as your
log management tool and you've built a basic plan to deploy it:

1. Build a single central Logstash server (we'll cover scaling in Chapter 7).
2. Configure your central server to receive events, index them and make them

available to search.
3. Install Logstash on a remote agent.
4. Configure Logstash to send some selected log events from our remote agent

to our central server.
5. Install Logstash Kibana to act as a web console and front end for our logging

infrastructure.

20

Chapter 3: Shipping Events

We'll take you through each of these steps in this chapter and then in later chapters
we'll expand on this implementation to add new capabilities and scale the solution.

Our Event Lifecycle
For our initial Logstash build we're going to have the following lifecycle:

• The Logstash agent on our remote agents collects and sends a log event to
our central server.

• A Redis instance receives the log event on the central server and acts as a
buffer.

• The Logstash agent draws the log event from our Redis instance and indexes
it.

• The Logstash agent sends the indexed event to Elasticsearch.
• Elasticsearch stores and renders the event searchable.
• The Logstash web interface queries the event from Elasticsearch.

Figure 3.1: Our Event Lifecycle

Version: v1.4.2.1 (bce6609) 21

http://redis.io/
http://www.elasticsearch.org/

Chapter 3: Shipping Events

Now let's set up Logstash to implement this lifecycle.

Installing Logstash on our central server
First we're going to install Logstash on our central server. We're going to build
an Ubuntu box called smoker.example.com with an IP address of 10.0.0.1 as our
central server.
Central server

• Hostname: smoker.example.com
• IP Address: 10.0.0.1

As this is our production infrastructure we're going to be a bit more systematic
about setting up Logstash than we were in Chapter 1. To do this we're going to
use the available Logstash packages.

TIP There are other, more elegant, ways to install Logstash using tools like
Puppet or Chef. Setting up either is beyond the scope of this book but there are
several Puppet modules for Logstash on the Puppet Forge and a Chef cookbook. I
strongly recommend you use this chapter as exposition and introduction on how
Logstash is deployed and use some kind of configuration management to deploy
in production.

Install Logstash
First let's install Logstash. To do so we need to add the Logstash APT repository
to our host. Let's start by adding the appropriate GPG key for validating the
packages.

Version: v1.4.2.1 (bce6609) 22

http://www.puppetlabs.com
http://www.opscode.com/chef/
http://forge.puppetlabs.com/modules?q=logstash
http://community.opscode.com/cookbooks/logstash

Chapter 3: Shipping Events

Listing 3.1: Adding the Elasticsearch GPG key

$ wget -O - http://packages.elasticsearch.org/GPG-KEY-↩
elasticsearch | sudo apt-key add -

Now let's add the APT repository configuration.

Listing 3.2: Adding the Logstash APT repository

$ sudo sh -c "echo 'deb http://packages.elasticsearch.org/↩
logstash/1.4/debian stable main' > /etc/apt/sources.list.d/↩
logstash.list"

TIP If we were running on a Red Hat or a derivative we would install the ap-
propriate Yum repository. See the agent install later in this chapter for Red Hat
installation steps.

We then run an apt-get update to refresh our package list.

Listing 3.3: Updating the package list

$ sudo apt-get update

And finally we can install Logstash itself.

Listing 3.4: Installing Logstash via apt-get

$ sudo apt-get install logstash

Now let's install some of the other required components for our new deployment
and then come back to configuring Logstash.

Version: v1.4.2.1 (bce6609) 23

Chapter 3: Shipping Events

Installing a broker
As this is our central server we're going to install a broker for Logstash. The
broker receives events from our shippers and holds them briefly prior to Logstash
indexing them. It essentially acts as a "buffer" between your Logstash agents and
your central server. It is useful for two reasons:

• It is a way to enhance the performance of your Logstash environment by
providing a caching buffer for log events.

• It provides some resiliency in our Logstash environment. If our Logstash
indexing fails then our events will be queued in Redis rather than potentially
lost.

We are going to use Redis as our broker. We could choose a variety of possible
brokers, indeed other options include AMQP and 0MQ, but we're going with Redis
because:

• It's very simple and very fast to set up.
• It's performant.
• It's well tested and widely used in the Logstash community.

Redis is a neat open source, key-value store. Importantly for us the keys can
contain strings, hashes, lists, sets and sorted sets making it a powerful store for a
variety of data structures.

Installing Redis

We can either install Redis via our packager manager or from source. I recommend
installing it from a package as it's easier to manage and you'll get everything you
need to manage it. However, you will need Redis version 2.0 or later. On our
Debian and Ubuntu hosts we'd install it like so:

Listing 3.5: Installing Redis on Debian

$ sudo apt-get install redis-server

Version: v1.4.2.1 (bce6609) 24

http://redis.io/
http://www.amqp.org/
http://www.zeromq.org/

Chapter 3: Shipping Events

On Red Hat-based platforms you will need to install the EPEL package repositories
to get a recent version of Redis. For example on CentOS and RHEL 6 to install
EPEL:

Listing 3.6: Installing EPEL on CentOS and RHEL

$ sudo rpm -Uvh http://download.fedoraproject.org/pub/epel/6/↩
i386/epel-release-6-8.noarch.rpm

And now we can install Redis.

Listing 3.7: Installing Redis on Red Hat

$ sudo yum install redis

NOTE If you want the source or the bleeding edge edition you can download
Redis directly from its site, configure and install it.

Changing the Redis interface

Once Redis is installed we need to update its configuration so it listens on all
interfaces. By default, Redis only listens on the 127.0.0.1 loopback interface. We
need it to listen on an external interface so that it can receive events from our
remote agents.
To do this we need to edit the /etc/redis/redis.conf (it's /etc/redis.conf on
Red Hat-based platforms) configuration file and comment out this line:

Listing 3.8: Changing the Redis interface

bind 127.0.0.1

Version: v1.4.2.1 (bce6609) 25

http://redis.io/download

Chapter 3: Shipping Events

So it becomes:

Listing 3.9: Commented out interface

#bind 127.0.0.1

We could also just bind it to a single interface, for example our host's external IP
address 10.0.0.1 like so:

Listing 3.10: Binding Redis to a single interface

bind 10.0.0.1

Now it's configured, we can start the Redis server:

Listing 3.11: Starting the Redis server

$ sudo /etc/init.d/redis-server start

Test Redis is running

We can test if the Redis server is running by using the redis-cli command.

Listing 3.12: Testing Redis is running

$ redis-cli -h 10.0.0.1
redis 10.0.0.1:6379> PING
PONG

When the redis prompt appears, then type PING and if the server is running then
it should return a PONG.
You should also be able to see the Redis server listening on port 6379. You will
need to ensure any firewalls on the host or between the host and any agents allows

Version: v1.4.2.1 (bce6609) 26

Chapter 3: Shipping Events

traffic on port 6379. To test this is working you can telnet to that port and issue
the same PING command.

Listing 3.13: Telneting to the Redis server

$ telnet 10.0.0.1 6379
Trying 10.0.0.1...
Connected to smoker.
Escape character is '^]'.
PING
+PONG

Elasticsearch for search
Next we're going to install Elasticsearch to provide our search capabilities. Elas-
ticsearch is a powerful indexing and search tool. As the Elasticsearch team puts
it: "Elasticsearch is a response to the claim: 'Search is hard.'". Elasticsearch is easy
to set up, has search and index data available RESTfully as JSON over HTTP and
is easy to scale and extend. It's released under the Apache 2.0 license and is built
on top of Apache's Lucene project.
When installing the Elasticsearch server you need to ensure you install a suitable
version. The Elasticsearch server version needs to match the version of the Elas-
ticsearch client that is bundled with Logstash. If the client version is 1.1.1 you
should install version 1.1.1 of the Elasticsearch server. The current documentation
will indicate which version of Elasticsearch to install to match the client.

TIP Logstash also has a bundled Elasticsearch server inside it that we could use.
To enable it see the embedded option of the elasticsearch plugin. For most purposes
though I consider it more flexible and scalable to use an external Elasticsearch
server.

Version: v1.4.2.1 (bce6609) 27

http://www.elasticsearch.org/
http://logstash.net/docs/latest/outputs/elasticsearch
http://logstash.net/docs/latest/outputs/elasticsearch

Chapter 3: Shipping Events

Introduction to Elasticsearch

So before we install it we should learn a little about Elasticsearch and how it
works. A decent understanding is going to be useful later as we use and scale
Elasticsearch. Elasticsearch is a text indexing search engine. The best metaphor
is the index of a book. You flip to the back of the book1, look up a word and
then find the reference to a page. That means, rather than searching text strings
directly, it creates an index from incoming text and performs searches on the index
rather than the content. As a result it is very fast.

NOTE This is a simplified explanation. See the site for more information and
exposition.

Under the covers Elasticsearch uses Apache Lucene to create this index. Each
index is a logical namespace, in Logstash's case the default indexes are named for
the day the events are received, for example:

Listing 3.14: A Logstash index

logstash-2012.12.31

Each Logstash event is made up of fields and these fields become a document
inside that index. If we were comparing Elasticsearch to a relational database: an
index is a table, a document is a table row and a field is a table column. Like a
relational database you can define a schema too. Elasticsearch calls these schemas
"mappings".

NOTE It's important to note that you don't have to specify any mappings for op-
erations, indeed many of searches you'll use with Logstash don't need mappings,
but they often makes life much easier. You can see an example of an Elastic-

1Not the first Puppet book.

Version: v1.4.2.1 (bce6609) 28

http://www.elasticsearch.org/guide/
http://lucene.apache.org/core/

Chapter 3: Shipping Events

search mapping here. Since Logstash 1.3.2 a default mapping is applied to your
Elasticsearch and you generally no longer need to worry about setting your own
mapping.

Like a schema, mapping declares what data and data types fields documents con-
tain, any constraints present, unique and primary keys and how to index and
search each field. Unlike a schema you can also specify Elasticsearch settings.
You can see the currently applied mapping on your Elasticsearch server by using
the curl command.

Listing 3.15: Showing the current Elasticsearch mapping

$ curl localhost:9200/_template/logstash?pretty

You can also see mappings applied to specific indexes like so:

Listing 3.16: Showing index-specific mappings

$ curl localhost:9200/logstash-2012.12.31/_mapping?pretty

Indexes are stored in Lucene instances called "shards". There are two types of
shards: primary and replica. Primary shards are where your documents are stored.
Each new index automatically creates five primary shards. This is a default setting
and you can increase or decrease the number of primary shards when the index
is created but not AFTER it is created. Once you've created the index the number
of primary shards cannot be changed.
Replica shards are copies of the primary shards that exist for two purposes:

• To protect your data.
• To make your searches faster.

Each primary shard will have one replica by default but also have more if required.
Unlike primary shards, this can be changed dynamically to scale out or make an

Version: v1.4.2.1 (bce6609) 29

http://untergeek.com/2012/11/05/my-current-templatemapping/

Chapter 3: Shipping Events

index more resilient. Elasticsearch will cleverly distribute these shards across the
available nodes and ensure primary and replica shards for an index are not present
on the same node.
Shards are stored on Elasticsearch "nodes". Each node is automatically part of an
Elasticsearch cluster, even if it's a cluster of one. When new nodes are created
they can use unicast or multicast to discover other nodes that share their cluster
name and will try to join that cluster. Elasticsearch distributes shards amongst all
nodes in the cluster. It can move shards automatically from one node to another
in the case of node failure or when new nodes are added.

Installing Elasticsearch

Elasticsearch's only prerequisite is Java. As we installed a JDK earlier in this chap-
ter we don't need to install anything additional for it. Unfortunately Elasticsearch
is currently not well packaged in distributions but it is easy to download packages.
The Elasticsearch team provides tar balls, RPMs and DEB packages. You can find
the Elasticsearch download page here.
As we're installing onto Ubuntu we can use the DEB packages provided:

Listing 3.17: Downloading Elasticsearch

$ wget https://download.elasticsearch.org/elasticsearch/↩
elasticsearch/elasticsearch-1.1.1.deb

Now we install Elasticsearch. We need to tell Elasticsearch where to find our Java
JDK installation by setting the JAVA_HOME environment variable. We can then run
the dpkg command to install the DEB package.

Listing 3.18: Installing Elasticsearch

$ export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-i386/
$ sudo dpkg -i elasticsearch-1.1.1.deb

Version: v1.4.2.1 (bce6609) 30

http://www.elasticsearch.org/download/

Chapter 3: Shipping Events

TIP Remember you can also find tar balls and RPMs for Elasticsearch here.

Installing the package should also automatically start the Elasticsearch server but
if it does not then you can manage it via its init script:

Listing 3.19: Starting Elasticsearch

$ sudo /etc/init.d/elasticsearch start

Configuring our Elasticsearch cluster and node

Next we need to configure our Elasticsearch cluster and node name. Elasticsearch
is started with a default cluster name and a random, allegedly amusing, node
name, for example "Frank Kafka" or "Spider-Ham". A new random node name is
selected each time Elasticsearch is restarted. Remember that new Elasticsearch
nodes join any cluster with the same cluster name they have defined. So we want
to customize our cluster and node names to ensure we have unique names. To
do this we need to edit the /etc/elasticsearch/elasticsearch.yml file. This is
Elasticsearch's YAML-based configuration file. Look for the following entries in
the file:

Listing 3.20: Initial cluster and node names

cluster.name: elasticsearch
node.name: "Franz Kafka"

We're going to uncomment and change both the cluster and node name. We're
going to choose a cluster name of logstash and a node name matching our central
server's host name.

Version: v1.4.2.1 (bce6609) 31

http://www.elasticsearch.org/download/
http://www.yaml.org/

Chapter 3: Shipping Events

Listing 3.21: New cluster and node names

cluster.name: logstash
node.name: "smoker"

We then need to restart Elasticsearch to reconfigure it.

Listing 3.22: Restarting Elasticsearch

$ sudo /etc/init.d/elasticsearch restart

We can now check if Elasticsearch is running and active.

Determining Elasticsearch is running

You can tell if Elasticsearch is running by browsing to port 9200 on your host, for
example:

Listing 3.23: Checking Elasticsearch is running

http://10.0.0.1:9200

This should return some status information that looks like:

Version: v1.4.2.1 (bce6609) 32

Chapter 3: Shipping Events

Listing 3.24: Elasticsearch status information

{
"ok" : true,
"status" : 200,
"name" : "smoker",
"version" : {
"number" : "0.90.3",
"snapshot_build" : false

},
"tagline" : "You Know, for Search"

}

You can also browse to a more detailed status page:

Listing 3.25: Elasticsearch status page

http://10.0.0.1:9200/_status?pretty=true

This will return a page that contains a variety of information about the state and
status of your Elasticsearch server.

TIP You can find more extensive documentation for Elasticsearch here.

Creating a basic central configuration
Now we've got our environment configured we're going to set up our Logstash
configuration file to receive events. We're going to call this file central.conf and
create it in the /etc/logstash/conf.d directory.

Version: v1.4.2.1 (bce6609) 33

http://www.elasticsearch.org/guide/

Chapter 3: Shipping Events

Listing 3.26: Creating the central.conf file

$ sudo touch /etc/logstash/conf.d/central.conf

Let's put some initial configuration into the file.

Listing 3.27: Initial central configuration

input {
redis {
host => "10.0.0.1"
type => "redis-input"
data_type => "list"
key => "logstash"

}
}
output {
stdout { }
elasticsearch {
cluster => "logstash"

}
}

In our central.conf configuration file we can see the input and output blocks
we learned about in Chapter 2. Let's see what each does in this new context.

The central.conf input block

For the input block we've specified one plugin: redis, with four options. The
first option, host, specifies which interface that Redis will listen for events on, in
our case 10.0.0.1. The second option, type, populates the type field of our event
and is used to help identify what events are. The type is only added if the event
doesn't already have one specified. If you are adding a type to your events on

Version: v1.4.2.1 (bce6609) 34

Chapter 3: Shipping Events

your remote agent then this is passed through to the central server and the option
on the input plugin is ignored.
The data_type option allows you to specify either a list, a channel or a
pattern_channel. For lists Redis will use the BLPOP command to process the
key, for channels Redis will SUBSCRIBE to the key and for pattern channels Redis
will PSUBSCRIBE to the key. The key option specifies the name of a Redis list or
channel. For example, as we've specified list as the value of data_type, we've
configured a list called logstash.
By configuring this plugin we're telling Logstash to connect to our Redis broker
that listens on IP address 10.0.0.1 on port 6379. The broker will be listening for
incoming Logstash events in JSON and pass them to a list called logstash. When
it receives the events Logstash will label them with a type of redis-input.

The central.conf output block

The contents of central.conf's output block is fairly easy to understand. We've
already seen the stdout plugin in Chapter 1. Incoming events will be outputted
to STDOUT and therefore to Logstash's own log file. I've done this for debugging
purposes so wewill bemore easily able to see our incoming events. In a production
environment you would probably disable this to prevent any excess noise being
generated.
We've added another plugin called elasticsearch. This plugin sends events from
Logstash to Elasticsearch to be stored and made available for searching. The only
option we're configuring for this plugin is cluster which tells Logstash the name
of the Elasticsearch cluster. Here we've specified logstash, which the name of
the Elasticsearch cluster we installed earlier. Logstash will attempt to connect to
that cluster as a client.

Running Logstash as a service
Now we've provided Logstash with a basic centralized configuration we can start
our Logstash process. You can now run the Logstash service.

Version: v1.4.2.1 (bce6609) 35

http://redis.io/commands/blpop
http://redis.io/commands/subscribe
http://redis.io/commands/psubscribe

Chapter 3: Shipping Events

Listing 3.28: Starting the central Logstash server

$ sudo service logstash start

You should see a message indicating Logstash is being started.

Checking Logstash is running

We can confirm that Logstash is running by a variety of means. First, we can use
the init script itself:

Listing 3.29: Checking the Logstash server is running

$ sudo service logstash status
* Logstash Daemon is running.

Finally, Logstash will send its own log output to /var/log/logstash/logstash↩
.log. When Logstash starts you should begin to see some informational messages
logged to this file, for example:

Listing 3.30: Logstash log output

{:message=>"Read config", :level=>:info}
{:message=>"Start thread", :level=>:info}
{:message=>"Registering redis", :identity=>"default", :level=>:↩
info}

. . .
{:message=>"All plugins are started and registered.", :level=>:↩
info}

Version: v1.4.2.1 (bce6609) 36

Chapter 3: Shipping Events

Installing Logstash on our first agent
Our central server is now idling waiting to receive events so let's make it happy and
set up a Logstash agent to send some of those events to it. We're going to choose
one of our CentOS hosts, maurice.example.com with an IP address of 10.0.0.10
as our first agent.
Agent

• Hostname: maurice.example.com
• IP Address: 10.0.0.10

In the agent we're going to begin with sending some Syslog events to the central
Logstash server. But first we need to install and configure Logstash on the remote
agent. Let's install Logstash now.
First we should download the Yum GPG key.

Listing 3.31: Adding the Yum GPG key

$ sudo rpm --import http://packages.elasticsearch.org/GPG-KEY-↩
elasticsearch

We'll now add the Logstash Yum repository to our host. Create a file called /↩
etc/yum.repos.d/logstash.repo and add the following content.

Listing 3.32: Adding the Logstash Yum repository

[logstash-1.4]
name=logstash repository for 1.4.x packages
baseurl=http://packages.elasticsearch.org/logstash/1.4/centos
gpgcheck=1
gpgkey=http://packages.elasticsearch.org/GPG-KEY-elasticsearch
enabled=1

Version: v1.4.2.1 (bce6609) 37

Chapter 3: Shipping Events

We can then install Logstash via the yum command.

Listing 3.33: Install Logstash via yum

$ sudo yum install logstash

Our agent configuration
Now we've got our base in place, let's create our agent configuration in /etc↩
/logstash/conf.d. We're going to create a configuration file called shipper.↩
conf and then populate it with what we need to begin shipping events.

Listing 3.34: Creating the Logstash agent configuration

$ sudo touch /etc/logstash/conf.d/shipper.conf

Now let's add our event shipping configuration:

Version: v1.4.2.1 (bce6609) 38

Chapter 3: Shipping Events

Listing 3.35: Logstash event shipping configuration

input {
file {
type => "syslog"
path => ["/var/log/secure", "/var/log/messages"]
exclude => ["*.gz"]

}
}

output {
stdout { }
redis {
host => "10.0.0.1"
data_type => "list"
key => "logstash"

}
}

Let's take a look at each block in our configuration file.

The shipper.conf input block

In our remote agent configuration we've specified a single input plugin, file. This
plugin collects events from files. The file plugin is quite clever and does some
useful things:

• It automatically detects new files matching our collection criteria.
• It can handle file rotation, for example when you run logrotate.
• It keeps track of where it is up to in a file. Specifically this will load any
new events from the point at which Logstash last processed an event. Any
new files start from the bottom of the file. See the sincedb options of file
plugin.

Version: v1.4.2.1 (bce6609) 39

http://logstash.net/docs/latest/inputs/file
http://logstash.net/docs/latest/inputs/file

Chapter 3: Shipping Events

To configure the file input plugin we've specified a type, syslog, to identify
events from this input. Then we've specified an array of files to collect events
from in the path option. In our case we've selected two files containing Syslog
output: /var/log/secure and /var/log/messages. The path option also allows
us to specify globbing, for example we could collect events from all *.log files in
the /var/log/ directory:

Listing 3.36: File input globbing

path => ["/var/log/*.log"]

Or even a recursive glob like:

Listing 3.37: File recursive globbing

path => ["/var/log/**/*log"]

Next, we've used the exclude option to specify an array of files from which we
specifically do not want to collect events. In our case we've only listed two files
in path rather than a glob so we don't specifically need to worry about excluding
any files. But it's a good idea to put in some basic exclusions as force of habit. So
I've specified some useful defaults here: all *.gz files. Exclusions are filenames
rather than file paths but can include globs like our *.gz entry.

TIP You can find more options of the file plugin here.

The shipper.conf output block

Our output block contains two plug-ins: stdout and redis. The stdout plugin
will send copies of events to the Logstash log file, in this case /var/log/logstash↩
/logstash.log. I have this plugin enabled for debugging purposes. In production

Version: v1.4.2.1 (bce6609) 40

http://logstash.net/docs/latest/inputs/file

Chapter 3: Shipping Events

you may wish to turn it off to avoid generating too much unnecessary noise.
The redis plugin is going to send our events from the remote agent to our central
Logstash server. We've set three configuration options for the plugin. Firstly,
we've told Logstash the host to send the events to. In this case our central Logstash
server smoker.example.com with the IP address of 10.0.0.1.

WARNING It's important to point out here that Redis has no security con-
trols. The connection between your agent and central server is not encrypted or
authenticated. If you care about the security or secrecy of your log events or espe-
cially if you don't trust the network over which you're sending this data then you
shouldn't use this plugin or you should consider tunneling your traffic through
stunnel or a VPN technology.

Do you remember that we specified two options, data_type and key, in the redis
input plugin on the central server? On the agent we also need to set these options
and their values need to match the values we used on the central server. So we've
set data_type to list and key to logstash. This allows the output on our remote
agent to be matched with the input on our central host.

Installing Logstash as a service
Now we've provided Logstash with a basic centralized configuration we can start
our Logstash process. You can now run the Logstash service.

Listing 3.38: Starting the central Logstash server

$ sudo service logstash start
Starting Logstash Daemon: [OK ↩

]

You should see a message indicating Logstash informing you that Logstash is being
started.

Version: v1.4.2.1 (bce6609) 41

https://www.stunnel.org/index.html

Chapter 3: Shipping Events

Checking Logstash is running

We can confirm that Logstash is running by a variety of means. First, we can use
the init script itself:

Listing 3.39: Checking the Logstash server is running

$ sudo service logstash status
* Logstash Daemon is running.

Finally, Logstash will send its own log output to /var/log/logstash/logstash↩
.log. When Logstash starts you should begin to see some informational messages
logged to this file, for example:

Listing 3.40: Logstash log output

{:message=>"Read config", :level=>:info}
{:message=>"Start thread", :level=>:info}
{:message=>"Registering redis", :identity=>"default", :level=>:↩
info}

. . .
{:message=>"All plugins are started and registered.", :level=>:↩
info}

Sending our first events
We've now got our central server and our first agent set up and configured. We're
monitoring the /var/log/secure and the /var/log/messages files and any new
events logged to these files should now be passed to the Logstash agent and then
sent to the central server. They'll be processed, passed to Elasticsearch, indexed
and made available to search.
So how do we send some initial events? One of the files we're monitoring is /var↩
/log/secure which is the destination for security-relevant system logs including

Version: v1.4.2.1 (bce6609) 42

Chapter 3: Shipping Events

log in activity. So let's login to our host via SSH and generate some messages.
Before we do though let's watch Logstash's own log files on smoker and maurice.

Listing 3.41: Watching the shipper Logstash logstash.log file

maurice$ tail -f /var/log/logstash/logstash.log

And:

Listing 3.42: Watching the cental Logstash logstash.log file

smoker$ tail -f /var/log/logstash/logstash.log

As we have the stdout plugin specified on both hosts we should get a copy of any
events generated both log files.
On our central host we could also confirm events are flowing through Redis using
the llen command to check the length of the logstash list.

Listing 3.43: Testing Redis is operational

$ redis-cli -h 10.0.0.1
redis 10.0.0.1:6379> llen logstash
(integer) 1

Now let's generate a specific event by SSH'ing into Maurice.

Listing 3.44: Connecting to Maurice via SSH

joker$ ssh root@maurice.example.com

NOTE We could also use a tool like logger here to generate some events. We'll
see logger again in Chapter 4.

Version: v1.4.2.1 (bce6609) 43

Chapter 3: Shipping Events

When we check each files we should see events related to our login attempt. Let's
look at one of those events:

Listing 3.45: A Logstash login event

{
"message" => "Dec 9 07:53:16 maurice sshd[31198]: Accepted ↩
password for root from 184.152.74.118 port 55965 ssh2",

"@timestamp" => "2012-12-09T07:53:16.737Z",
"@version" => "1",
"host" => "maurice.example.com",
"path" => "/var/log/secure",
"type" => "syslog"

}

We can see it is made up of the fields we saw in Chapter 2 plus some additional
fields. The host field shows the hostname of the host that generated the event.
The path field shows the file /var/log/secure that the event was collected from.
Both these fields are specific to the file input plugin that processed this event.
The message gives us the exact message being collected. The @timestamp field
provides the date and time of the event. and the @version shows the event schema
version. Lastly, the event type of syslog has been added by the file input.

Checking Elasticsearch has received our events
By seeing the events from maurice.example.com in the central server's log files we
know the events are flowing. On the central server though one of our outputs is
Elasticsearch via the elasticsearch plugin. So we also want to confirm that our
events were sent to Elasticsearch, indexed, and are available to search.
We can check this by querying the Elasticsearch server via its HTTP interface. To
do this we're going to use the curl command.

Version: v1.4.2.1 (bce6609) 44

Chapter 3: Shipping Events

Listing 3.46: Querying the Elasticsearch server

$ curl "http://localhost:9200/_search?q=type:syslog&pretty=true"
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 10,
"successful" : 10,
"failed" : 0

},
"hits" : {
"total" : 5,
"max_score" : 0.5945348,
"hits" : [{
"_index" : "logstash-2013.08.25",
"_type" : "secure",
"_id" : "ZSMs-WbdRIqLmszB5w_igw",
"_score" : 0.5945348, "_source" : {"message":"Aug 25 19:57:55 ↩
maurice.example.com sshd[2352]: pam_unix(sshd:session): ↩
session opened for user root by (uid=0)","@timestamp":"2013-↩
08-25T19:57:56.118Z","@version":"1","host":"maurice.example.↩
com","path":"/var/log/secure",type":"syslog"}

},
. . .

Here we've issued a GET to the Elasticsearch server running on the localhost on
port 9200. We've told it to search all indexes and return all events with type of
syslog. We've also passed pretty=true to return our event stream in the more
readable 'pretty' format. You can see it's returned some information about how
long the query took to process and which indexes were hit. But more importantly
it's also returned some events which means our Elasticsearch server is operational
and we can search for our events.

Version: v1.4.2.1 (bce6609) 45

Chapter 3: Shipping Events

NOTE This book used to recommend adding an Elasticsearch mapping template
to your Elasticsearch server to customize it for Logstash and to improve perfor-
mance. Since Logstash 1.3.2 a default template is now automatically applied that
takes care of this for you. You can find this default template here.

The Logstash Kibana Console
Manually searching for log entries via the Elasticsearch HTTP API seems a little
kludgy though. There must be an easier way right? Indeed there is. Built into
Logstash is a simple but powerful web interface called Kibana that you can use
to query and display your log events. The Kibana web interface is a customizable
dashboard that you can extend and modify to suit your environment. It allows
the querying of events, creation of tables and graphs as well as sophisticated vi-
sualizations.
Since we've already installed Logstash it's just a simple matter of running another
variant of the Logstash agent to activate the Kibana web console.

NOTE Remember Logstash's command line flags control what component is
run rather than having separate applications for each purpose.

We can start by launching the web interface from the command line using the
logstash binary:

Listing 3.47: Launching the Logstash Kibana web interface

$ /opt/logstash/bin/logstash web

You can see that instead of launching the agent portion of Logstash we're launch-
ing the web component.

Version: v1.4.2.1 (bce6609) 46

https://github.com/logstash/logstash/blob/master/lib/logstash/outputs/elasticsearch/elasticsearch-template.json

Chapter 3: Shipping Events

Once the web interface has started we should be able to browse to the URL, re-
placing the IP address with one from your environment:

Listing 3.48: Logstash web interface address

http://10.0.0.1:9292

And then see the interface.

Figure 3.2: The Logstash web interface

This is the default "dark"-themed interface. If you'd prefer there is also a light
themed interface you can select by clicking the large cog next to the Logstash
Search title.

Version: v1.4.2.1 (bce6609) 47

Chapter 3: Shipping Events

Figure 3.3: The Logstash web interface's light theme

TIP You can also use the Settings cog to change the base configuration of our
dashboard.

By default the Kibana dashboard returns all available events, which you can see
from the * in the Query panel. We can instead query for something, for example
let's query for all events with a type of syslog.

Version: v1.4.2.1 (bce6609) 48

Chapter 3: Shipping Events

Figure 3.4: Query results

We can then click on specific events to see them in more detail.

Figure 3.5: Specific events

Version: v1.4.2.1 (bce6609) 49

Chapter 3: Shipping Events

Let's try a more specific query. The Logstash web interface uses the Apache Lucene
query syntax to allow you to make queries. The simplest query is just using a
simple string, like so:

Figure 3.6: Basic query

Here we've searched for the string fail and Logstash has returned 0 events which
contain the string. Woot! No failures.
We can also perform more sophisticated queries. For example let's search for all
events of type apache that contain the string 404 in the message.

Version: v1.4.2.1 (bce6609) 50

http://lucene.apache.org/core/3_6_1/queryparsersyntax.html
http://lucene.apache.org/core/3_6_1/queryparsersyntax.html

Chapter 3: Shipping Events

Figure 3.7: Advanced query

You can search any of the fields contained in a Logstash event, for example type,
message, etc. You can also use boolean logic like AND, OR and NOT as well as fuzzy
and wildcard searches. You can see the full query language in the Apache Lucene
documentation.
The dashboard is also highly customizable. You can add, remove or update exist-
ing panels by clicking on the edit cog symbol next to a panel.

Version: v1.4.2.1 (bce6609) 51

http://lucene.apache.org/core/3_6_1/queryparsersyntax.html
http://lucene.apache.org/core/3_6_1/queryparsersyntax.html

Chapter 3: Shipping Events

Figure 3.8: Customizing the dashboard

We can then add, edit or update a variety of different panels.

Figure 3.9: Adding a panel

We can then use the Dashboard control panel to save our dashboard, load other
dashboards or share a link to this specific dashboard.

Version: v1.4.2.1 (bce6609) 52

Chapter 3: Shipping Events

Figure 3.10: The Dashboard control panel

This just scratches the surface of what you can do with Kibana. You can build
complex queries (including saving them and displaying the results as a new panel),
graph and visualize data, produce tables and display data on maps and charts. I
recommend you spend some time exploring and customizing Kibana to suit your
environment.

Summary
We've made a great start on our log management project. In this chapter we've
installed and configured Logstash, Redis and Elasticsearch on a central server.
We've installed and configured Logstash on a remote agent and we can easily
replicate this configuration (preferably using configuration management tools like
Puppet and Chef).
We're collecting logs from two Syslog log files and transmitting them to our central
server. We're indexing them and making them searchable via Elasticsearch and
the Logstash Kibana interface.
In the next chapter we're going to expand on our implementation and look at pro-
cessing some additional log sources especially in situations when we can't deploy
the Logstash agent.

Version: v1.4.2.1 (bce6609) 53

http://www.puppetlabs.com
http://www.opscode.com/chef/

Chapter 4

Shipping Events without the
Logstash agent

Our log management project is going well. We've got some of our Syslog messages
centralized and searchable but we've hit a snag. We've discovered some hosts and
devices in our environment that can't be managed with the Logstash agent. There
are a few different devices that all have varying reasons for not being able to run
the agent:

• Small virtual machine with limited memory insufficient to run the agent.
• Some embedded devices and appliances without the ability to install Java
and hence run the agent.

• Some outsourced managed hosts where you can't install software of your
own.

So to address these hosts we're going to make a slight digression in our project
and look at alternatives to running the Logstash agent and getting events to our
central Logstash server.

54

Chapter 4: Shipping Events without the Logstash agent

Using Syslog
The first way we can get our recalcitrant devices to log to Logstash is using a more
traditional logging method: Syslog. Instead of using the Logstash agent to send
our logs we can enable existing Syslog daemons or services to do it for us.
To do this we're going to configure our central Logstash server to receive Syslog
messages and then configure Syslog on the remote hosts to send to it. We're also
going to show you how to configure a variety of Syslog services.

A quick introduction to Syslog
Syslog is one of the original standards for computer logging. It was designed by
Eric Allman as part of Sendmail and has grown to support logging from a variety
of platforms and applications. It has become the default mechanism for logging on
Unix and Unix-like systems like Linux and is heavily used by applications running
on these platforms as well as printers and networking devices like routers, switches
and firewalls.
As a result of its ubiquity on these types of platforms it's a commonly used means
to centralize logs from disparate sources. Each message generated by Syslog (and
there are variations between platforms) is roughly structured like so:

Listing 4.1: A Syslog message

Dec 15 14:29:31 joker systemd-logind[2113]: New session 31581 of↩
user bob.

They consist of a timestamp, the host that generated the message (here joker),
the process and process ID (PID) that generated the message and the content of
the message.
Messages also have metadata attached to them in the form of facilities and sever-
ities. Messages refer to a facility like:

• AUTH

Version: v1.4.2.1 (bce6609) 55

http://tools.ietf.org/html/rfc3164

Chapter 4: Shipping Events without the Logstash agent

• KERN
• MAIL
• etcetera

The facility specifies the type of message generated, for example messages from
the AUTH facility usually relate to security or authorization, the KERN facility are
usually kernel messages or the MAIL facility usually indicates it was generated by
a mail subsystem or application. There are a wide variety of facilities including
custom facilities, prefixed with LOCAL and a digit: LOCAL0 to LOCAL7, that you can
use for your own messages.
Messages also have a severity assigned, for example EMERGENCY, ALERT, and
CRITICAL, ranging down to NOTICE, INFO and DEBUG.

TIP You can find more details on Syslog here.

Configuring Logstash for Syslog
Configuring Logstash to receive Syslog messages is really easy. All we need to do
is add the syslog input plugin to our central server's /etc/logstash/conf.d/↩
central.conf configuration file. Let's do that now:

Version: v1.4.2.1 (bce6609) 56

http://en.wikipedia.org/wiki/Syslog

Chapter 4: Shipping Events without the Logstash agent

Listing 4.2: Adding the `syslog` input

input {
redis {
host => "10.0.0.1"
data_type => "list"
type => "redis-input"
key => "logstash"

}
syslog {
type => syslog
port => 5514

}
}
output {
stdout { }
elasticsearch {
cluster => "logstash"

}
}

You can see that in addition to our redis input we've now got syslog enabled and
we've specified two options:

Listing 4.3: The `syslog` input

syslog {
type => syslog
port => 5514

}

The first option, type, tells Logstash to label incoming events as syslog to help
us to manage, filter and output these events. The second option, port, opens
port 5514 for both TCP and UDP and listens for Syslog messages. By default most

Version: v1.4.2.1 (bce6609) 57

Chapter 4: Shipping Events without the Logstash agent

Syslog servers can use either TCP or UDP to send Syslog messages and when being
used to centralize Syslog messages they generally listen on port 514. Indeed, if
not specified, the port option defaults to 514. We've chosen a different port here
to separate out Logstash traffic from any existing Syslog traffic flows you might
have. Additionally, since we didn't specify an interface (which we could do using
the host option) the syslog plugin will bind to 0.0.0.0 or all interfaces.

TIP You can find the full list of options for the syslog input plugin here.

Now, if we restart our Logstash agent, we should have a Syslog listener running
on our central server.

Listing 4.4: Restarting the Logstash server

$ sudo service logstash restart

You should see in your /var/log/logstash/logstash.log log file some lines in-
dicating the syslog input plugin has started:

Listing 4.5: Syslog input startup output

{:message=>"Starting syslog udp listener", :address=>"↩
0.0.0.0:5514", :level=>:info}

{:message=>"Starting syslog tcp listener", :address=>"↩
0.0.0.0:5514", :level=>:info}

NOTE To ensure connectivity you will need make sure any host or intervening
network firewalls allow connections on TCP and UDP between hosts sending Sys-
log messages and the central server on port 5514.

Version: v1.4.2.1 (bce6609) 58

http://logstash.net/docs/latest/inputs/syslog

Chapter 4: Shipping Events without the Logstash agent

Configuring Syslog on remote agents
There are a wide variety of hosts and devices we need to configure to send Syslog
messages to our Logstash central server. Some will be configurable by simply
specifying the target host and port, for example many appliances or managed
devices. In their case we'd specify the hostname or IP address of our central server
and the requisite port number.
Central server

• Hostname: smoker.example.com
• IP Address: 10.0.0.1
• Syslog port: 5514

In other cases our host might require its Syslog daemon or service to be specifically
configured. We're going to look at how to configure three of the typically used
Syslog daemons to send messages to Logstash:

• RSyslog
• Syslog-NG
• Syslogd

We're not going to go into great detail about how each of these Syslog servers
works but rather focus on how to send Syslog messages to Logstash. Nor are we
going to secure the connections. The syslog input and the Syslog servers will be
receiving and sending messages unencrypted and unauthenticated.
Assuming we've configured all of these Syslog servers our final environment might
look something like:

Version: v1.4.2.1 (bce6609) 59

Chapter 4: Shipping Events without the Logstash agent

Figure 4.1: Syslog shipping to Logstash

WARNING As I mentioned above Syslog has some variations between plat-
forms. The Logstash syslog input plugin supports RFC3164 style syslog with the
exception that the date format can either be in the RFC3164 style or in ISO8601.
If your Syslog output isn't compliant with RFC3164 then this plugin will probably
not work. We'll look at custom filtering in Chapter 5 that may help parse your
specific Syslog variant or you can read some further information here.

Configuring RSyslog

The RSyslog daemon has become popular on many distributions, indeed it has
become the default Syslog daemon on recent versions of Ubuntu, CentOS, Fedora,
Debian, openSuSE and others. It can process log files, handle local Syslog and
comes with an extensible modular plug-in system.

Version: v1.4.2.1 (bce6609) 60

http://www.ietf.org/rfc/rfc3164.txt
http://www.ietf.org/rfc/rfc3164.txt
http://en.wikipedia.org/wiki/ISO_8601
http://cookbook.logstash.net/recipes/syslog-pri/
http://en.wikipedia.org/wiki/Rsyslog

Chapter 4: Shipping Events without the Logstash agent

TIP In addition to supporting Syslog output Logstash also supports the RSyslog
specific RELP protocol.

We're going to add Syslog message forwarding to our RSyslog configuration file,
usually /etc/rsyslog.conf (or on some platforms inside the /etc/rsyslog.d↩
/ directory). To do so we're going to add the following line to the end of our
/etc/rsyslog.conf file:

Listing 4.6: Configuring RSyslog for Logstash

. @@smoker.example.com:5514

NOTE If you specify the hostname, here smoker.example.com, your host will
need to be able to resolve it via DNS.

This tells RSyslog to send all messages using *.*, which indicates all facilities
and priorities. You can specify one or more facilities or priorities if you wish, for
example:

Listing 4.7: Specifying RSyslog facilities or priorities

mail.* @@smoker.example.com:5514
*.emerg @@joker.example.com:5514

The first line would send all mail facility messages to our smoker host and the
second would send all messages of emerg priority to the host joker.
The @@ tells RSyslog to use TCP to send the messages. Specifying a single @ uses
UDP as a transport.

Version: v1.4.2.1 (bce6609) 61

http://logstash.net/docs/latest/inputs/relp

Chapter 4: Shipping Events without the Logstash agent

TIP I would strongly recommend using the more reliable and resilient TCP pro-
tocol to send your Syslog messages.

If we then restart the RSyslog daemon, like so:

Listing 4.8: Restarting RSyslog

$ sudo /etc/init.d/rsyslog restart

Our host will now be sending all the messages collected by RSyslog to our central
Logstash server.

The RSyslog imfile module One of RSyslog's modules provides another method
of sending log entries from RSyslog. You can use the imfile module to transmit
the contents of files on the host via Syslog. The imfile module works much like
Logstash's file input and supports file rotation and tracks the currently processed
entry in the file.
To send a specific file via RSyslog we need to enable the imfile module and then
specify the file to be processed. Let's update our /etc/rsyslog.conf file (or if your
platform supports the /etc/rsyslog.d directory then you can create a file-specific
configuration file in that directory).

Listing 4.9: Monitoring files with the imfile module

$Modload imfile

$InputFileName "/var/log/apache2/error.log"
$InputFileTag "apache"
$InputFileStateFile "/var/spool/rsyslog/apache_error_state"
$InputRunFileMonitor

The first line, starting with $Modload, loads the imfile module. The next lines
specify the file be monitored, here /var/log/apache2/error.log, tags these mes-

Version: v1.4.2.1 (bce6609) 62

http://www.rsyslog.com/doc/imfile.html

Chapter 4: Shipping Events without the Logstash agent

sages in RSyslog with apache and specifies a state file for RSyslog to track the
current endpoint processed in the file. Lastly, the $InputRunFileMonitor line
initiates file monitoring for this file.
Now, once you've restarted RSyslog, it will be monitoring this file and sending any
new lines via Syslog to our Logstash instance (assuming we've configured RSyslog
as suggested in the previous section).

TIP You can find the full RSyslog documentation here.

Configuring Syslog-NG

Whilst largely replaced in modern distributions by RSyslog, there are still a lot of
platforms that use Syslog-NG including Gentoo, FreeBSD, Arch Linux and HP UX.
Like RSyslog, Syslog-NG is a fully featured Syslog server but its configuration is a
bit more substantial than what we needed for RSyslog.
Syslog-NG configuration comes in four types:

• source statements - where log messages come from.
• destination statements - where to send log messages.
• filter statements - how to filter or process log messages.
• log statements - actions that combine source, destination and filter state-
ments.

Let's look inside an existing Syslog-NG configuration. Its configuration file is
usually /etc/syslog-ng.conf or /etc/syslog-ng/syslog-ng.conf. You'll usually
find a line something like this inside:

Version: v1.4.2.1 (bce6609) 63

http://www.rsyslog.com/
http://en.wikipedia.org/wiki/Syslog-ng

Chapter 4: Shipping Events without the Logstash agent

Listing 4.10: Syslog–NG s_src source statement

source s_src { unix-dgram("/dev/log"); internal(); file("/proc/↩
kmsg" program_override("kernel"));

};

This basic source statement collects Syslog messages from the host, kernel mes-
sages and any internal messages to Syslog-NG. This is usually the default source
on most distributions and platforms. If you don't see this source your Syslog-NG
server may not be collecting Syslog messages and you should validate its config-
uration. You may also see additional source statements, for example collecting
messages via the network from other hosts.
We then need to define a new destination for our Logstash server. We can do
this with a line like so:

Listing 4.11: New Syslog–NG destination

destination d_logstash { tcp("10.0.0.1" port(5144)); };

This tells Syslog-NG to send messages to IP address 10.0.0.1 on port 5144 via
TCP. If you have domain name resolution you could instead specify our Logstash
server's host name.
Lastly, we will need to specify a log action to combine our source or sources and
our destination

Listing 4.12: New Syslog–NG log action

log { source(s_src); destination(d_logstash); };

This will send all Syslog messages from the s_src source to the d_logstash↩
destination which is our central Logstash server.
To enable the message transmission you'll need to restart Syslog-NG like so:

Version: v1.4.2.1 (bce6609) 64

Chapter 4: Shipping Events without the Logstash agent

Listing 4.13: Restarting Syslog–NG

$ sudo /etc/init.d/syslog-ng restart

TIP You can find the full Syslog-NG documentation here.

Configuring Syslogd

The last Syslog variant we're going to look at configuring is the older style Syslogd.
While less common it's still frequently seen on older distribution versions and
especially in the more traditional Unix platforms.

TIP This includes many of the *BSD-based platforms including OSX.

Configuring Syslogd to send on messages is very simple. Simply find your Syslogd
configuration file, usually /etc/syslog.conf and add the following line at the end
of the file:

Listing 4.14: Configuring Syslogd for Logstash

. @smoker.example.com:5514

TIP You can find more details about Syslogd configuration here.

This will send all messages to the host smoker.example.com on UDP port 5514.
It is important to note that Syslogd generally does not support sending messages

Version: v1.4.2.1 (bce6609) 65

http://www.balabit.com/sites/default/files/documents/syslog-ng-admin-guide_en.html/index.html
http://linux.die.net/man/5/syslog.conf

Chapter 4: Shipping Events without the Logstash agent

via TCP. This may be a problem for you given UDP is a somewhat unreliable
protocol: there is absolutely no guarantee that the datagram will be delivered
to the destination host when using UDP. Failure rates are typically low but for
certain types of data including log events losing them is potentially problematic.
You should take this into consideration when using Syslogd and if possible upgrade
to a more fully featured Syslog server like Syslog-NG or RSyslog.
Once you've configured the Syslogd you'll need to restart the daemon, for example:

Listing 4.15: Restarting Syslogd

$ sudo /etc/init.d/syslogd restart

Other Syslog daemons

There are a variety of other Syslog daemons including several for Microsoft Win-
dows. If you need to configure these then please see their documentation.

• Snare for Windows
• KiwiSyslog
• Syslog-Win32
• Cisco devices
• Checkpoint
• Juniper
• F5 BigIP
• HP Jet Direct

WARNING Remember not all of these devices will produce RFC-compliant
Syslog output and may not work with the syslog input. We'll look at custom
filtering in Chapter 5 that may assist in working with your Syslog variant.

Version: v1.4.2.1 (bce6609) 66

http://www.intersectalliance.com/projects/BackLogNT/
http://www.kiwisyslog.com/products/kiwi-syslog-server/product-overview.aspx
http://syslog-win32.sourceforge.net/
http://www.ciscopress.com/articles/article.asp?p=426638&seqNum=3
https://supportcenter.checkpoint.com/supportcenter/portal?eventSubmit_doGoviewsolutiondetails=&solutionid=sk34680
https://kb.juniper.net/InfoCenter/index?page=content&id=KB12218
http://support.f5.com/kb/en-us/solutions/public/8000/200/sol8260.html
http://www.monitorware.com/en/syslog-enabled-products/hp-jetdirect-syslog-configuration.php

Chapter 4: Shipping Events without the Logstash agent

Testing with logger

Most Unix and Unix-like platforms come with a handy utility called logger. It
generates Syslog messages that allow you to easily test if your Syslog configuration
is working. You can use it like so:

Listing 4.16: Testing with logger

$ logger "This is a syslog message"

This will generate a message from the user facility of the priority notice (user↩
.notice) and send it to your Syslog process.

TIP You can see full options to change the facility and priority of logger messages
here.

Assuming everything is set up and functioning you should see the resulting log
event appear on your Logstash server:

Version: v1.4.2.1 (bce6609) 67

http://linux.die.net/man/1/logger

Chapter 4: Shipping Events without the Logstash agent

Listing 4.17: Logstash log event from Syslog

{
"host" => "joker.example.com",
"priority" => 13,
"timestamp" => "Dec 17 16:00:35",
"logsource" => "joker.example.com",
"program" => "bob",
"pid" => "23262",
"message" =>"This is a syslog message",
"severity" => 5,
"facility" => 1,
"facility_label" => "user-level",
"severity_label" => "Notice",
"@timestamp" => "2012-12-17T16:00:35.000Z",
"@version => "1",
"message" => "<13>Dec 17 16:00:35 joker.example.com bob↩
[23262]: This is a syslog message",

"type" => "syslog"
}

Using the Logstash Forwarder
If you can't use the Logstash agent and Syslog isn't an option then don't despair.
We still have plenty of ways to get your logs from your hosts to Logstash. One of
those ways is a tool called the Logstash Forwarder (formerly Lumberjack), written
by Logstash's author Jordan Sissel.
The Logstash Forwarder (hereafter Forwarder) is designed to be a lightweight
client and server for sending messages to Logstash. It includes a custom-designed
protocol and unlike any of our previous transports it also includes some security
via SSL encryption of the traffic as well as compression of log traffic. Using the
Forwarder you can:

Version: v1.4.2.1 (bce6609) 68

https://github.com/elasticsearch/logstash-forwarder

Chapter 4: Shipping Events without the Logstash agent

• Follow files (it also respects rename and truncation conditions like log rota-
tion).

• Receive stdin, which is useful for things like piping output to the Forwarder.

So why use the Forwarder at all instead of say Syslog? The Forwarder is designed
to be tiny, incredibly memory conservative and very, very fast. None of the ex-
isting Syslog servers are really designed to scale and transmit large volumes of
events and they often break down at large volumes.
To get it running we're going to configure the Forwarder input plugin on the
central Logstash server and then install and configure the Forwarder on a remote
host.

Configure the Logstash Forwarder on our central server
The first step in configuring the Forwarder on our central server is to generate
a self-signed SSL certificate to secure our log traffic. This is a mandatory step
for configuring the Forwarder. You can only send events with the SSL transport
enabled and encrypting your traffic.

NOTE You could also use a real certificate if you wished but this is a simpler
and faster way to get started.

Create a self-signed SSL certificate

We're going to quickly step through creating the required SSL certificate and key
as it is a pretty standard process on most platforms. It requires the openssl binary
as a prerequisite.

Version: v1.4.2.1 (bce6609) 69

Chapter 4: Shipping Events without the Logstash agent

Listing 4.18: Checking for openssl

$ which openssl
/usr/bin/openssl

We first generate a private key.

Listing 4.19: Generating a private key

$ openssl genrsa -out server.key 2048
Generating RSA private key, 2048 bit long modulus
......................................+++
....+++
e is 65537 (0x10001)

This creates a new file called server.key. This is our SSL certificate key. Don't
share it or lose it as it is integral to the security of our solution.
Next we're going to generate a Certificate Signing Request or CSR from which
we're going to generate our SSL certificate.

Listing 4.20: Generating a CSR

$ openssl req -new -key server.key -batch -out server.csr

This will generate a file called server.csr which is our signing request.
Lastly we're going to sign our CSR and generate a new certificate.

Version: v1.4.2.1 (bce6609) 70

Chapter 4: Shipping Events without the Logstash agent

Listing 4.21: Signing our CSR

$ openssl x509 -req -days 3650 -in server.csr -signkey server.↩
key -out server.crt

Signature ok
subject=/C=AU/ST=Some-State/O=Internet Widgits Pty Ltd
Getting Private key

This will result in a file called server.crt which is our self-signed certificate.

NOTE We've set a very long expiry, 3650 days, for the certificate.

Now let's copy the required files:

• server.key
• server.crt

To our Logstash configuration directory:

Listing 4.22: Copying the key and certificate

$ sudo cp server.key server.crt /etc/logstash

If you wish to renew the self-signed certificate at some point you'll need to keep
the original key and CSR otherwise you can delete the original key and the CSR
to keep things tidy.

Listing 4.23: Cleaning up

$ rm server.orig.key server.csr

Version: v1.4.2.1 (bce6609) 71

Chapter 4: Shipping Events without the Logstash agent

Configuring the Lumberjack input

Now we've got our self-signed key we need to add the lumberjack input to our
central Logstash server's configuration. To do this we're going to edit our /etc↩
/logstash/conf.d/central.conf configuration file.

Listing 4.24: Adding the Lumberjack input

input {
redis {
host => "10.0.0.1"
data_type => "list"
type => "redis-input"
key => "logstash"

}
syslog {
type => syslog
port => 5514

}
lumberjack {
port => 6782
ssl_certificate => "/etc/logstash/server.crt"
ssl_key => "/etc/logstash/server.key"
type => "lumberjack"

}
}
output {
stdout { }
elasticsearch {
cluster => "logstash"

}
}

You can see we've added a new input plugin called lumberjack:

Version: v1.4.2.1 (bce6609) 72

Chapter 4: Shipping Events without the Logstash agent

Listing 4.25: The Lumberjack input

lumberjack {
port => 6782
ssl_certificate => "/etc/logstash/server.crt"
ssl_key => "/etc/logstash/server.key"
type => "lumberjack"

}

To configure it we've specified a port of 6782. The lumberjack input will listen
on this TCP port for incoming events. By default the plugin will be bound to all
interfaces but you can specify a specific interface with the host option.

NOTE You'll need to ensure any firewalls on the host or between the remote
client and the central server allow traffic on this port.

We've also specified the certificate and key we created in the last section in the
ssl_certificate and ssl_key options respectively. If we'd put a pass phrase on
the key we could specify it here with the ssl_key_passphrase option.
Lastly, we've specified a type of lumberjack so we can identify events coming in
from this input.

TIP You can find the full documentation for the lumberjack input here.

If we now restart Logstash we will have the lumberjack input enabled.

Listing 4.26: Restarting Logstash for Lumberjack

$ sudo service logstash restart

Version: v1.4.2.1 (bce6609) 73

http://logstash.net/docs/latest/inputs/lumberjack

Chapter 4: Shipping Events without the Logstash agent

We can tell if the input plugin has loaded from our /var/log/logstash/↩
logstash.log log file. Check for the following message:

Listing 4.27: Checking Lumberjack has loaded

{
:timestamp => "2013-08-23T04:09:04.426000+0000",
:message => "Input registered",
:plugin=><LogStash::Inputs::Lumberjack ssl_certificate=>"/etc/↩
logstash/server.crt", ssl_key=>"/etc/logstash/server.key", ↩
type=>"lumberjack", charset=>"UTF-8", host=>"0.0.0.0">,

:level=>:info
}

The lumberjack input is now ready to receive events from our remote clients.

Installing the Logstash Forwarder on the remote host
Now we need to download, compile and install the Forwarder on a remote agent.
We're going to choose a new Ubuntu host called gangsteroflove.example.com. As
the Forwarder is relatively new software it's not yet packaged in any distributions
but it's very easy to create packages from the source and distribute them yourself.
Let's start by downloading the Forwarder from GitHub as a tarball.

Listing 4.28: Downloading the Forwarder

$ wget https://github.com/elasticsearch/logstash-forwarder/↩
archive/master.zip

$ unzip logstash-forwarder-master.zip
$ cd logstash-forwarder-master

To compile the Forwarder and create some useful packages we'll need the basic
developer tools. On Ubuntu this is achieved by installing the build-essential
package alias:

Version: v1.4.2.1 (bce6609) 74

Chapter 4: Shipping Events without the Logstash agent

Listing 4.29: Installing the developer tools

$ sudo apt-get install build-essential

We'll also need to install Go. On Ubuntu we can do this via the Go PPA.

Listing 4.30: Installing Go on Ubuntu

$ sudo apt-get install python-software-properties
$ sudo apt-add-repository ppa:duh/golang
$ sudo apt-get update
$ sudo apt-get install golang

We'll also need Ruby, Ruby-dev and Rubygems.

Listing 4.31: Installing prerequisite Forwarder packages

$ sudo apt-get install ruby rubygems ruby-dev

We'll need the fpm gem to create the packages.

Listing 4.32: Installing FPM

$ sudo gem install fpm

Now we can create a DEB package like so:

Listing 4.33: Creating a Forwarder DEB package

$ umask 022
$ make deb

You'll see a long sequence of compilation and then some final execution as the
fpm command runs and creates the DEB package.

Version: v1.4.2.1 (bce6609) 75

Chapter 4: Shipping Events without the Logstash agent

Listing 4.34: Forwarder make output

fpm -s dir -t deb -n logstash-forwarder -v 0.2.0 --prefix /opt/↩
logstash-forwarder \

--exclude '*.a' --exclude 'lib/pkgconfig/zlib.pc' -C build \
--description "a log shipping tool" \
--url "https://github.com/elasticsearch/logstash-forwarder" \
bin/logstash-forwarder bin/logstash-forwarder.sh lib
Created deb package {"path":"logstash-forwarder_0.2.0_i386.deb"}

We could also run make rpm on appropriate RPM-based platforms to build and
create RPMs from which to install the Forwarder.
Now let's install our newly created DEB package.

Listing 4.35: Installing the Forwarder

$ sudo dpkg -i logstash-forwarder_0.2.0_i386.deb
Selecting previously unselected package logstash-forwarder.
(Reading database ... 45980 files and directories currently ↩
installed.)

Unpacking logstash-forwarder (from logstash-forwarder_0.2.0_i386↩
.deb) ...

Setting up logstash-forwarder (0.2.0) ...

From this package the Forwarder will be installed into the /opt/logstash-↩
forwarder directory.
Let's create a configuration directory for the Forwarder.

Listing 4.36: Creating the Forwarder configuration directory

$ sudo mkdir /etc/logstash-forwarder

We now need to copy our SSL server certificate across to the remote host so we

Version: v1.4.2.1 (bce6609) 76

Chapter 4: Shipping Events without the Logstash agent

can use it to validate our SSL connection.

Listing 4.37: Copying the Forwarder's SSL certificate

smoker$ scp /etc/logstash/server.crt bob@gangsteroflove:/etc/↩
logstash-forwarder

As I explained either, the Forwarder works by tailing files or taking input from
STDIN. We're going to focus on tailing files, which covers most of the logging
scenarios you're likely to have.
The Forwarder is configured with a JSON-based configuration file that is specified
using the -config command line flag.
Let's create an example of this file now.

Listing 4.38: Creating logstash-forwarder.conf

$ touch /etc/logstash-forwarder/logstash-forwarder.conf

Now let's add some configuration to the file.

Version: v1.4.2.1 (bce6609) 77

Chapter 4: Shipping Events without the Logstash agent

Listing 4.39: The logstash-forwarder.conf file

{
"network": {
"servers": ["10.0.0.1:6782"],
"ssl ca": "/etc/logstash-forwarder/server.crt",
"timeout": 15

},

"files": [
{
"paths": [
"/var/log/syslog",
"/var/log/*.log"

],
"fields": { "type": "syslog" }

},
{
"paths": [
"/var/log/apache2/*.log"

],
"fields": { "type": "apache" }

}
]

}

Let's examine the contents of our logstash-forwarder.conf configuration file.
It's divided into two JSON stanzas: network and files.
The network stanza configures the transport portion of the Forwarder. The first
entry servers configures the target destination for any Logstash Forwarder log
entries, in our case the server at 10.0.0.1 on port 6782 as we configured in our
lumberjack input above. You can specify an array of servers. The Forwarder will
chose one at random and then keep using that server until it becomes unresponsive
at which point it will try another server.

Version: v1.4.2.1 (bce6609) 78

Chapter 4: Shipping Events without the Logstash agent

We've also defined the location of the SSL server certificate we downloaded from
our server. Finally we've specified a server timeout of 15 seconds. This is the time
that the Forwarder will wait for a response from a server. If it doesn't receive a
response it will select a new server to send to or if no other servers are available
it will enter a wait-retry-wait cycle until a server is available.
The next stanza, files, controls which files we're monitoring for log events. The
files stanza is made up of paths and optional fields blocks. The paths blocks
specify files or globs of files to watch and receive log entries from. In the case
of our example configuration we're monitoring the /var/log/syslog file, all files
in /var/log/ ending in *.log and all files in the /var/log/apache2/ directory
ending in *.log. You can also see that each path block also has a fields block.
This block will add a type field of syslog and apache respectively to any log
entries from these files.
Now let's run the Forwarder on the command line to test this out.

Listing 4.40: Testing the Forwarder

$ /opt/logstash-forwarder/bin/logstash-forwarder -config /etc/↩
logstash-forwarder/logstash-forwarder.conf

Testing the Logstash Forwarder

Now let's trigger a Syslog message to make sure things are working okay.

Listing 4.41: Test the Forwarder

$ logger "This is a message eh?"

We should see the connection made on the local client in the Forwarder's STDOUT:

Version: v1.4.2.1 (bce6609) 79

Chapter 4: Shipping Events without the Logstash agent

Listing 4.42: The Forwarder connection output

2013/08/23 04:18:59 publisher init
2013/08/23 04:18:59.444617 Setting trusted CA from file: /etc/↩
logstash-forwarder/server.crt

2013/08/23 04:18:59.445321 Starting harvester: /var/log/auth.log
. . .
2013/08/23 04:18:59.446050 Starting harvester: /var/log/kern.log
2013/08/23 04:18:59.446459 Starting harvester: /var/log/apache2/↩
access.log

2013/08/23 04:18:59.505609 Connected to localhost:6782
2013/08/23 04:18:59.056065 Registrar received 1 events
2013/08/23 04:18.59.057591 Saving registrar state.

On the central Logstash server we should see a matching event appear in /var/↩
log/logstash/logstash.log:

Listing 4.43: Forwarder events

2013-08-23T04:19.00.197Z lumberjack://gangsteroflove.example.com↩
/var/log/syslog: Aug 23 04:19:00 gangsteroflove.example.com ↩
root: This is a message eh?

Managing the Logstash Forwarder as a service

Obviously running the Forwarder on the command line isn't a viable option so
we're going to implement it as a service. We're going to run the Forwarder using
an init script and use an /etc/defaults file to populate the files we'd like to collect
events from. On Red Hat-based platforms we could use the /etc/sysconfig↩
approach.
First, grab the Debian-based init script I've made for the Forwarder and the /↩
etc/defaults file that goes with it.

Version: v1.4.2.1 (bce6609) 80

http://logstashbook.com/code/4/logstash_forwarder_debian_init
http://logstashbook.com/code/4/logstash_forwarder_debian_defaults
http://logstashbook.com/code/4/logstash_forwarder_debian_defaults

Chapter 4: Shipping Events without the Logstash agent

NOTE There is also a Red Hat variant of the init script and an /etc/sysconfig/logstash-forwarder
file.

Copy these into place and set executable permissions on the init script:

Listing 4.44: Installing the Forwarder init script

$ sudo cp logstash_forwarder_debian.init /etc/init.d/logstash-↩
forwarder

$ sudo chmod 0755 /etc/init.d/logstash-forwarder
$ sudo cp logstash_forwarder_debian.defaults /etc/defaults/↩
logstash-forwarder

Let's look inside the /etc/defaults/logstash-forwarder file:

Listing 4.45: The Forwarder defaults file

Options for the Logstash Forwarder
LOGSTASH_FORWARDER_OPTIONS="-config /etc/logstash-forwarder/↩
logstash-forwarder.conf"

Here we're passing in the location of the Forwarder configuration file.

TIP If you were using Puppet or Chef you'd have the Forwarder configuration
file as a template and managed to allow you to centrally control the options and
files being collected.

If we're happy with these files we can start the Forwarder.

Version: v1.4.2.1 (bce6609) 81

http://logstashbook.com/code/4/logstash_forwarder_redhat_init
http://logstashbook.com/code/4/logstash_forwarder_redhat_sysconfig

Chapter 4: Shipping Events without the Logstash agent

Listing 4.46: Starting the Forwarder

$ /etc/init.d/logstash-forwarder start
* logstash-forwarder is not running
* Starting logstash-forwarder

We can now confirm the Forwarder is running by checking the PID file, /var/↩
run/logstash-forwarder or by confirming there is a running process:

Listing 4.47: Checking the Forwarder process

$ ps -aux | grep 'logstash-forwarder'
root 1501 0.0 0.2 59736 2832 ? SNl 19:51 0:00↩

/opt/logstash-forwarder/bin/logstash-forwarder -config /etc/↩
logstash-forwarder/logstash-forwarder.conf

We can also send a logger event from our remote host that should show up on
the central Logstash server.

Other log shippers
If the Logstash Forwarder doesn't suit your purposes there are also several other
shippers that might work for you.

Beaver
The Beaver project is another Logstash shipper. Beaver is written in Python and
available via PIP.

Version: v1.4.2.1 (bce6609) 82

https://github.com/josegonzalez/beaver
http://pypi.python.org/pypi/pip

Chapter 4: Shipping Events without the Logstash agent

Listing 4.48: Installing Beaver

$ pip install beaver

Beaver supports sending events via Redis, STDIN, or zeroMQ. Events are sent in
Logstash's json codec.

TIP This is an excellent blog post explaining how to get started with Beaver and
Logstash.

Woodchuck
Another potential shipping option is a newcomer called Woodchuck. It's designed
to be lightweight and is written in Ruby and deployable as a RubyGem. It currently
only supports outputting events as Redis (to be received by Logstash's redis input)
but future plans include ZeroMQ and TCP output support.

Others
• Syslog-shipper
• Remote_syslog
• Message::Passing

TIP You may also find some other tools here.

Version: v1.4.2.1 (bce6609) 83

http://www.zeromq.org/
http://josediazgonzalez.com/2013/01/01/setting-up-beaver-for-use-with-logstash/
https://github.com/danryan/woodchuck
https://github.com/jordansissel/syslog-shipper
https://github.com/papertrail/remote_syslog
https://metacpan.org/module/Message::Passing
http://cookbook.logstash.net/recipes/log-shippers/

Chapter 4: Shipping Events without the Logstash agent

Summary
We've now hopefully got some of the recalcitrant hosts into our logging infras-
tructure via some of the methods we've learnt about in this chapter: Syslog, the
Logstash Forwarder or some of the other log shippers. That should put our log
management project back on track and we can now look at adding some new log
sources to our Logstash infrastructure.

Version: v1.4.2.1 (bce6609) 84

Chapter 5

Filtering Events with Logstash

We've added the hosts that couldn't use the Logstash agent to our Logstash envi-
ronment. Our project is back on track and we can start to look at some new log
sources to get into Logstash. Looking at our project plan we've got four key log
sources we need to tackle next:

• Apache server logs
• Postfix server logs
• Java application logs
• A custom log format for an in-house application

Let's look at each type of log source and see how we might go about getting them
into Logstash. So far we've put log sources directly into Logstash without manip-
ulating them in any way. It meant we got the message and some small amount
of metadata about it (largely its source characteristics) into Logstash. This is a
useful exercise. Now all our log data is centralized in one place and we're able to
do some basic cross-referencing, querying and analysis.
Our current approach, however, does not add much in the way of context or
additional metadata to our events. For example we don't make any use of fields
or tags nor did we manipulate or adjust any of the data in any way. And it is this
contextual information that makes Logstash and its collection and management
of log events truly valuable. The ability to identify, count, measure, correlate and

85

Chapter 5: Filtering Events with Logstash

drill down into events to extract their full diagnostic value. To add this context
we're going to introduce the concept of filter plugins.

NOTE To save you cutting and pasting we've included an Logstash remote agent
configuration file showing all the examples we've used in this chapter here.

Apache Logs
The first log source on our list is our Apache web servers. Example.com has a lot
of web properties, they are all running on Apache and logging both accesses and
errors to log files. Let's start by looking at one of the log events that has been
generated:

Listing 5.1: An Apache log event

186.4.131.228 - - [20/Dec/2012:20:34:08 -0500] "GET /2012/12/new↩
-product/ HTTP/1.0" 200 10902 "http://www.example.com/20012/12/↩
new-product/" "Mozilla/5.0 (Windows; U; Windows NT 5.1; pl; rv↩
:1.9.1.3) Gecko/20090824 Firefox/3.5.3"

This entry was produced from Apache's Combined Log Format. You can see there
is lots of useful information in this Apache log event:

• A source IP for the client.
• The timestamp.
• The HTTP method, path, and protocol.
• The HTTP response code.
• The size of the object returned to the client.
• The HTTP referrer.
• The User-Agent HTTP request header.

Version: v1.4.2.1 (bce6609) 86

http://logstashbook.com/code/5/shipper.conf
http://httpd.apache.org/docs/2.4/logs.html#accesslog

Chapter 5: Filtering Events with Logstash

NOTE You can see more details on Apache logging here.

If we were to send this event to Logstash using our current configuration all of
this data would be present in the message field but we'd then need to search for
it and it seems like we could do better. Especially given we've got all these useful
places to store the appropriate data.
So how do we get the useful data from our Apache log event into Logstash? There
are three approaches we could take (and we could also combine one or more of
them):

• Filtering events on the agent.
• Filtering events on the central server.
• Sending events from Apache in a better format.

The first two methods would rely on Logstash's filter plugins either running lo-
cally or on the server. Both have pros and cons. Running locally on the agent
reduces the processing load on the central server and ensures only clean, struc-
tured events are stored. But you have to maintain a more complex (and preferably
managed) configuration locally. On the server side this can be centralized and
hopefully easier to manage but at the expense of needing more processing grunt
to filter the events.
For this initial log source, we're going to go with the last method, having Apache
send custom log output. This is a useful shortcut because Apache allows us to
customize logging and we should take advantage of it. By doing this we avoid
having to do any filtering or parsing in Logstash andwe can concentrate onmaking
best use of the data in Logstash.

Configuring Apache for Custom Logging
To send our log events we're going to use Apache's LogFormat and CustomLog direc-
tives to construct log entries that we can send to Logstash. The LogFormat direc-

Version: v1.4.2.1 (bce6609) 87

http://httpd.apache.org/docs/2.4/logs.html

Chapter 5: Filtering Events with Logstash

tive allows you to construct custom named log formats and then the CustomLog
directive uses those formats to write log entries, like so:

Listing 5.2: The Apache LogFormat and CustomLog directives

LogFormat "formatoflogevent" nameoflogformat
CustomLog /path/to/logfile nameoflogformat

You've probably used the CustomLog directive before, for example to enable log-
ging for a virtual host, like so:

Listing 5.3: Apache VirtualHost logging configuration

<VirtualHost *:80>
DocumentRoot /var/www/html/vhost1
ServerName vhost1.example.com

<Directory "/var/www/html/vhost1">
Options FollowSymLinks
AllowOverride All

</Directory>

CustomLog /var/log/httpd/vhost1.access combined

</VirtualHost>

In this example we're specifying the combined log format which refers to the de-
fault Combined Log Format that generated the event we saw earlier.

NOTE The Combined Log Format is an extension of another default format,
the Common Log Format, with the added fields of the HTTP referrer and the
User-Agent.

Version: v1.4.2.1 (bce6609) 88

Chapter 5: Filtering Events with Logstash

The LogFormat directive for Apache's Combined Log Format would be (and you
should be able to find this line in your Apache configuration files):

Listing 5.4: The Apache Common Log Format LogFormat directive

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-↩
agent}i\"" combined

NOTE And yes referer is spelt incorrectly.

Each log format is constructed using % directives combined with other text. Each
% directive represents some piece of data, for example %h is the IP address of the
client connecting to your web server and %t is the time of the access request.

TIP You can find a full list of the % directives here.

As Apache's log output is entirely customizable using these % directives we can
write our log entries in any format we want including, conveniently, constructing
structured data events. To take advantage of this we're going to use Apache's
LogFormat directive to construct a JSON hash replicating Logstash's json codec.
This will allow us to take advantage of the % directives available to add some
context to our events.

Creating a Logstash log format

To create a custom log format we need to add our new LogFormat directive to our
Apache configuration. To do this we are going to create a file called apache_log↩
.conf and add it to our Apache conf.d directory, for example on Red Hat-based
systems we'd add it to /etc/httpd/conf.d/ and on Debian-based systems to /↩
etc/apache2/conf.d. Populate the file with the following LogFormat directive:

Version: v1.4.2.1 (bce6609) 89

http://en.wikipedia.org/wiki/HTTP_referer
http://httpd.apache.org/docs/2.4/mod/mod_log_config.html#formats

Chapter 5: Filtering Events with Logstash

Listing 5.5: Apache custom JSON LogFormat

LogFormat "{ \
\"host\":\"host.example.com\", \
\"path\":\"/var/log/httpd/logstash_access_log\", \
\"tags\":[\"wordpress\",\"www.example.com\"], \
\"message\": \"%h %l %u %t \\\"%r\\\" %>s %b\", \
\"timestamp\": \"%{%Y-%m-%dT%H:%M:%S%z}t\", \
\"useragent\": \"%{User-agent}i\", \
\"clientip\": \"%a\", \
\"duration\": %D, \
\"status\": %>s, \
\"request\": \"%U%q\", \
\"urlpath\": \"%U\", \
\"urlquery\": \"%q\", \
\"method\": \"%m\", \
\"bytes\": %B, \
\"vhost\": \"%v\" \

}" logstash_apache_json

NOTE To save you cutting and pasting this we've included an example file here.
You should edit the various sections to add your own hosts, source info and tags.

This rather complex looking arrangement produces Apache log data as a JSON
hash. One of the reasons it looks so complex is that we're escaping the quotation
marks and putting in backslashes to make it all one line and valid JSON. We're
specifying the host and path manually and you could use any values that suited
your environment here. We're also manually specifying an array of tags in the
tags field, here identifying that this is a Wordpress site and it is the www.example↩
.com page. You would update these fields to suit your environment.

Version: v1.4.2.1 (bce6609) 90

http://logstashbook.com/code/5/apache_log.conf

Chapter 5: Filtering Events with Logstash

TIP To manage the LogFormat better I recommend managing the log.conf file
as a Puppet or Chef template. That would allow you to centrally control values
like the `host`, `path` and `tags` field on a host.

The message field contains the standard Common Log Format event that is gener-
ated by Apache. This is useful if you have other tools that consume Apache logs
for which you still want the default log output.
The remaining items specified are fields and contain the core of the additional
context we've added to our Apache log events. It breaks out a number of the
elements of the Common Log Format into their own fields and adds a couple
more items, such as vhost via the %v directive. You can easily add additional
fields from the available directives if required. Remember to ensure that the field
is appropriately escaped if it is required.

TIP As a reminder, you can find a full list of the % directives here.

Let's add the CustomLog directive to our apache_log.conf file to actually initiate
the logging:

Listing 5.6: Adding the CustomLog directive

CustomLog /var/log/httpd/logstash_access_log ↩
logstash_apache_json

And now restart Apache to make our new configuration active.

Listing 5.7: Restarting Apache

$ sudo /etc/init.d/httpd restart

This will result in Apache creating a log file, /var/log/httpd/logstash_access_log↩

Version: v1.4.2.1 (bce6609) 91

http://www.puppetlabs.com
http://www.opscode.com/chef/
http://httpd.apache.org/docs/2.4/mod/mod_log_config.html#formats

Chapter 5: Filtering Events with Logstash

, that will contain our new log entries.

TIP Remember to add this file to your normal log rotation and you may want
to consider turning off your existing Apache logging rather than writing duplicate
log entries and wasting Disk I/O and storage. You could alternatively increase the
tempo of your log rotation and keep short-term logs as backups and remove them
more frequently.

Let's take a look at one of those entries now:

Version: v1.4.2.1 (bce6609) 92

Chapter 5: Filtering Events with Logstash

Listing 5.8: A JSON format event from Apache

{
"host" => "maurice.example.com"
"path" => "/var/log/httpd/logstash_access_log",
"tags" => [
[0] "wordpress",
[1] "www.example.com"

],
"message" => "10.0.0.1 - - [25/Aug/2013:21:22:52 +0000] \"GET ↩
/ HTTP/1.1\" 304 -",

"timestamp" => "2013-08-25T21:22:52+0000",
"clientip" => "10.0.0.1",
"duration" => 11759,
"status" => 304,
"request" => "/index.html",
"urlpath" => "/index.html",
"urlquery" => "",
"method" => "GET",
"bytes" => 0,
"vhost" => "10.0.0.1",
"@timestamp" => "2013-08-25T21:22:53.261Z",
"@version" => "1",
"type" => "apache"

}

TIP You can also output JSON events from Syslog using RSyslog as you can
learn here. You can also achieve the same results from recent versions of the
Squid proxy which has added a LogFormat capability. Similarly with Nginx.

Version: v1.4.2.1 (bce6609) 93

http://untergeek.com/2012/10/11/using-rsyslog-to-send-pre-formatted-json-to-logstash/
http://www.squid-cache.org/Doc/config/logformat/
http://blog.pkhamre.com/2012/08/23/logging-to-logstash-json-format-in-nginx/

Chapter 5: Filtering Events with Logstash

Sending Apache events to Logstash
So how do we get those log entries from our host to Logstash? There are a number
of potential ways we discovered in Chapters 3 and 4 to input the events. We could
use the file input plugin to input the events from Apache.

Listing 5.9: Apache logs via the file input

file {
type => "apache"
path => ["/var/log/httpd/logstash_access_log"]
codec => "json"

}

And then use an output plugin like the redis plugin we used in Chapter 3. Or we
could use a tool like the Logstash Forwarder (formerly Lumberjack) (introduced
in Chapter 4) and specify our /var/log/httpd/logstash_access_log file as one
its inputs.
Note that in order for our inputs to receive our new events we need to specify the
codec they are in. We do this by adding the codec option to the plugin configu-
ration like so:

Listing 5.10: Apache events via the Logstash Forwarder

lumberjack {
port => 6782
ssl_certificate => "/etc/logstash/server.crt"
ssl_key => "/etc/logstash/server.key"
codec => "json"
type => "lumberjack"

}

The codec option tells Logstash that the incoming events are in the json codec.
If the events are not in that format it will fall back to the plain codec in which
Logstash assumes incoming events are plain strings and parses them as such.

Version: v1.4.2.1 (bce6609) 94

Chapter 5: Filtering Events with Logstash

Once you've configured your agent and central server to receive your Apache
logs and restarted the required services you should see Apache log events flowing
through to ElasticSearch. Let's look at one of these events in the Logstash Kibana
interface:

Figure 5.1: Apache log event

We can see that the various pieces of context we've added are now available as
tags and fields in the Logstash Kibana interface. This allows us to perform much
more sophisticated and intelligent queries on our events. For example, I'd like to
see all the events that returned a 404 status code. I can now easily query this
using the field named status:

Version: v1.4.2.1 (bce6609) 95

http://en.wikipedia.org/wiki/HTTP_404

Chapter 5: Filtering Events with Logstash

Figure 5.2: Querying for 404 status codes

We can also combine these fields to drill down inmore precise queries, for example
selecting specific virtual hosts and querying for status codes, specific requests and
methods.

TIP We could also use filters, as we'll see shortly, to extract more data from our
log entries. For example we could use the useragent or geoip filters to add user
agent and GeoIP data respectively.

We can also now quickly and easily drill down into our log data to find events we
care about or that are important when troubleshooting.

TIP We'll also see how these more contextual events can be output as alerts or

Version: v1.4.2.1 (bce6609) 96

http://logstash.net/docs/latest/filters/useragent
http://logstash.net/docs/latest/filters/geoip

Chapter 5: Filtering Events with Logstash

gathered together to produce useful metrics in Chapter 6.

Postfix Logs
Now our Apache logs are pouring into Logstash we need to move onto our next
target: Postfix mail server logs. Unfortunately, unlike Apache logs, we can't cus-
tomize the Postfix log output. We're going to need to use our first filter plugins
to parse the Postfix events to make them more useful to us. Let's start by looking
at a Postfix log entry:

Listing 5.11: A Postfix log entry

Dec 24 17:01:03 localhost postfix/smtp[20511]: F31B56FF99: to=<↩
james@lovedthanlost.net>, relay=aspmx.l.google.com[2607:f8b0↩
:400e:c01::1b]:25, delay=1.2, delays=0.01/0.01/0.39/0.84, dsn↩
=2.0.0, status=sent (250 2.0.0 OK 1356368463 np6si20817603pbc↩
.299)

This log entry is for a sent email and there's quite a lot going on in it with plenty
of potential information that we might want to use. Adding it to Logstash in its
current form, however, will result in all this information being pushed into the
message field as we can see here with a similar event:

Version: v1.4.2.1 (bce6609) 97

Chapter 5: Filtering Events with Logstash

Listing 5.12: Unfiltered Postfix event

{
"message" => "Aug 31 01:18:55 smoker postfix/smtp[25873]: 2↩
B238121203: to=<james@example.com>, relay=aspmx.l.google.com↩
[74.125.129.27]:25, delay=3.5, delays=0.05/0.01/0.47/3, dsn↩
=2.0.0, status=sent (250 2.0.0 OK 1377911935 tp5si709880pac↩
.251 - gsmtp)",

"@timestamp" => "2013-08-31T01:29:42.416Z",
"@version" => "1",
"type" => "postfix",
"host" => "smoker.example.com",
"path" => "/var/log/mail.log"

}

Yep, that's not particularly helpful to us so let's do some basic filtering with
Logstash to extract some of that useful information.

Our first filter
For our Postfix logs we're going to do our filtering on the remote agent host so
we're sending clean json codec logs to the central Logstash server. To do this we're
going to introduce our first filter plugin: grok. The grok filter plugin parses
arbitrary text and structures it. It does this using patterns which are packaged
regular expressions. As not everyone is a regular expression ninja1 Logstash ships
with a large collection: 120 patterns at the time of writing - of pre-existing patterns
that you can use. If needed, it is also very easy to write your own.

NOTE You can find the full list of built-in patterns in Logstash here.

1And stop calling people 'ninjas' anyway everyone.

Version: v1.4.2.1 (bce6609) 98

https://github.com/logstash/logstash/tree/master/patterns

Chapter 5: Filtering Events with Logstash

Firstly, let's collect our Postfix log entries. We're going to use our smoker.↩
example.com host which runs Ubuntu and the Logstash agent so we can add a
file input plugin like so to our shipper.conf:

Listing 5.13: File input for Postfix logs

input {
file {
type => "postfix"
path => ["/var/log/mail.*"]

}
}

Here we're grabbing all log files from the /var/log directory that match the glob:
mail.*.
Now let's add a grok filter to filter these incoming events:

Listing 5.14: Postfix grok filter

filter {
if [type] == "postfix" {
grok {
match => ["message", "%{SYSLOGBASE}"]
add_tag => ["postfix", "grokked"]

}
}

}

We've added a grok filter to our filter block. We've first specified a conditional
that matches the type with a value of postfix. This is really important to our
filtering process because a filter should generally only match those events for
which it's relevant. So in our case only those events with a type of postfix will
be processed by this filter. All other events will ignore the filter and move on.

Version: v1.4.2.1 (bce6609) 99

Chapter 5: Filtering Events with Logstash

NOTE You can see a full list of the grok filter's options here.

We've next specified the match option which does the hard work of actually
"grokking" our log event:

Listing 5.15: The grok pattern for Postfix logs

match => ["message", "%{SYSLOGBASE}"]

Patterns are designed to match and extract specific data from your logs to create
data structures from unstructured log strings. They are constructed of regular
expressions and structured like so:

Listing 5.16: The syntax and the semantic

%{syntax:semantic}

The syntax is the name of the pattern, for example SYSLOGBASE, being used in the
match. The semantic is optional and is an identifier for any data matched by the
pattern (think of it like assigning a value to a variable).
For our pattern we've used one of Logstash's built-in patterns: SYSLOGBASE. Let's
look at the content of this pattern which we can find here:

Listing 5.17: The SYSLOGBASE pattern

SYSLOGBASE %{SYSLOGTIMESTAMP:timestamp} (?:%{SYSLOGFACILITY})?%{↩
SYSLOGHOST:logsource} %{SYSLOGPROG}:

NOTE Again you can find the full list of built-in patterns in Logstash here.

Version: v1.4.2.1 (bce6609) 100

http://www.logstash.net/docs/latest/filters/grok
https://github.com/logstash/logstash/blob/master/patterns/grok-patterns
https://github.com/logstash/logstash/tree/master/patterns

Chapter 5: Filtering Events with Logstash

Each pattern starts with a name, which is the syntax we saw above. It is then
constructed of either other patterns or regular expressions. If we drill down into
the patterns that make up SYSLOGBASE we'll find regular expressions at their core.
Let's look at one of the patterns in SYSLOGBASE:

Listing 5.18: The SYSLOGPROG pattern

SYSLOGPROG %{PROG:program}(?:\[%{POSINT:pid}\])?

More patterns! We can see the SYSLOGPROG pattern is made up of two new patterns:
PROG which will save any match as program and POSINTwhich will save any match
as pid. Let's see if we can drill down further in the PROG pattern:

Listing 5.19: The PROG pattern

PROG (?:[\w._/%-]+)

Ah ha! This new pattern is an actual regular expression. It matches the Syslog
program, in our event the postfix/smtp, portion of the log entry. This, combined
with the POSINT pattern, will match the program and the process ID from our
event and save them both as program and pid respectively.
So what happens when a match is made for the whole SYSLOGBASE pattern? Let's
look at the very start of our Postfix log event.

Listing 5.20: Postfix date matching

Aug 31 01:18:55 smoker postfix/smtp[25873]:

Logstash will apply the pattern to this event. First matching the date portion of
our event with the SYSLOGTIMESTAMP pattern and saving the value of that match
to timestamp. It will then try to match the SYSLOGFACILITY, SYSLOGHOST and
SYSLOGPROG patterns and, if successful, save the value of each match too.
So now these havematched what's next? We know Logstash has managed tomatch
some data and saved that data. What does it now do with that data? Logstash

Version: v1.4.2.1 (bce6609) 101

Chapter 5: Filtering Events with Logstash

will take each match and create a field named for the semantic, for example in
our current event timestamp, program and pid would all become fields added to
the event.
The semantic field will be saved as a string by default. If you wanted to change
the field type, for example if you wish to use the data for a calculation, you can
add a suffix to the pattern to do so. For example to save a semantic as an integer
we would use:

Listing 5.21: Converting semantic data

%{POSINT:PID:int}

Currently the only supported conversions are int for converting to integers and
float for converting to a float.
Let's see what happens when the SYSLOGBASE pattern is used to grok our Postfix
event. What fields does our event contain?

Listing 5.22: The Postfix event's fields

{
. . .
"timestamp"=> "Aug 31 01:18:55",
"logsource"=> "smoker",
"pid"=> "25873",
"program"=> "postfix/smtp",
. . .

}

NOTE If you don't specify a semantic then a corresponding field will not be au-
tomatically created. See the named_captures_only option for more information.

Now instead of an unstructured line of text we have a structured set of fields that

Version: v1.4.2.1 (bce6609) 102

Chapter 5: Filtering Events with Logstash

contain useful data from the event that we can use.
Now let's see our whole Postfix event after it has been grokked:

Listing 5.23: A fully grokked Postfix event

{
"host" => "smoker.example.com",
"path" => "/var/log/mail.log",
"tags" => ["postfix", "grokked"],
"timestamp" => "Aug 31 01:18:55",
"logsource" => "smoker",
"pid" => "25873",
"program" => "postfix/smtp",
"@timestamp" => "2013-08-31T01:18:55.831Z",
"@version" => "1",
"message" => "Aug 31 01:18:55 smoker postfix/smtp[25873]: 2↩
B238121203: to=<james@example.com>, relay=aspmx.l.google.com↩
[74.125.129.27]:25, delay=3.5, delays=0.05/0.01/0.47/3, dsn↩
=2.0.0, status=sent (250 2.0.0 OK 1377911935 tp5si709880pac↩
.251 - gsmtp)",

"type" => "postfix"
}

Our grokked event also shows the result of another option we've used in the grok↩
filter: add_tag. You see the tags field now has two tags in it: postfix and
grokked.

TIP You can remove tags from events using the remove_tag option.

Now we've seen a very basic example of how to do filtering with Logstash. What
if we want to do some more sophisticated filtering using filters we've written
ourselves?

Version: v1.4.2.1 (bce6609) 103

Chapter 5: Filtering Events with Logstash

Adding our own filters
So now we've got some data from our Postfix log event but there is a lot more
useful material we can get out. So let's start with some information we often want
from our Postfix logs: the Postfix component that generated it, the Process ID and
the Queue ID. All this information is contained in the following segment of our
Postfix log event:

Listing 5.24: Partial Postfix event

postfix/smtp[25873]: 2B238121203:

So how might we go about grabbing this information? Well, we've had a look
at the existing patterns Logstash provides and they aren't quite right for what we
need so we're going to add some of our own.
There are two ways to specify new patterns:

• Specifying new external patterns from a file, or
• Using the named capture regular expression syntax.

Let's look at external patterns first.

Adding external patterns

We add our own external patterns from a file. Let's start by creating a directory
to hold our new Logstash patterns:

Listing 5.25: Creating the patterns directory

$ sudo mkdir /etc/logstash/patterns

Now let's create some new patterns and put them in a file called /etc/logstash↩
/patterns/postfix. Here are our new patterns:

Version: v1.4.2.1 (bce6609) 104

Chapter 5: Filtering Events with Logstash

Listing 5.26: Creating new patterns

COMP ([\w._\/%-]+)
COMPID postfix\/%{COMP:component}(?:\[%{POSINT:pid}\])?
QUEUEID ([0-9A-F]{,11})
POSTFIX %{SYSLOGTIMESTAMP:timestamp} %{SYSLOGHOST:hostname} %{↩
COMPID}: %{QUEUEID:queueid}

Each pattern is relatively simple and each pattern builds upon the previous pat-
terns. The first pattern COMP grabs the respective Postfix component, for example
smtp, smtpd or qmgr. We then use this pattern inside our COMPID pattern. In the
COMPID pattern we also use one of Logstash's built-in patterns POSINT or "positive
integer," which matches on any positive integers, to return the process ID of the
event. Next we have the QUEUEID pattern which matches the Postfix queue ID,
which is an up to 11 digit hexadecimal value.

TIP If you write a lot of Ruby regular expressions you may find Rubular really
useful for testing them.

Lastly, we combine all the previous patterns in a new pattern called POSTFIX.
Now let's use our new external patterns in the grok filter.

Listing 5.27: Adding new patterns to grok filter

if [type] == "postfix" {
grok {
patterns_dir => ["/etc/logstash/patterns"]
match => ["message", "%{POSTFIX}"]
add_tag => ["postfix", "grokked"]

}
}

Version: v1.4.2.1 (bce6609) 105

http://rubular.com/

Chapter 5: Filtering Events with Logstash

You can see we've added the patterns_dir option which tells Logstash to look
in that directory and load all the patterns it finds in there. We've also specified
our new pattern, POSTFIX, which will match all of the patterns we've just created.
Let's look at our Postfix event we've parsed with our new pattern.

Listing 5.28: Postfix event grokked with external patterns

{
"host" => "smoker.example.com",
"path" => "/var/log/mail.log",
"tags" => ["postfix", "grokked"],
"timestamp" => "Aug 31 01:18:55",
"hostname" => "smoker",
"component" => "smtp",
"pid" => "25873",
"queueid" => "2B238121203",
"@timestamp" => "2013-08-31T01:18:55.361Z",
"@version" => "1",
"message" => "Aug 31 01:18:55 smoker postfix/smtp[25873]: 2↩
B238121203: to=<james@example.com>, relay=aspmx.l.google.com↩
[74.125.129.27]:25, delay=3.5, delays=0.05/0.01/0.47/3, dsn↩
=2.0.0, status=sent (250 2.0.0 OK 1377911935 tp5si709880pac↩
.251 - gsmtp)",

"type" => "postfix"
}

We can see we've got new fields in the event: component, and queueid.

Using named capture to add patterns

Now let's look at the named capture syntax. It allows you to specify pattern inline
rather than placing them in an external file. Let's take an example using our
pattern for matching the Postfix queue ID.

Version: v1.4.2.1 (bce6609) 106

Chapter 5: Filtering Events with Logstash

Listing 5.29: A named capture for Postfix's queue ID

(?<queueid>[0-9A-F]{,11})

The named capture looks like a regular expression, prefixed with the name of the
field we'd like to create from this match. Here we're using the regular expression
[0-9A-F]{,11} to match our queue ID and then storing that match in a field called
queueid.
Let's see how this syntax would look in our grok filter replacing all our external
patterns with named captures.

Listing 5.30: Adding new named captures to the grok filter

if [type] == "postfix" {
grok {
match => ["message", "%{SYSLOGTIMESTAMP:timestamp} %{↩
SYSLOGHOST:hostname} postfix\/(?<component>[\w._\/%-]+)↩
(?:\[%{POSINT:pid}\]): (?<queueid>[0-9A-F]{,11})"]

add_tag => ["postfix", "grokked"]
}

}

We've used three built-in patterns and our new named capture syntax to create
two new patterns: component and queueid. When executed, this grok filter would
create the same fields as our external patterns did:

Version: v1.4.2.1 (bce6609) 107

Chapter 5: Filtering Events with Logstash

Listing 5.31: Postfix event filtered with named captures

{
. . .
"timestamp"=> "Aug 31 01:18:55",
"hostname"=> "smoker",
"component"=> "smtp",
"pid"=> "25873",
"queueid"=> "2B238121203"
. . .

}

TIP If your pattern fails to match an event then Logstash will add the tag
_grokparsefailure to the event. This indicates that your event was tried against
the filter but failed to parse. There are two things to think about if this occurs.
Firstly, should the event have been processed by the filter? Check that the event
is one you wish to grok and if not ensure the correct type, tags or field matching is
set. Secondly, if the event is supposed to be grokked, test your pattern is working
correctly using a tool like the GrokDebugger written by Nick Ethier or the grok
binary that ships with the Grok application.

Extracting from different events
We've now extracted some useful information from our Postfix log event but look-
ing at some of the other events Postfix generates there's a lot more we could
extract. Thus far we've extracted all of the common information Postfix events
share: date, component, queue ID, etc. But Postfix events each contain differ-
ent pieces of data that we're not going to be able to match with just our current
pattern. Compare these two events:

Version: v1.4.2.1 (bce6609) 108

http://grokdebug.herokuapp.com/
https://twitter.com/nickethier
https://github.com/jordansissel/grok
https://github.com/jordansissel/grok

Chapter 5: Filtering Events with Logstash

Listing 5.32: Postfix event

Dec 26 10:45:01 localhost postfix/pickup[27869]: 841D26FFA8: uid↩
=0 from=<root>

Dec 26 10:45:01 localhost postfix/qmgr[27370]: 841D26FFA8: from=<↩
root@smoker>, size=336, nrcpt=1 (queue active)

They both share the initial items we've matched but have differing remaining
content. In order to match both these events we're going to adjust our approach a
little and use multiple grok filters. To do this we're going to use one of the pieces
of data we have already: the Postfix component. Let's start by adjusting the grok
filter slightly:

Listing 5.33: Updated grok filter

if [type] == "postfix" {
grok {
patterns_dir => ["/etc/logstash/patterns"]
match => ["message", "%{POSTFIX}"]
add_tag => ["postfix", "grokked", "%{[component]}"]

}
}

You'll note we've added an additional tag, %{[component]}. This syntax allows us
to add the value of any field as a tag. In this case if the two log lines we've just
seen were processed then they'd result in events tagged with:

Listing 5.34: Postfix component tagged events

"tags"=> ["postfix", "grokked", "pickup"]
"tags"=> ["postfix", "grokked", "qmgr"]

Logstash calls this %{field} syntax its sprintf format. This format allows you to
refer to field values from within other strings.

Version: v1.4.2.1 (bce6609) 109

Chapter 5: Filtering Events with Logstash

TIP You can find full details on this syntax here.

You can also refer to nested fields using this syntax, for example:

Listing 5.35: Nested field syntax

{
"component" => {
"pid" => "12345"
"queueid" => "ABCDEF123456"

}
}

If we wanted to refer to the pid in this nested event we would use, %{[component↩
][pid]}.

TIP For top-level fields you can omit the surrounding square brackets if you
wish, for example %component.

Next we're going to add a new grok filter to process a specific Postfix component
in our case qmgr:

Listing 5.36: A grok filter for qmgr events

grok {
tags => "qmgr"
patterns_dir => ["/etc/logstash/patterns"]
match => ["message", "%{POSTFIXQMGR}"]

}

Version: v1.4.2.1 (bce6609) 110

http://www.logstash.net/docs/latest/configuration

Chapter 5: Filtering Events with Logstash

This matches any event tagged with qmgr and matches the message against the
POSTFIXQMGR pattern. Let's look at our /etc/logstash/patterns/postfix file
now:

Listing 5.37: The /etc/logstash/patterns/postfix file

COMP ([\w._\/%-]+)
COMPPID postfix\/%{COMP:component}(?:\[%{POSINT:pid}\])?
QUEUEID ([A-F0-9]{5,15}{1})
EMAILADDRESSPART [a-zA-Z0-9_.+-=:]+
EMAILADDRESS %{EMAILADDRESSPART:local}@%{EMAILADDRESSPART:remote↩
}

POSTFIX %{SYSLOGTIMESTAMP:timestamp} %{SYSLOGHOST:hostname} %{↩
COMPPID}: %{QUEUEID:queueid}

POSTFIXQMGR %{POSTFIX}: (?:removed|from=<(?:%{EMAILADDRESS:from↩
})?>(?:, size=%{POSINT:size}, nrcpt=%{POSINT:nrcpt} \(%{↩
GREEDYDATA:queuestatus}\))?)

You can see we've added some new patterns to match email addresses and our
POSTFIXQMGR pattern to match our qmgr log event. The POSTFIXQMGR pattern uses
our existing POSTFIX pattern plus adds patterns for the fields we expect in this log
event. The tags field and remaining fields of the resulting event will look like:

Version: v1.4.2.1 (bce6609) 111

Chapter 5: Filtering Events with Logstash

Listing 5.38: A partial filtered Postfix event

{
. . .
"tags" => ["postfix", "grokked", "qmgr"],
"timestamp" => "Dec 26 20:25:01",
"hostname" => "localhost",
"component" => "qmgr",
"pid" => "27370",
"queueid" => "D1BDA6FFA8",
"from" => "root@smoker",
"local" => "root",
"remote" => "smoker",
"size" => "336",
"nrcpt" => "1",
"queuestatus" => "queue active"
. . .

}

You can see we've now got all of the useful portions of our event neatly stored in
fields that we can query and work with. From here we can easily add other grok
filters to process the other types of Postfix events and parse their data.

Setting the timestamp
We've extracted much of the information contained in our Postfix log event but
you might have noticed one thing: the timestamp. You'll notice we're extracting a
timestamp from our event using the SYSLOGTIMESTAMP pattern which matches data
like Dec 24 17:01:03 and storing it as a field called timestamp. But you'll also
note that each event also has a @timestamp value and that they are often not the
same! So what's happening here? The first timestamp is when the event actually
occurred on our host and the second @timestamp is when Logstash first processed
the event. We clearly want to ensure we use the first timestamp to ensure we

Version: v1.4.2.1 (bce6609) 112

Chapter 5: Filtering Events with Logstash

know when events occurred on our hosts.
We can, however, reconcile this difference using another filter plugin called date.
Let's add it to our configuration after the grok filter.

Listing 5.39: The date filter

if [type] == "postfix" {
grok {
patterns_dir => ["/etc/logstash/patterns"]
match => ["message", "%{POSTFIX}"]
add_tag => ["postfix", "grokked"]

}
date {
match => ["timestamp", "MMM dd HH:mm:ss", "MMM d HH:mm:ss↩
"]

add_tag => ["dated"]
}

}

We can see our new date filter. We've specified the match option with the name
of the field from which we want to create our time stamp: the timestamp field we
created in the grok filter. To allow Logstash to parse this timestamp we're also
specifying the date format of the field. In our case we've matched against two
date formats: MMM dd HH:mm:ss and MMM d HH:mm:ss. These two formats cover the
standard Syslog log format and will match our incoming data, Dec 24 17:01:03.
The date matching uses Java's Joda-Time library and you can see the full list of
possible values here.
When the date filter runs it will replace the contents of the existing @timestamp
field with the contents of the timestamp field we've extracted from our event.

NOTE You can see a full list of the date filter's options here.

Version: v1.4.2.1 (bce6609) 113

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://www.logstash.net/docs/latest/filters/date

Chapter 5: Filtering Events with Logstash

We're also adding a tag dated to the event. You'll note we keep adding tags to
events as they are filtered. I find this a convenient way to track what filtering or
changes have occurred to my event. I can then tell at a glance which events have
been changed and what has been done to them.
After performing this filtering, we can see that the timestamps on our events are
now in sync and correct.

Listing 5.40: Postfix event timestamps

{
. . .
"timestamp" => "Dec 24 17:01:03",
"@timestamp" =>"2012-12-24T17:01:03.000Z",
. . .

}

Before we move on let's visually examine what Logstash's workflow is for our
Postfix events:

Version: v1.4.2.1 (bce6609) 114

Chapter 5: Filtering Events with Logstash

Figure 5.3: Postfix log filtering workflow

With this final piece our Postfix logs are now largely under control and we can
move onto our final log source.

Filtering Java application logs
We've got one last data source we need to look at in this chapter: our Java applica-
tion logs. We're going to start with our Tomcat servers. Let's start with inputting
our Tomcat events which we're going to do via the file input plugin..

Version: v1.4.2.1 (bce6609) 115

Chapter 5: Filtering Events with Logstash

Listing 5.41: File input for Tomcat logs

file {
type => "tomcat"
path => ["/var/log/tomcat6/catalina.out"]

}

Using this input we're collecting all the events from the /var/log/tomcat6/↩
catalina.out log file. Let's look at some of the events available.

Listing 5.42: A Tomcat log entry

Dec 27, 2012 3:51:41 AM jenkins.InitReactorRunner$1 onAttained
INFO: Completed initialization,

These look like fairly typical log entries that we'll be able to parse and make use
of but looking into the log file we also find that we've got a number of stack traces
and a number of blank lines too. The stack traces are multi-line events that we're
going to need to parse into one event. We're also going to want to get rid of those
blank lines rather than have them create blank events in Logstash. So it looks like
we're going to need to do some filtering.

Handling blank lines with drop
First we're going to use a new filter called drop to get rid of our blank lines.
The drop filter drops events when a specific regular expression match is made.
Let's look at a drop filter in combination with Logstash's conditional configuration
syntax for removing blank lines:

NOTE In previous Logstash releases we'd have used the grep filter to perform
this same action. This filter is now community managed and does not ship with
Logstash.

Version: v1.4.2.1 (bce6609) 116

https://github.com/elasticsearch/logstash-contrib

Chapter 5: Filtering Events with Logstash

Listing 5.43: A drop filter for blank lines

if [type] == "tomcat" and [message] !~ /(.+)/ {
drop { }

}

Here we're matching events with a type of tomcat to ensure we parse the right
events. We're also using a regular expression match on the message field. For
this match we're ensuring that the message field isn't empty. So what happens to
incoming events?

• If the event does not match, i.e. the message field is not empty, then the
event is ignored.

• If the event does match, i.e. the message field is empty then the event is
passed to the drop filter and dropped.

The conditional syntax is very simple and useful for controlling the flow of events
and selecting plugins to be used for selected events. It allows for the typical
conditional if/else if/else statements, for example:

Version: v1.4.2.1 (bce6609) 117

Chapter 5: Filtering Events with Logstash

Listing 5.44: Examples of the conditional syntax

if [type] == "apache" {
grok {
. . .

}
} else if [type] != "tomcat" {

grok {
. . .

}
} else {

drop { }
}

Each conditional expression supports a wide variety of operators, here we've used
the equal and not equal (== and !=) operators, but also supported are regular
expressions and in inclusions.

Listing 5.45: Conditional inclusion syntax

if "security" in [tags] {
grok {

. . .
}

}

Here we've looked inside the tags array for the element security and passed the
event to the grok plugin if it's found.
And as we've already seen conditional expressions allow and statements as well as
or, xand and xor statements.
Finally we can group conditionals by using parentheses and nest them to create
conditional hierarchies.

Version: v1.4.2.1 (bce6609) 118

Chapter 5: Filtering Events with Logstash

TIP We'll see conditional syntax a few more times in the next couple of chapters
as we filter and output events. You can find full details of their operations here.

Handling multi-line log events
Next in our logs we can see a number of Java exception stack traces. These are
multi-line events but currently Logstash is parsing each line as a separate event.
That makes it really hard to identify which line belongs to which exception and
make use of the log data to debug our issues. Thankfully Logstash has considered
this problem and we have a way we can combine the disparate events into a single
event.
To do this we're going to build some simple regular expression patterns combined
with a special codec called multiline. Codecs are used inside other plugins to
handle specific formats or codecs, for example the JSON event format Logstash
itself uses is a codec. Codecs allow us to separate transports, like Syslog or Redis,
from the serialization of our events. Let's look at an example for matching our
Java exceptions as raised through Tomcat.

Listing 5.46: Using the multiline codec for Java exceptions

file {
type => "tomcat"
path => ["/var/log/tomcat6/catalina.out"]
codec => multiline {
pattern => "(^\d+\serror)|(^.+Exception: .+)|(^\s+at .+)|(^\↩
s+... \d+ more)|(^\s*Caused by:.+)"

what => "previous"
}

}

Version: v1.4.2.1 (bce6609) 119

http://www.logstash.net/docs/latest/configuration

Chapter 5: Filtering Events with Logstash

NOTE You can see a full list of the available codecs here.

With this file plugin containing the multiline codec we're gathering all events
in the catalina.out log file. We're then running these events through the
multiline codec. The pattern option provides a regular expression for matching
events that contain stack trace lines. There are a few variations on what these
lines look like so you'll note we're using the | (which indicates OR) symbol to
separate multiple regular expressions. For each incoming event Logstash will try
to match the message line with one of these regular expressions.
If the line matches any one of the regular expressions, Logstash will then merge
this event with either the previous or next event. In the case of our stack traces
we know we want to merge the event with the event prior to it. We configure this
merge by setting the what option to previous.

NOTE Any event that gets merged will also have a tag added to it. By default
this tag is multiline but you can customize this using the multiline_tag option
of the codec.

Let's see an example of the multiline codec in action. Here are two events that
are part of a larger stack trace. This event:

Listing 5.47: A Java exception

1) Error injecting constructor, java.lang.NoClassDefFoundError: ↩
hudson/plugins/git/browser/GitRepositoryBrowser at hudson.↩
plugins.backlog.BacklogGitRepositoryBrowser$DescriptorImpl.<↩
init>(BacklogGitRepositoryBrowser.java:104)

Followed by this event:

Version: v1.4.2.1 (bce6609) 120

http://www.logstash.net/docs/latest/

Chapter 5: Filtering Events with Logstash

Listing 5.48: Another Java exception

1 error
at com.google.inject.internal.ProviderToInternalFactoryAdapter.↩
get(ProviderToInternalFactoryAdapter.java:52)

...

When these events are processed by the multiline codec they will match one of
the regular expression patterns and be merged. The resulting event will have a
message field much like:

Listing 5.49: A multiline merged event

message => "Error injecting constructor, java.lang.↩
NoClassDefFoundError: hudson/plugins/git/browser/↩
GitRepositoryBrowser at hudson.plugins.backlog.↩
BacklogGitRepositoryBrowser$DescriptorImpl.<init>(↩
BacklogGitRepositoryBrowser.java:104)\n1 error at com.google.↩
inject.internal.ProviderToInternalFactoryAdapter.get(↩
ProviderToInternalFactoryAdapter.java:52). . ."

tags => ['multiline']

Further events that appear to be part of the same trace will continue to be merged
into this event.

Grokking our Java events
Now we've cleaned up our Tomcat log output we can see what useful data we can
get out of it. Let's look at our Java exception stack traces and see if we can extract
some more useful information out of them using grok.
Handily there's a built-in set of patterns for Java events so let's build a grok filter
that uses them:

Version: v1.4.2.1 (bce6609) 121

https://github.com/logstash/logstash/blob/master/patterns/java

Chapter 5: Filtering Events with Logstash

Listing 5.50: A grok filter for Java exception events

if [type] == "tomcat" and "multiline" in [tags] {
grok {
match => ["message", "%{JAVASTACKTRACEPART}"]

}
}

Our new grok filter will be executed for any events with a type of tomcat↩
and with the tag of multiline. In our filter we've specified the built-in pattern
JAVASTACKTRACEPART which tries to match classes, methods, file name and line
numbers in Java stack traces.
Let's see what happens when we run the stack trace we just merged through the
grok filter. Our message field is:

Listing 5.51: Our Java exception message

message => "Error injecting constructor, java.lang.↩
NoClassDefFoundError: hudson/plugins/git/browser/↩
GitRepositoryBrowser at hudson.plugins.backlog.↩
BacklogGitRepositoryBrowser$DescriptorImpl.<init>(↩
BacklogGitRepositoryBrowser.java:104)\n1 error at com.google.↩
inject.internal.ProviderToInternalFactoryAdapter.get(↩
ProviderToInternalFactoryAdapter.java:52). . ."

Adding our grok filter we get the following fields:

Version: v1.4.2.1 (bce6609) 122

Chapter 5: Filtering Events with Logstash

Listing 5.52: Grokked Java exception

{
. . .
"class"=> "com.google.inject.internal.↩
ProviderToInternalFactoryAdapter",

"method"=> "get",
"file"=> "ProviderToInternalFactoryAdapter.java",
"line"=> "52",
. . .

}

Let's look at our final Logstash filtering workflow for our Tomcat log events:

Version: v1.4.2.1 (bce6609) 123

Chapter 5: Filtering Events with Logstash

Figure 5.4: Tomcat log event workflow
We can see that we've added some useful fields with which to search or identify
specific problem pieces of code. The combination of our stack trace events, this
data and the ability centrally review all Tomcat logs will make it much easier for
the teams that manage these applications to troubleshoot problems.

Version: v1.4.2.1 (bce6609) 124

Chapter 5: Filtering Events with Logstash

TIP All the filters in Logstash currently executes as a `worker` model. Each
worker receives an event and applies all filters, in order, before sending that event
to the output plugins. If you are doing intensive filtering or discover that filtering
is a bottleneck in your environment you can add additional workers by starting
Logstash with the `-w` flag. You can specify the number of workers you wish to
run, for example for 5 workers specify `-w 5`.

Parsing an in-house custom log format
All of the log entries we've seen up until now have been fairly standard or at
least from applications that are commonly used: Apache, Postfix and Java. What
happens if you have a custom application with a log format that is unusual or
esoteric?
We're going to build a Grok filter for an in-house application called Alpha that is
managed by your internal application support team. Alpha is used by the Finance
team at Example.com and its log format does not match anything you've seen
before. Let's look at an Alpha log entry:

Listing 5.53: Alpha log entry

1388290083+EST The Alpha server has terminated /opt/alpha/server/↩
start.vb#134 ALF13-36B AlphaApp/2.4.5a/QA Release

1388290083+EST The Alpha server has started /opt/alpha/server/start.↩
vb#156 ALF13-3AA AlphaApp/2.4.5a/QA Release

1388290084+EST Alpha logging has initiated /opt/alpha/logging/log.vb↩
#14 ALF02-11F AlphaApp/2.4.5a/QA Release

You don't know much about the application but you can extrapolate a bit from the
log entries you can see. Firstly, you've got a timestamp. It appears to be seconds
since epoch also known as Unix time with what looks like a time zone suffixed to
it. We've also got a series of log messages, what looks to be the file and line that

Version: v1.4.2.1 (bce6609) 125

http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time

Chapter 5: Filtering Events with Logstash

generated the message, a log entry ID and some application identification data.
The application support team tell you that in order to troubleshoot Alpha they
need:

• The timestamp.
• The log message.
• The ID of the message.
• The file and line number that generated the error.
• The name of the application.
• The version of the application.
• The release of the application.
• They also want to have a field called environment created and set to QA if
the application is a QA release.

So we know we need to design a Grok filter that will extract this information from
our log entries and potentially some other filters to manipulate this data further.
So firstly we're going to collect our Alpha log entries. We're going to use our
smoker.example.com host which runs Ubuntu and the Logstash agent so we can
just add a new file input plugin like so to our shipper.conf:

Listing 5.54: File input for our Alpha logs

input {
file {
type => "alpha"
path => ["/opt/alpha/logs/alpha.log"]
tags => ["alpha", "finance"]

}
}

Here we're grabbing entries from the /opt/alpha/logs/alpha.log log file. We're
marking those entries with a type of alpha and tagging them with the tags alpha
and finance. The tags will help us keep our log entries in order and make parsing
decisions later on.

Version: v1.4.2.1 (bce6609) 126

Chapter 5: Filtering Events with Logstash

We know nowwe've got these logs that we need to add a grok filter to actually turn
our log entry into a usable event. Let's look a single entry and start to construct
a regular expression that will provide our application support team with the data
they need.

Listing 5.55: Single Alpha log entry

1388290083+0200 The Alpha server has terminated /opt/alpha/server/↩
start.vb#134 ALF13-36B AlphaApp/2.4.5a/QA Release

To extract the data we need in our Grok filter we're going to use a mix of inbuilt
patterns and the named capture capability. We saw named captures earlier in
this chapter. They allow you to specify a field name and a regular expressions to
extract that field from the log entry.

TIP I also strongly recommend making use of regular expression tools like Rubu-
lar and the incredibly useful Grok debugger to construct your Grok filters.

Let's look at a Grok filtering statement I've prepared for our Alpha log entry al-
ready.

Listing 5.56: A Grok regular expression for Alpha

(?<timestamp>[\d]+)\+(?<tz>[\w]{3})\s(?<msg>.*)\s%{UNIXPATH:file}\#↩
%{POSINT:line}\s%{GREEDYDATA:id}\s%{WORD:appname}\/(?<appver>[\d.\d↩
.\d\w]+)\/(?<apprelease>[\w\s]+)

I constructed this line by placing my sample log entry into the Grok debugger and
then slowly constructing each field using named capture regular expressions or
patterns as you can see here:

Version: v1.4.2.1 (bce6609) 127

http://rubular.com/
http://rubular.com/
http://grokdebug.herokuapp.com/
http://grokdebug.herokuapp.com/

Chapter 5: Filtering Events with Logstash

Figure 5.5: The Grok debugger at work
Shortly we'll be using this statement as the expression portion of the match option
of a grok filter. In the expression we can see that we've worked through the Alpha
log entry and we're extracting the following fields:

• timestamp - The Unix epoch timestamp
• tz - The timezone
• msg - The application log message
• file - The file that generated it
• line - The line of the file
• id - The log entry ID
• appname - The name of the application logging
• appver - The version of the application
• apprelease - The release of the application

Each field is generated using either an existing pattern or a named capture. For
example the appname field is generated using the WORD pattern, %{WORD:appname}.

Version: v1.4.2.1 (bce6609) 128

Chapter 5: Filtering Events with Logstash

Whilst the appver field is matched using a named capture: (?<appver>[\d.\d↩
.\d\w]+).
Now let's add a grok filter with our Alpha match to filter these incoming events:

Listing 5.57: Alpha grok filter

filter {
if [type] == "alpha" {
grok {
match => ["message", "(?<timestamp>[\d]+)\+(?<tz>[\w]{3})↩
\s(?<msg>.*)\s%{UNIXPATH:file}\#%{POSINT:line}\s%{↩
GREEDYDATA:id}\s%{WORD:appname}\/(?<appver>[\d.\d.\d\w]+)↩
\/(?<apprelease>[\w\s]+)"]

add_tag => ["grokked"]
}

}
}

We've added another grok filter to our filter block. We've first specified a con-
ditional matching the type with a value of alpha. This will ensure our grok filter
only matches on Alpha-related events. We've then specified the grok filter with
the match option which matches a field of our log entry, here the default message
field, with the expression we've just created.
But we're not quite finished yet. We know we've got a Unix epoch timestamp and
we'd like to make sure our event's @timestamp uses the right time. So let's add a
date filter to our filter block.

Version: v1.4.2.1 (bce6609) 129

Chapter 5: Filtering Events with Logstash

Listing 5.58: Alpha date filter

filter {
if [type] == "alpha" {
grok {
. . .

}
date {
match => ["timestamp", "UNIX"]
timezone => tz
add_tag => ["dated"]

}
}

}

Here we're specified date filter and told it to update the @timestamp field to the
value from the timestamp field. We've specified UNIX to indicate the timestamp
field is in Unix epoch time and we're also taking into consideration the timezone
we've extracted from the log entry. We've also added the tag dated to our event
to indicate we updated the @timestamp.
Next we also need to create our new environment field. This field will have a
value of qa if the application is a QA release or production if not. We're going to
use another conditional, this one nested, to achieve this.

Version: v1.4.2.1 (bce6609) 130

Chapter 5: Filtering Events with Logstash

Listing 5.59: Alpha environment field

filter {
if [type] == "alpha" {
grok {
. . .

}
date {
...
}
if [apprelease] == "QA Release" {
mutate {
add_field => ["environment", "qa"]

}
else {
mutate {
add_field => ["environment", "production"]

}
}

}
}

You can see that we've nested another conditional inside our existing statement.
We're testing to see if the apprelease field has a value of QA Release. If it does
we're using a new filter called mutate that allows you to change the content of
fields: convert their type, join/split fields, gsub field names amongst other capa-
bilities. The mutate filter will add a new field called environment with a value of
qa. If the apprelease field has any other value then the environment field will be
set to production.
Finally, we've had some complaints from the application support team that the
line number of the file that generated the error isn't an integer. This makes some
of their debugging tools break. So we need to ensure that the line field has a type
of integer. To do this we can again use the mutate filter.

Version: v1.4.2.1 (bce6609) 131

http://logstash.net/docs/latest/filters/mutate
http://logstash.net/docs/latest/filters/mutate

Chapter 5: Filtering Events with Logstash

Listing 5.60: Setting the line field to an integer

filter {
if [type] == "alpha" {
. . .
mutate {
convert => ["line", "integer"]

}
}

}

You can see that we've specified the mutate filter again and used the convert
option to convert the line field into an integer.
Now when we run Logstash we should start to see our Alpha log events rendered
in a format that our application support team can use. Let's look at a filtered Alpha
log entry now.

Version: v1.4.2.1 (bce6609) 132

Chapter 5: Filtering Events with Logstash

Listing 5.61: A filtered Alpha event

{
. . .
@timestamp => "Sun, 29 Dec 2013 04:08:03",
"tags" => ["alpha", "grokked", "finance", "dated"],
"timestamp" => "1388290083",
"tz" => "EST",
"msg" => "The Alpha server has terminated",
"file" => "/opt/alpha/server/start.vb",
"line" => 134,
"id" => "ALF13-36B",
"appname" => "AlphaApp",
"appver" => "2.4.5a",
"apprelease" => "QA Release",
"environment" => "qa",
. . .

}

We can see that our entry contains the data our team needs and should now be
searchable and easy for them to use to debug the Alpha application.
You can see that the grok filter combined with the huge variety of other available
filters make this a simple and easy process. You can apply this workflow to any
custom log event you need to parse.

Summary
In this chapter we've seen some of the power of Logstash's filtering capabilities.
But what we've seen in this chapter is just a small selection of what it is possible
to achieve with Logstash. There's a large collection of additional filter plugins
available. Filters that allow you to:

Version: v1.4.2.1 (bce6609) 133

http://logstash.net/docs/latest/
http://logstash.net/docs/latest/

Chapter 5: Filtering Events with Logstash

TIP In addition to the plugins that ship with Logstash there are also a number
of community contributed plugins available here.

• Mutate events. Themutate filter allows you to do general mutations to fields.
You can rename, remove, replace, and modify fields in your events.

• Checksum events. This checksum filter allows you to create a checksum
based on a part or parts of the event. You can use this to de-duplicate events
or add a unique event identifier.

• Extract key value pairs. This lets you automatically parse log events that
contain key value structures like foo=bar. It will create a field with the key
as the field name and the value as the field value.

• Do GeoIP and DNS lookups. This allows you to add geographical or DNS
metadata to events. This can be helpful in adding context to events or in
processes like fraud detection using log data.

• Calculate ranges. This filter is used to check that certain fields are within
expected size or length ranges. This is useful for finding anomalous data.

• Extract XML. This filter extracts XML from events and constructs an appro-
priate data structure from it.

• The split filter allows you to split multi-line messages into separate events.
• The anonymize filter is useful for anonymizing fields by replacing their val-
ues with a consistent hash. If you're dealing with sensitive data this is useful
for purging information like user ids, SSNs or credit card numbers.

• Execute arbitrary Ruby code. This allows you to process events using snip-
pets of Ruby code.

TIP One of the more annoying aspects of filter patterns is that it is time consum-
ing to test your patterns and ensure they don't regress. We've already seen the the
Grok Debugger but it's also possible to write RSpec tests for your filtering patterns
that can make development much simpler.

Version: v1.4.2.1 (bce6609) 134

https://github.com/elasticsearch/logstash-contrib
http://logstash.net/docs/latest/filters/mutate
http://logstash.net/docs/latest/filters/checksum
http://logstash.net/docs/latest/filters/kv
http://logstash.net/docs/latest/filters/geoip
http://logstash.net/docs/latest/filters/dns
http://logstash.net/docs/latest/filters/range
http://logstash.net/docs/latest/filters/xml
http://logstash.net/docs/latest/filters/split
http://logstash.net/docs/latest/filters/anonymize
http://logstash.net/docs/latest/filters/ruby
http://grokdebug.herokuapp.com/
http://grokdebug.herokuapp.com/
http://rspec.info/
http://www.morethanseven.net/2012/08/19/Tale-of-a-grok-pattern/

Chapter 5: Filtering Events with Logstash

Now we've gotten a few more log sources into Logstash and our events are more
carefully catalogued and filtered. In the next chapter we are going to look at how
to get information, alerts and metrics out of Logstash.

Version: v1.4.2.1 (bce6609) 135

Chapter 6

Outputting Events from Logstash

In the previous chapters we've seen some of the output plugins available in
Logstash: for example Redis, Syslog, ElasticSearch. But in our project we've
primarily focussed on moving events from agents to our central server and from
our central server to ElasticSearch. Now, at this stage of the project, we want to
start using some of the other available output plugins to send events or generate
actions from events. We've identified a list of the top outputs we need to create:

• Send alerts for events via email.
• Send alerts for events via instant messaging.
• Send alerts through to a monitoring system.
• Collect and deliver metrics through a metrics engine.

Let's get started with developing our first output.

Send email alerts
The first needed output we've identified is alerts via email. Some parts of the IT
team really want to get email notifications for certain events. Specifically they'd
like to get email notifications for any stack traces generated by Tomcat. To do
this we'll need to configure the email output plugin and provide some way of
identifying the stack traces we'd like to email.

136

Chapter 6: Outputting Events from Logstash

Updating our multiline filter
Since we've just tackled this log source in Chapter 5 we're going to extend what
we've already done to provide this capability. Let's first look at our existing
multiline codec:

Listing 6.1: The Tomcat multiline file input and codec

file {
type => "tomcat"
path => ["/var/log/tomcat6/catalina.out"]
codec => multiline {
pattern => "(^\d+\serror)|(^.+Exception: .+)|(^\s+at .+)|(^\↩
s+... \d+ more)|(^\s*Caused by:.+)"

what => "previous"
}

}

The file input and multiline codec will match any message lines with the
pattern specified and merge them into one event. It'll also add the tag
multiline to the event.

Configuring the email output
Next we need to configure our email plugin in the output block.

Version: v1.4.2.1 (bce6609) 137

Chapter 6: Outputting Events from Logstash

Listing 6.2: The email output plugin

if [type] == "tomcat" and "multiline" in [tags] {
email {
body => "Triggered in: %{message}"
subject => "This is a Logstash alert for Tomcat stack traces↩
."

from => "logstash.alert@example.com"
to => "appteam@example.com"
via => "sendmail"

}
}

Our email output plugin is configured to only match events with the type of
tomcat and with the tag multiline. This way we don't flood our mail servers
with every event by mistake.

NOTE You can see this and a full list of the email outputs options here.

We then specify the body of the email in plain text using the body option. We're
sending the message:

Listing 6.3: The content of our email

"Triggered in: %{message}"

The body of the email will contain the specific stack trace which is contained in
the message field. The email output also has support for HTML output which you
can specify using the htmlbody option.

NOTE We've referred to the message field via Logstash's sprintf format. We've

Version: v1.4.2.1 (bce6609) 138

http://www.logstash.net/docs/latest/outputs/email

Chapter 6: Outputting Events from Logstash

prefixed it with a percentage sign and enclosed the field in braces. You can see
more details here.

We've also specified the subject of the email using the subject option.
We next specify the from and to options that set the emission and destination
email addresses. And lastly we set the via option which controls how the email
is sent: either sendmail or smtp. In our case we're using sendmail which directly
calls the MTA locally on the host. If needed, you can also control a variety of other
email options including SSL/TLS and authentication using the options directive.

Email output
Now every time Logstash receives a Java exception stack trace the email output
will be triggered and the stack trace will be emailed to the appteam@example.com
address for their attention.

Figure 6.1: Java exception email alert

WARNING Please be aware that if you get a lot of stack traces this could

Version: v1.4.2.1 (bce6609) 139

http://www.logstash.net/docs/latest/configuration

Chapter 6: Outputting Events from Logstash

quickly become an unintentional email-based Denial of Service attack.

Send instant messages
Our next output is similar to our email alert. Some of your colleagues in the
Security team want more immediate alerting of events and would like Logstash
to send instant messages when failed SSH logins occur for sensitive hosts. Thanks
to the work we did earlier in the project, documented in Chapter 3, we're already
collecting the syslog events from /var/log/secure on our sensitive hosts using
the following file input:

Listing 6.4: The file input for /var/log/secure

file {
type => "syslog"
path => ["/var/log/secure", "/var/log/messages"]
exclude => ["*.gz"]

}

Identifying the event to send
As we've already got the required event source now all we need to do is identify
the specific event on which the Security team wants to be alerted:

Listing 6.5: Failed SSH authentication log entry

Dec 28 21:20:27 maurice sshd[32348]: Failed password for bob ↩
from 184.75.0.187 port 32389 ssh2

We can see it is a standard Syslog message. Our Security team wants to know the

Version: v1.4.2.1 (bce6609) 140

Chapter 6: Outputting Events from Logstash

user name and the source host name or IP address of the failed login. To acquire
this information we're going to use a grok filter:

Listing 6.6: Failed SSH authentication grok filter

if [type] == "syslog" {
grok {
match => ["message", "%{SYSLOGBASE} Failed password for %{↩
USERNAME:user} from %{IPORHOST:host} port %{POSINT:port} %{↩
WORD:protocol}"]

add_tag => ["ssh", "grokked", "auth_failure"]
}

}

Which, when it matches the Syslog log entry, should produce an event like this:

Version: v1.4.2.1 (bce6609) 141

Chapter 6: Outputting Events from Logstash

Listing 6.7: Failed SSH authentication Logstash event

{
"message" => "Dec 28 21:20:27 maurice sshd[32348]: Failed ↩
password for bob from 184.75.0.187 port 32389 ssh2",

"@timestamp" => "2012-12-28T21:20:27.016Z",
"@version" => "1",
"host" => "maurice.example.com",
"timestamp" => "Dec 28 21:20:27",
"logsource" => "maurice.example.com",
"program" => "sshd",
"pid" => "32348",
"user" => "bob",
"host" => "184.75.0.187",
"port" => "32389",
"protocol" => "ssh2",
"tags" => [
[0] "ssh",
[1] "grokked",
[2] "auth_failure"

]
}

You can see that our grok filter has matched the event using the specified
pattern and populated the fields: timestamp, logsource, program, pid, port,
protocol and most importantly user and host. The event has also been tagged
with the ssh, grokked and ssh_auth_failure tags.

Sending the instant message
We now have a tagged event with the data our Security team needs. How do we
get it to them? To do this we're going to use a new output plugin called xmpp that
sends alert notifications to a Jabber/XMPP user.

Version: v1.4.2.1 (bce6609) 142

Chapter 6: Outputting Events from Logstash

Listing 6.8: The xmpp output plugin

if "ssh_auth_failure" in [tags] and [type] == "syslog" {
xmpp {
message => "Failed login for user %{user} from %{host} on ↩
server %{logsource}"

user => "alerts@jabber.example.com"
password => "password"
users => "security@example.com"

}
}

The xmpp output is simple to configure. First, to ensure only the right events
are alerted, we've specified that the output only triggers on events tagged with
ssh_auth_failure and with a type of syslog. Next, we've defined a message that
contains the data our security team wants by referencing the fields we created
in our grok filter earlier. Lastly, we've specified the connection details: user,
password and an array of users to be alerted about these events.

WARNING Here we're using an internal XMPP network inside our organi-
zation. Remember, if you are using a public XMPP network, to be careful about
sending sensitive data across that network.

Now when a failed SSH login occurs and Logstash matches the appropriate event
an instant message will be generated:

Figure 6.2: Jabber/XMPP alerts

Version: v1.4.2.1 (bce6609) 143

Chapter 6: Outputting Events from Logstash

NOTE You can see this and a full list of the xmpp output's options here.

Send alerts to Nagios
Our previous two outputs have been alerts and very much point solutions. Our
next output is an integration with an external framework, in this case with the
monitoring tool Nagios. Specifically we're going to generate what Nagios calls
"passive checks" from our log events and send them to a Nagios server.

Nagios check types
There are two commonly used types of Nagios checks: active and passive. In an
active check Nagios initiates the check from a Nagios server using a plugin like
check_icmp or check_http. Alternatively, passive checks are initiated outside
Nagios and the results sent to a Nagios server. Passive checks are usually used for
services that are:

• Asynchronous in nature and cannot be monitored effectively by polling their
status on a regularly scheduled basis.

• Located behind a firewall and cannot be checked actively from the Nagios
server.

Identifying the trigger event
We're going to generate some of these Nagios passive checks using a new output
plugin called nagios.
Let's look at a log event that we'd like to trigger a Nagios passive service check: a
STONITH cluster fencing log event.

Version: v1.4.2.1 (bce6609) 144

http://www.logstash.net/docs/latest/outputs/xmpp
http://www.nagios.org/
http://nagios.sourceforge.net/docs/3_0/passivechecks.html
http://nagios.sourceforge.net/docs/3_0/activechecks.html
http://nagios.sourceforge.net/docs/3_0/passivechecks.html

Chapter 6: Outputting Events from Logstash

Listing 6.9: A STONITH cluster fencing log event

Dec 18 20:24:53 clunode1 clufence[7397]: <notice> STONITH: ↩
clunode2 has been fenced!

Assuming we've got an input plugin that picks up this event, we start by identifying
and parsing this specific event via a grok filter.

Listing 6.10: Identify Nagios passive check results

if [type] == "syslog" {
grok {
match => ["message", "%{SYSLOGBASE} <notice> STONITH: %{↩
IPORHOST:cluster_node} has been fenced!"]

add_tag => ["nagios_check"]
add_field => [
"nagios_host", "%{cluster_node}",
"nagios_service", "cluster"

]
}

}

We're searching for events with a type of syslog and with a pattern match to
our STONITH cluster fence event. If the event matches we're adding a tag called
nagios_check and we're adding two fields, nagios_host and nagios_service↩
. This will tell the nagios output the hostname and service on which it should
alert.
Parsing our example log entry will result in event tags and fields that look like:

Version: v1.4.2.1 (bce6609) 145

Chapter 6: Outputting Events from Logstash

Listing 6.11: The grokked STONITH event

{
"message" => "Dec 18 20:24:53 clunode1 clufence[7397]: <notice↩
> STONITH: clunode2 has been fenced!",

"@timestamp" => "2013-12-18T20:24:53.965Z",
"@version" => "1",
"host" => "clunode1",
"timestamp" => "Dec 18 20:24:53",
"logsource" => "clunode1",
"program" => "clufence",
"pid" => "7397",
"cluster_node" => "clunode2",
"nagios_host" => "clunode2",
"nagios_service" => "cluster",
"tags" => [
[0] "nagios_check",

]
}

The nagios output
To output this event as a Nagios passive check we specify the nagios output plugin.

Listing 6.12: The Nagios output

if "nagios_check" in [tags] {
nagios { }

}

Nagios can receive passive checks in several ways. The nagios output plugin
takes advantage of Nagios' external command file. The external command file
is a named pipe from which Nagios listens periodically for incoming commands.

Version: v1.4.2.1 (bce6609) 146

http://nagios.sourceforge.net/docs/3_0/extcommands.html

Chapter 6: Outputting Events from Logstash

The nagios output generates PROCESS_SERVICE_CHECK_RESULT commands and
submits them to this file.

NOTE For external commands to be processed you must have the
check_external_commands=1 option set in your Nagios server configuration.

The nagios output checks events for the tag nagios_check and if it exists then
submits a PROCESS_SERVICE_CHECK_RESULT command to the Nagios external com-
mand file containing details of the event. It's important to remember that the user
running Logstash must be able to write to the Nagios command file. The output
assumes the external command file is located at /var/lib/nagios3/rw/nagios↩
.cmd but this can be overridden with the commandfile option:

Listing 6.13: The Nagios output with a custom command file

nagios {
tags => "nagios_check"
command file => "/var/run/nagios/rw/nagios.cmd"

}

TIP If your Nagios server is not located on the same host you can make use of
the nagios_nsca output which provides passive check submission to Nagios via
NSCA.

The Nagios external command
Let's look at the command generated by Logstash.

Version: v1.4.2.1 (bce6609) 147

http://old.nagios.org/developerinfo/externalcommands/commandinfo.php?command_id=114
http://logstash.net/docs/latest/outputs/nagios_nsca
http://community.nagios.org/2009/06/11/nagios-setting-up-the-nsca-addon-for-passive-checks/

Chapter 6: Outputting Events from Logstash

Listing 6.14: A Nagios external command

[1357065381] EXTERNAL COMMAND: PROCESS_SERVICE_CHECK_RESULT;↩
clunode2;cluster;2;file://maurice.example.com/var/log/rhcluster↩
/stonith.log: Jul 18 20:24:53 clunode1 clufence[7397]: <notice>↩
STONITH: clunode2 has been fenced!

We can see the host and service name we specified in the nagios_host and
nagios_service fields, clunode2 and cluster respectively. We can also see the
Nagios return code, 2, which indicates this is a CRITICAL event. By default the
nagios output sends passive check results with a status of CRITICAL. You can
override this in two ways:

• Set a field on the event called nagios_levelwith a value of the desired state:
OK, WARNING, CRITICAL, or UNKNOWN.

• Use the nagios_level option in the output to hardcode a status.

Setting the nagios_level field will override the nagios_level configuration op-
tion.

NOTE You can see this and a full list of the nagios outputs options here.

The Nagios service
On the Nagios side you will need a corresponding host and service defined for any
incoming command, for example:

Version: v1.4.2.1 (bce6609) 148

http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN76
http://www.logstash.net/docs/latest/outputs/nagios

Chapter 6: Outputting Events from Logstash

Listing 6.15: A Nagios service for cluster status

define service {
use local-service
host_name clunode2
service_description cluster
active_checks_enabled 0
passive_checks_enabled 1
notifications_enabled 1
check_freshness 0
check_command check_dummy

}

Now when a matching event is received by Logstash it will be sent as an external
command to Nagios, then processed as a passive service check result and trigger
the cluster service on the clunode2 host. It's easy to extend this to other events
related to specific hosts and services for which we wish to monitor and submit
check results.

Outputting metrics
One of the key needs of your colleagues in both Operations and Application De-
velopment teams is the ability to visually represent data about your application
and system status and performance. As a mechanism for identifying issues and
understanding performance, graphs are a crucial tool in every IT organization.
During your review of Logstash as a potential log management tool, you've dis-
covered that one of the really cool capabilities of Logstash is its ability to collect
and send metrics from events.
But there are lots of tools that do that right? Not really. There are lots of point
solutions designed to pick up one, two or a handful of metrics from infrastructure
and application specific logs and deliver them to tools like Graphite or through
brokers like StatsD. Logstash instead allows you to centralize your metric collec-

Version: v1.4.2.1 (bce6609) 149

http://graphite.wikidot.com/
https://github.com/etsy/statsd

Chapter 6: Outputting Events from Logstash

tion from log events in one tool. If a metric exists in or can be extrapolated from
a log event then you can deliver it to your metrics engine. So for your next out-
put we're going to take advantage of this capability and use Logstash events to
generate some useful metrics for your environment.
Logstash supports output to a wide variety of metrics engines and brokers in-
cluding Ganglia, Riemann, Graphite, StatsD, MetricCatcher, and Librato, amongst
others.

Collecting metrics
Let's take a look at how this works using some of the log events we're collecting al-
ready, specifically our Apache log events. Using the custom log format we created
in Chapter 5 our Apache log servers are now logging events that look like:

Version: v1.4.2.1 (bce6609) 150

http://ganglia.sourceforge.net/
http://aphyr.github.com/riemann/
http://graphite.wikidot.com/
https://github.com/etsy/statsd
https://github.com/clearspring/MetricCatcher
https://metrics.librato.com/

Chapter 6: Outputting Events from Logstash

Listing 6.16: JSON format event from Apache

{
"host" => "host.example.com",
"path" => "/var/log/httpd/logstash_access_log",
"tags" => ["wordpress", "www.example.com"],
"message" => "50.116.43.60 - - [22/Dec/2012:16:09:30 -0500] \"↩
GET / HTTP/1.1\" 200 4979",

"timestamp" => "2012-12-22T16:09:30-0500",
"clientip" => "50.116.43.60",
"duration" => 11313,
"status" => 200,
"request" => "/index.html"
"urlpath" => "/index.html",
"urlquery" => "",
"method" => "GET",
"bytes" => 4979,
"vhost" => "www"
"@timestamp"=>"2012-12-22T16:09:30.658Z",
"@version => "1",
"type"=>"apache"

}

We can already see quite a few things we'd like to graph based on the data we've
got available. Let's look at some potential metrics:

• An incremental counter for response status codes: 200, 404, etc.
• An incremental counter for method types: GET, POST, etc.
• A counter for the bytes served.
• A timer for the duration of each request.

Version: v1.4.2.1 (bce6609) 151

Chapter 6: Outputting Events from Logstash

StatsD
To create our metrics we're going to use the statsd output. StatsD is a tool written
by the team at Etsy. You can read about why and some more details about how
StatsD works here. It acts as a front-end broker to Graphite and is most useful
because you can create new metrics in Graphite just by sending it data for that
metric. I'm not going to demonstrate how to set up StatsD or Graphite. There are
a number of excellent guides, HOWTOs, Puppet modules and Chef cookbooks for
that online.

NOTE If you don't want to use StatsD you can send metrics to Graphite directly
using the graphite output.

Setting the date correctly
Firstly, getting the time accurate really matters for metrics so we're going to use
the date filter we used in Chapter 5 to ensure our events have the right time.
Using the date filter we will set the date and time our Apache events to the value
of the timestamp field contained in each event:

Listing 6.17: The Apache event timestamp field

"timestamp": "2012-12-22T16:09:30-0500"

Let's add our date filter now:

Version: v1.4.2.1 (bce6609) 152

https://github.com/etsy/statsd
http://www.etsy.com
http://codeascraft.com/2011/02/15/measure-anything-measure-everything/
http://logstash.net/docs/latest/outputs/graphite

Chapter 6: Outputting Events from Logstash

Listing 6.18: Getting the date right for our metrics

if [type] == "apache" {
date {
match => ["timestamp", "ISO8601"]
add_tag => ["dated"]

}
}

Our date filter has a conditional wrapper that checks for a type of apache to
ensure it only matches our Apache events. It then uses the match statement to
specify that Logstash should look for an ISO8601 format in the field timestamp.
This will ensure our event's timestamp will match the timestamp of the original
Apache log event. We're also adding the tag dated to mark events which have had
their timestamps set.

NOTE Remember date matching uses Java's Joda-Time library.

The StatsD output
Now we've got the time of our events correct we're going to use the statsd output
to create the metrics we would like from our Apache logs:

Version: v1.4.2.1 (bce6609) 153

http://en.wikipedia.org/wiki/ISO_8601
http://docs.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html

Chapter 6: Outputting Events from Logstash

Listing 6.19: The statsd output

if [type] == "apache" {
statsd {
increment => "apache.status.%{status}"
increment => "apache.method.%{method}"
count => ["apache.bytes", "%{bytes}"]
timing => ["apache.duration", "%{duration}"]

}
}

You can see we're only matching events with a type of apache. You could also
match using tags, excluding tags or using fields. Next we've specified two incre-
mental counters, a normal counter and a timer.
Our first two incremental counters are:

Listing 6.20: Incremental counters

increment => "apache.status.%{status}"
increment => "apache.method.%{method}"

They use the increment option and are based on two fields we've specified in our
Apache log events: status and method, which track the Apache response status
codes and the HTTP methods respectively. Our metrics are named with a prefix
of apache. and make use of Graphite's namespaces, each . representing a folder
in Graphite's views.
Each event will either create a newmetric, if that status or method doesn't already
have a metric, or increment an existing metric. The result will be a series of
metrics matching each status:

Version: v1.4.2.1 (bce6609) 154

Chapter 6: Outputting Events from Logstash

Listing 6.21: Apache status metrics in Graphite

apache.status.200
apache.status.403
apache.status.404
apache.status.500
. . .

And each method:

Listing 6.22: Apache method metrics in Graphite

apache.method.GET
apache.method.POST
. . .

Each time an Apache log event is received by our Logstash central server it will
trigger our output and increment the relevant counters. For example a request
using the GET method with a 200 response code Logstash will send an update to
StatsD for the apache.method.GET and apache.status.200 metrics incrementing
them by 1.
StatsD will then push the metrics and their data to Graphite and produce graphs
that we can use to monitor our Apache web servers.

Version: v1.4.2.1 (bce6609) 155

Chapter 6: Outputting Events from Logstash

Figure 6.3: Apache status and method graphs

Here we can see our Apache method metrics contained in the Graphite namespace:
stats -> logstash -> host_example_com -> apache -> method. The namespace
used defaults to logstash but you can override this with the namespace option.
Our counter metric is similar:

Listing 6.23: The apache.bytes counter

count => ["apache.bytes", "%{bytes}"]

We're creating a metric using the count option called apache.bytes and when an
event comes in we're incrementing that metric by the value of the bytes field in
that event.
We can then see this graph presented in Graphite:

Version: v1.4.2.1 (bce6609) 156

Chapter 6: Outputting Events from Logstash

Figure 6.4: Apache bytes counter

The last metric creates a timer, using the timing option, based on the duration
field of our Apache log event which tracks the duration of each request.

Listing 6.24: The apache.duration timer

timing => ["apache.duration", "%{duration}"]

We can also see this graph, together with the automatic creation of lower and
upper bounds metrics, as well as mean and sum metrics:

Version: v1.4.2.1 (bce6609) 157

Chapter 6: Outputting Events from Logstash

Figure 6.5: Apache request duration timer

Sending to a different StatsD server
By default, the statsd output sends results to the localhost on port 8125 which
is the default port on which StatsD starts. You can override this using the host
and port options.

Listing 6.25: The StatsD output with a custom host and port

if [type] == "apache" {
statsd {
host => "statsd.example.com"
port => 8130
. . .

}
}

Version: v1.4.2.1 (bce6609) 158

Chapter 6: Outputting Events from Logstash

NOTE You can see this and a full list of the statsd output's options here.

Now we have a useful collection of basic graphs from our Apache events. From
this we can add additional metrics from our Apache events or from other log
sources.

NOTE Also available in Logstash 1.1.6 and later is the metrics filter which is a
useful shortcut to creating metrics from events. For some purposes it should ulti-
mately replace the approach described here for gathering and generating metrics.

Summary
We've now configured a small collection of initial outputs for our logging project
that provide alerts, monitoring and metrics for our environment. It's easy to ex-
tend these outputs and add further outputs from the wide collection available.
With these outputs configured we've got events coming in, being filtered and out-
putted in a variety of ways. Indeed Logstash is becoming an important tool in our
monitoring and management toolbox. As a result of the growing importance of
Logstash we now need to consider how to ensure it stays up and scales to meet
demand. In the next chapter we're going to learn how to grow our Logstash envi-
ronment.

Version: v1.4.2.1 (bce6609) 159

http://www.logstash.net/docs/latest/outputs/statsd
http://logstash.net/docs/latest/filters/metrics

Chapter 7

Scaling Logstash

One of the great things about Logstash is that it is made up of easy to fit together
components: Logstash itself, Redis as a broker, Elasticsearch and the various other
pluggable elements of your Logstash configuration. One of the significant fringe
benefits of this approach is the ease with which you can scale Logstash and those
components.
We're going to scale each of the pieces we introduced and installed in Chapter 3.
Those being:

• Redis - Which we're using as a broker for incoming events.
• Elasticsearch - Which is handling search and storage.
• Logstash - Which is consuming and indexing the events.

This is a fairly basic introduction to scaling these components with a focus on
trying to achieve some simple objectives:

• To make Logstash as redundant as possible with no single points of failure.
• To avoid messages being lost in transit from inputs and outputs.
• To make Logstash perform as well as possible.

160

Chapter 7: Scaling Logstash

WARNING As with all scaling and performance management this solution
may not work for your environment or fully meet your requirements. Our in-
troduction will show you the basics of making Logstash more resilient and per-
formant. From there you will need to monitor and tune Logstash to achieve the
precise results you need.

Our final scaled architecture will look like this:

Figure 7.1: Logstash Scaled Architecture

TIP As with its installation, scaling Logstash is significantly easier and more
elegant using tools like Puppet or Chef. Again setting up either is beyond the
scope of this book but there are several Puppet modules for Logstash on the Puppet
Forge and a Chef cookbook. These either support some minimal scaling or can be
adapted to deliver these capabilities.

Version: v1.4.2.1 (bce6609) 161

http://www.puppetlabs.com
http://www.opscode.com/chef/
http://forge.puppetlabs.com/modules?q=logstash
http://forge.puppetlabs.com/modules?q=logstash
http://community.opscode.com/cookbooks/logstash

Chapter 7: Scaling Logstash

Scaling Redis
In our implementation we're using Redis as a broker between our Logstash agents
and the Logstash central server. One of the reasons we chose Redis is that it is
very simple. Thankfully making Redis redundant is also simple. Logstash can
send events to and receive events from multiple Redis instances in a failover con-
figuration.
It's important to note that this is a failover rather than true high availability.
Events are not "round robin'ed" or load balanced between Redis instances.
Logstash will try to connect to a Redis instance and send events. If that send
succeeds then it will continue to send events to that Redis instance. If the send
fails then Logstash will select the next Redis instance and try to send to it instead.
This does, however, provide you with some basic redundancy for your broker
through the deployment of additional Redis instances but has limited impact if
your Redis instance is a performance bottleneck for your environment. If this
is an issue for you then you can designate Redis instances for specific agents or
groups of agents with additional Redis instances defined if you'd like redundancy.

TIP You could also try other brokers like AMQP or zeroMQ.

Version: v1.4.2.1 (bce6609) 162

http://logstash.net/docs/latest/inputs/amqp
http://logstash.net/docs/latest/inputs/zeromq

Chapter 7: Scaling Logstash

Figure 7.2: Logstash Redis failover

We're already running one Redis server, currently running on our Logstash central
server, so we're going to do three things to make our environment a bit more
redundant:

1. Create two new Redis instances on separate hosts.
2. Configure Logstash to write to and read from both Redis instances.
3. Turn off the Redis instance on our central server.

NOTE Other options for providing scalability with Redis include a client-side
proxy such as nutcracker and the forthcoming support for Redis clustering.

Installing new Redis instances
Let's spin up two new Ubuntu hosts:

Version: v1.4.2.1 (bce6609) 163

https://github.com/twitter/twemproxy

Chapter 7: Scaling Logstash

Redis host #1

• Hostname: midnighttoker.example.com
• IP Address: 10.0.0.10

Redis host #2

• Hostname: spacecowboy.example.com
• IP Address: 10.0.0.11

To install new Redis instances we replicate the steps from Chapter 3. Again we
can either install Redis via our packager manager or from source. On our Ubuntu
hosts we install it from a package as that's simple:

Listing 7.1: Installing Redis

$ sudo apt-get install redis-server

Now we need to ensure Redis is bound to an external interface. To do this we need
to edit the /etc/redis/redis.conf configuration file and bind it to a single inter-
face, our two hosts' respective external IP addresses: 10.0.0.10 and 10.0.0.11:

Listing 7.2: Binding Redis to the external interface

bind 10.0.0.10

Repeat this for our second host replacing 10.0.0.10 with 10.0.0.11.
Now Redis is configured, we can start the Redis instances on both hosts:

Listing 7.3: Start the Redis instances

$ sudo /etc/init.d/redis-server start

Version: v1.4.2.1 (bce6609) 164

Chapter 7: Scaling Logstash

Test Redis is running
We can test if the Redis instances are running by using the redis-cli command
on each host.

Listing 7.4: Test Redis is running

$ redis-cli -h 10.0.0.10
redis 10.0.0.10:6379> PING
PONG

Now repeat on our second host.

Configuring Redis output to send to multiple Redis servers
As we've discussed the redis output supports the ability to specify multiple Redis
instances in a failover model and send events to them. We're going to configure
the redis output on each of our shipping agents with our two new Redis instances.
To do this we'll need to update the configuration in our /etc/logstash/conf.d↩
/shipper.conf file:

Listing 7.5: Multi instance Redis output configuration

output {
redis {
host => ["10.0.0.10", "10.0.0.11"]
shuffle_hosts => true
data_type => "list"
key => "logstash"

}
}

TIP If you find yourself having performance issues with Redis you can also

Version: v1.4.2.1 (bce6609) 165

Chapter 7: Scaling Logstash

potentially make use of the `threads` option. The `threads` option controls the
number of threads you want the input to spawn. This is the same as declaring the
input multiple times.

You can see we've specified an array of IP addresses in our host option. We've
also specified an option called shuffle_hosts which will shuffle the list of hosts
when Logstash starts. This means Logstash will try one of these Redis instances
and if it connects it will send events to that instance. If the connection fails it
will try the next instance in the list and so on until it either finds an instance that
receives events or runs out of instances and fails.
To enable this we'll also need to restart Logstash.

Listing 7.6: Restarting the Logstash agent for Redis

$ sudo service logstash restart

Configuring Logstash to receive from multiple Redis servers
Now that Logstash is potentially sending events to multiple Redis instances we
need to make sure it's checking all of those instances for events. To do this we're
going to update our /etc/logstash/conf.d/central.conf configuration file on
our central Logstash server like so:

Version: v1.4.2.1 (bce6609) 166

Chapter 7: Scaling Logstash

Listing 7.7: Multiple Redis instances

input {
redis {
host => "10.0.0.10"
data_type => "list"
type => "redis-input"
key => "logstash"

}
redis {
host => "10.0.0.11"
data_type => "list"
type => "redis-input"
key => "logstash"

}
}

You can see we've added two redis input plugins to our input stanza: one for each
Redis instance. Each is identical except for the IP address for the Redis instance.
Now when Logstash starts it will connect to both instances and wait for events.
To enable these inputs we'll need to restart Logstash.

Listing 7.8: Restart the Logstash agent

$ sudo service logstash restart

Testing our Redis failover
Let's test that our Redis failover is working. Firstly, let's stop one of our Redis
instances.

Version: v1.4.2.1 (bce6609) 167

Chapter 7: Scaling Logstash

Listing 7.9: Stopping a Redis instance

midnighttoker$ sudo /etc/init.d/redis-server stop

You should see an error message appear very shortly afterward on our central
Logstash server:

Listing 7.10: Redis connection refused exception

{:message=>"Input thread exception", :plugin=>#<LogStash::Inputs↩
::Redis:0x1b5ca70 @db=0, @key="logstash", @threadable=true, ↩
type="redis-input", @host="10.0.0.10", . . . :exception=> #<↩
Redis::CannotConnectError: Error connecting to Redis on ↩
10.0.0.10:6379 (ECONNREFUSED)>, . . . :level=>:warn}

TIP You should add checks for Redis to your monitoring environment. If you
use Nagios or similar tools there are a number of plugins like this and this that
can help.

Now stop our second Redis instance.

Listing 7.11: Stopping a second Redis instance

spacecowboy$ sudo /etc/init.d/redis-server stop

And a similar log message will appear for this instance on our central Logstash
server.
We'll also be able to see that log events have stopped flowing from our remote
agents:

Version: v1.4.2.1 (bce6609) 168

https://github.com/jasonhancock/nagios-redis
http://exchange.nagios.org/directory/Plugins/Others/check_redis/details

Chapter 7: Scaling Logstash

Listing 7.12: Remote agent event sending failures

{:message=>"Failed to send event to redis" . . .

Now you should be able to start one of our Redis instances and see events flow-
ing through to Logstash from your remote agents. Now start and stop the Redis
instances to see the remote agents switch between them and send through to the
central server.

Shutting down our existing Redis instance
Finally, we need to shut down our existing Redis instance on our central Logstash
server: smoker. Let's stop the service and ensure it's turned off.

Listing 7.13: Shut down Redis

$ sudo /etc/init.d/redis-server stop

Now ensure it won't get started again:

Listing 7.14: Stop Redis starting

$ sudo update-rc.d redis-server disable

Now we've got some simple failover capability for our Redis broker. We've also
got Redis running on a dedicated pair of hosts rather than on our central server.
Next we can look at making our Elasticsearch environment a bit more scalable.

Scaling Elasticsearch
Elasticsearch is naturally very amenable to scaling. It's easy to build new nodes
and Elasticsearch supports both unicast and multicast clustering out of the box

Version: v1.4.2.1 (bce6609) 169

Chapter 7: Scaling Logstash

with very limited configuration required. We're going to create two new Ubuntu
hosts to run Elasticsearch on and then join these hosts to the existing cluster.
Elasticsearch host #1

• Hostname: grinner.example.com
• IP Address: 10.0.0.20

Elasticsearch host #2

• Hostname: sinner.example.com
• IP Address: 10.0.0.21

Figure 7.3: Elasticsearch scaling

Installing additional Elasticsearch hosts
Firstly, we need to install Java as a prerequisite to Elasticsearch.

Version: v1.4.2.1 (bce6609) 170

Chapter 7: Scaling Logstash

Listing 7.15: Installing Java for Elasticsearch

$ sudo apt-get install openjdk-7-jdk

We also have DEB packages for Elasticsearch that we can use on Ubuntu. We can
download from the Elasticsearch download page.

Listing 7.16: Download Elasticsearch

$ wget https://download.elasticsearch.org/elasticsearch/↩
elasticsearch/elasticsearch-1.0.0.deb

We then install it including first telling Elasticsearch where to find our Java JDK
installation by setting the JAVA_HOME environment variable.

Listing 7.17: Install Elasticsearch

$ export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-i386/
$ sudo dpkg -i elasticsearch-1.0.0.deb

Repeat this process for both hosts.

Configuring our Elasticsearch cluster and new nodes

Next we need to configure our Elasticsearch cluster and node name. Remember
that new Elasticsearch nodes join any cluster with the same cluster name they have
defined. So we want to customize our cluster and node names to ensure our new
nodes join the right cluster. To do this we need to edit the /etc/elasticsearch↩
/elasticsearch.yml file. Look for the following entries in the file:

Version: v1.4.2.1 (bce6609) 171

http://www.elasticsearch.org/download/

Chapter 7: Scaling Logstash

Listing 7.18: Elasticsearch cluster and node names

cluster.name: elasticsearch
node.name: "Franz Kafka"

We're going to uncomment and change both the cluster and node name on each
new host. We're going to choose a cluster name of logstash and a node name
matching each new host name.

Listing 7.19: Grinner cluster and node names

cluster.name: logstash
node.name: "grinner"

Then:

Listing 7.20: Sinner cluster and node names

cluster.name: logstash
node.name: "sinner"

We then need to restart Elasticsearch to reconfigure it.

Listing 7.21: Restarting Elasticsearch to reconfigure

$ sudo /etc/init.d/elasticsearch restart

We can then check Elasticsearch is running and has joined the cluster by checking
the Cluster Health API like so:

Version: v1.4.2.1 (bce6609) 172

http://www.elasticsearch.org/guide/reference/api/admin-cluster-health.html

Chapter 7: Scaling Logstash

Listing 7.22: Checking the cluster status.

$ curl -XGET 'http://10.0.0.20:9200/_cluster/health?pretty=true'
{
"cluster_name" : "logstash",
"status" : "green",
"timed_out" : false,
"number_of_nodes" : 4,
"number_of_data_nodes" : 3,
"active_primary_shards" : 30,
"active_shards" : 60,
"relocating_shards" : 0,
"initializing_shards" : 0,
"unassigned_shards" : 0

NOTE That's weird. Four nodes? Where did our fourth node come from? That's
Logstash itself which joins the cluster as a client. So we have three data nodes
and a client node.

We can see that our cluster is named logstash and its status is green. Green means
all shards, both primary and replicas are allocated and functioning. A yellow↩
cluster status will mean that only the primary shards are allocated, i.e. the cluster
has not yet finished replication across its nodes. A red cluster status means there
are shards that are not allocated.
This clustering takes advantage of Elasticsearch's multicast clustering, which is en-
abled by default. So any hosts we add to the cluster must be able to find the other
nodes via multicast on the network. You could instead use unicast networking
and specify each node. To do this see the discovery.zen.ping.unicast.hosts
option in the /etc/elasticsearch/elasticsearch.conf configuration file. Also
available is an EC2 discovery plugin if you are running in Amazon EC2.

Version: v1.4.2.1 (bce6609) 173

http://www.elasticsearch.org/tutorials/2011/08/22/elasticsearch-on-ec2.html

Chapter 7: Scaling Logstash

Monitoring our Elasticsearch cluster
Using the command line API is one way of monitoring the health of your Elas-
ticsearch cluster but a far better method is to use one of the several plugins that
are designed to do this. Plugins are add-ons for Elasticsearch that can be installed
via the plugin tool. We're going to choose a cluster monitoring plugin called
Paramedic written by Karel Minarik. Let's install it on our grinner host:

Listing 7.23: Installing Paramedic

grinner$ sudo /usr/share/elasticsearch/bin/plugin -install \
karmi/elasticsearch-paramedic

With the plugin installed we can now browse to the following URL:

Listing 7.24: The Paramedic URL

http://10.0.0.20:9200/_plugin/paramedic/index.html

From here we can see a display of both the current cluster state and a variety of
performance, index and shard metrics that looks like this:

Version: v1.4.2.1 (bce6609) 174

https://github.com/karmi/elasticsearch-paramedic
https://github.com/karmi

Chapter 7: Scaling Logstash

Figure 7.4: The Paramedic Elasticsearch plugin

There are several other similar plugins like BigDesk and Head.

NOTE There are also Nagios plugins that can help you monitor Elasticsearch.

Managing Elasticsearch data retention
One of the other key aspects of managing Elasticsearch scaling and performance is
working out how long to retain your log data. Obviously this is greatly dependent
on what you use the log data for, as some data requires longer-term retention than
other data.

TIP Some log data, for example financial transactions, need to be kept for all

Version: v1.4.2.1 (bce6609) 175

https://github.com/lukas-vlcek/bigdesk
http://mobz.github.com/elasticsearch-head/
https://github.com/anchor/nagios-plugin-elasticsearch

Chapter 7: Scaling Logstash

time. But does it need to be searchable and stored in Elasticsearch forever? Prob-
ably not. In which case it is easy enough to output certain events to a different
store like a file from Logstash for example using the file output plugin. This
becomes your long-term storage and if needed you can also send your events to
shorter-term storage in Elasticsearch.

Deleting unwanted indexes

Logstash by default creates an index for each day, for example index-↩
2012.12.31 for the day of 12/31/2012. You can keep these indexes for as long
as you need (or you have disk space to do so) or set up a regular "log" rotation.
To do this you can use Elasticsearch's own Delete API to remove older indexes,
for example using curl:

Listing 7.25: Deleting indexes

$ curl -XDELETE http://10.0.0.20:9200/logstash-2012.12.31

Here we're deleting the logstash-2012.12.31 index. You can easily automate
this, for example this ticket contains an example Python script that deletes old
indexes. We've reproduced it here too. Another example is a simple Bash script
found here. Additionally the recently introduced Curator tool (see Curator section
below) can also make managing LogStash indexes very simple.
Using any of these you can set up an automated regime to remove older indexes
to match whatever log retention cycle you'd like to maintain.

Optimizing indexes

It's also a good idea to use Elasticsearch's optimize function to optimize indexes
and make searching faster. You can do this on individual indexes:

Version: v1.4.2.1 (bce6609) 176

http://logstash.net/docs/latest/outputs/file
https://logstash.jira.com/browse/LOGSTASH-211
http://logstashbook.com/code/7/logstash_index_cleaner.py
https://github.com/cnf/logstash-tools/blob/master/elasticsearch/clean-elasticsearch.sh
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-optimize.html

Chapter 7: Scaling Logstash

Listing 7.26: Optimizing indexes

$ curl -XPOST 'http://10.0.0.20:9200/logstash-2013.01.01/↩
_optimize'

Or on all indexes:

Listing 7.27: Optimizing all indexes

$ curl -XPOST 'http://10.0.0.20:9200/_optimize'

It's important to note that if your indexes are large that the optimize API call can
take quite a long time to run. You can see the size of a specific index using the
Elasticsearch Indices Stats API like so:

Listing 7.28: Getting the size of an index

$ curl 'http://10.0.0.20:9200/logstash-2012.12.31/_stats?clear=↩
true&store=true&pretty=true'

. . .
"total" : {

"store" : {
"size" : "110.5mb",
"size_in_bytes" : 115965586,
"throttle_time" : "0s",
"throttle_time_in_millis" : 0

}
}

}
. . .

TIP There are also some simple community tools for working with Elasticsearch
and Logstash that you might find handy here.

Version: v1.4.2.1 (bce6609) 177

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-stats.html
https://github.com/cnf/logstash-tools/tree/master/elasticsearch

Chapter 7: Scaling Logstash

Curator

More recently to support managing Logstash indexes the Elasticsearch team has
released a tool called Curator. Curator helps you automate the process of deleting,
optimizing and manage indexes on your Elasticsearch cluster.

Listing 7.29: Installing curator

$ sudo pip install elasticsearch-curator

TIP Curator works best with Elasticsearch 1.0 or later. If you're running Logstash
1.4.0 or later this is the version you should have. If you use an earlier version of
Elasticsearch you can try Curator 0.6.2. You can install it via `pip` also like so:
pip install elasticsearch-curator==0.6.2.

Curator installs a binary called curator onto your host. It allows you to manage
Elasticsearch indexes. For example, to delete indexes.

Listing 7.30: Deleting indexes with Curator

$ curator --host 10.0.0.20 -d 30

This will delete indexes older than thirty days, specified using the -d flag, on our
10.0.0.20 host.
Curator can also optimize indexes and close indexes. Closing indexes is highly
useful when you need to keep indexes for a while but don't need to search them,
for example you might need to keep 30 days of logs but only search the last 7 days.
This ensures optimal performance of your Logstash instance as closed indexes only
occupy space and don't get searched when you query your data. This ensures your

Version: v1.4.2.1 (bce6609) 178

Chapter 7: Scaling Logstash

queries are fast and limited only to the data you need. To close indexes you would
run:

Listing 7.31: Closing indexes using Curator

$ curator --host 10.0.0.20 -c 7

This will close all indexes older than 7 days.
To see the full list of Curator's capabilities run it with the -h flag.

Listing 7.32: Getting Curator help

$ curator -h

You can also find a blog post showing more of Curator's capabilities here and you
can find the Curator source code here.

More Information
Elasticsearch scaling can be a lot more sophisticated than I've been able to elabo-
rate on here. For example, we've not examined the different types of Elasticsearch
node we can define: allowing nodes to be cluster masters, to store or not store
data, or to act as "search load balancers." Nor have we discussed hardware recom-
mendations or requirements.
There are a variety of other sources of information, including this excellent video
and this post about how to scale Elasticsearch and you can find excellent help on
the #elasticsearch IRC channel on Freenode or the Elasticsearch mailing list.

TIP A common, and worth calling out specifically, Elasticsearch problem at scale
is the number of open files. Elasticsearch opens a lot of files and sometimes can
hit the nofile limit of your distribution. The Elasticsearch team have written an
article that talks about how to address this issue.

Version: v1.4.2.1 (bce6609) 179

http://untergeek.com/2014/02/18/curator-managing-your-logstash-and-other-time-series-indices-in-elasticsearch-beyond-delete-and-optimize/
https://github.com/elasticsearch/curator
http://vimeo.com/44718089
http://jablonskis.org/2013/elasticsearch-and-logstash-tuning/
https://groups.google.com/forum/?fromgroups#!forum/elasticsearch
http://www.elasticsearch.org/tutorials/too-many-open-files
http://www.elasticsearch.org/tutorials/too-many-open-files

Chapter 7: Scaling Logstash

Scaling Logstash
Thus far we've got some redundancy in our Redis environment and we've built an
Elasticsearch cluster but we've only got a single Logstash indexer receiving events
from Redis and passing them to Elasticsearch. This means if something happens to
our Logstash indexer then Logstash stops working. To reduce this risk we're going
to add a second Logstash indexer to our environment running on a new host.
Logstash host #1

• Hostname: smoker.example.com
• IP Address: 10.0.0.1

Logstash host #2
• Hostname: picker.example.com
• IP Address: 10.0.0.2

Version: v1.4.2.1 (bce6609) 180

Chapter 7: Scaling Logstash

Figure 7.5: Logstash indexer scaling

Creating a second indexer
To create a second indexer we need to replicate some of the steps from Chapter 3
we used to set up our initial Logstash indexer.

Listing 7.33: Setting up a second indexer

picker$ wget -O - http://packages.elasticsearch.org/GPG-KEY-↩
elasticsearch | sudo apt-key add -

picker$ sudo sh -c "echo 'deb http://packages.elasticsearch.org/↩
logstash/1.4/debian stable main' > /etc/apt/sources.list.d/↩
logstash.list"

picker$ sudo apt-get update
picker$ sudo apt-get install logstash
smoker$ sudo scp /etc/logstash/conf.d/central.conf bob@picker:/↩
etc/logstash/conf.d

You can see we've added the Logstash repository and installed the Logstash pack-
age and copied the existing smoker central.conf configuration file. We're all set
up and ready to go. The best thing is that we don't even need to make any changes
to our existing Logstash configuration.
Now let's start our new Logstash instance. Edit the `/etc/default/logstash' file and
change the line:

Listing 7.34: The stock /etc/default/logstash file

START=no

to:

Version: v1.4.2.1 (bce6609) 181

Chapter 7: Scaling Logstash

Listing 7.35: The updated /etc/default/logstash file

START=yes

You can then run the Logstash service.

Listing 7.36: Starting the central Logstash server

picker$ sudo service logstash start

So what happens now? As both Logstash indexers are using the same configura-
tion and both are listening for inputs from the same Redis brokers they will start
to both process events. You'll see some events being received on each Logstash
instance. Assuming they have the same configuration (you are using configu-
ration management by now right?) then the events will be processed the same
way and pass into our Elasticsearch cluster to be stored. Now if something goes
wrong with one Logstash instance you will have a second functioning instance
that will continue to process. This model is also easy to scale further and you can
add additional Logstash instances as needed to meet performance or redundancy
requirements.

Summary
As you can see, with some fairly simple steps that we've made our existing Logstash
environment considerably more resilient and provided some additional perfor-
mance capacity. It's not quite perfect and it will probably need to be tweaked as
we grow but it provides a starting point to expand upon as our needs for additional
resources increase.
In the next chapter we'll look at how we can extend Logstash to add our own
plugins.

Version: v1.4.2.1 (bce6609) 182

Chapter 8

Extending Logstash

One of the awesome things about Logstash is that there are so many ways to get
log events into it, manipulate and filter events once they are in and then push them
out to a whole variety of destinations. Indeed, at the time of writing, there were
nearly 100 separate input, filter and output plugins. Every now and again though
you encounter a scenario where you need a new plugin or want to customize a
plugin to better suit your environment.

TIP The best place to start looking at the anatomy of Logstash plugins are the
plugins themselves. You'll find examples of inputs, filters and outputs for most
purposes in the Logstash source code repository.

Now our project has almost reached its conclusion we've decided we better learn
how to extend Logstash ourselves to cater for some of the scenarios when you
need to modify or create a plugin.

WARNING I am a SysAdmin by trade. I'm not a developer. This introduction
is a simple, high-level introduction to how to extend Logstash by adding new
plugins. It's not a definitive guide to writing or learning Ruby.

183

https://github.com/logstash/logstash/tree/master/lib/logstash
http://logstash.net/docs/latest/extending/

Chapter 8: Extending Logstash

Anatomy of a plugin
Let's look at one of the more basic plugins, the stdin input, and see what we can
learn about plugin anatomy.

Version: v1.4.2.1 (bce6609) 184

Chapter 8: Extending Logstash

Listing 8.1: The stdin input plugin

require "logstash/inputs/base"
require "logstash/namespace"
require "socket"

class LogStash::Inputs::Stdin < LogStash::Inputs::Base
config_name "stdin"
milestone 3

default :codec, "line"

public
def register
@host = Socket.gethostname

end # def register

def run(queue)
while true
begin
data = $stdin.sysread(16384)
@codec.decode(data) do |event|
decorate(event)
event["host"] = @host
queue << event

end
rescue EOFError, LogStash::ShutdownSignal
break

end
end # while true
finished

end # def run

public
def teardown
@logger.debug("stdin shutting down.")
$stdin.close rescue nil
finished

end # def teardown
end # class LogStash::Inputs::Stdin

Version: v1.4.2.1 (bce6609) 185

Chapter 8: Extending Logstash

A Logstash plugin is very simple. Firstly, each plugin requires the Logstash mod-
ule:

Listing 8.2: Requiring the Logstash module

require 'logstash/namespace'

And then the Logstash class related to the type of plugin, for example for an input
the LogStash::Inputs::Base class:

Listing 8.3: Requiring the LogStash::Inputs::Base class

require 'logstash/inputs/base'

For filters we require the LogStash::Filters::Base class and outputs the
LogStash::Outputs::Base class respectively.
We also include any prerequisites, in this case the stdin input requires the Socket
library for the gethostname method.
Each plugin is contained in a class, named for the plugin type and the plugin itself,
in this case:

Listing 8.4: The plugin class

class LogStash::Inputs::Stdin < LogStash::Inputs::Base

We also include the prerequisite class for that plugin into our plugin's class, < ↩
LogStash::Inputs::Base.
Each plugin also requires a name and a milestone provided by the config_name
and milestone methods. The config_name provides Logstash with the name of
the plugin. The milestone sets the status and evolutionary state of the plugin.
Valid statuses are 0 to 3 where 0 is unmaintained, 1 is alpha, 2 is beta and 3↩
is production. Some milestones impact how Logstash interacts with a plugin,
for example setting the status of a plugin to 0 or 1 will prompt a warning that the
plugin you are using is either not supported or subject to change without warning.

Version: v1.4.2.1 (bce6609) 186

Chapter 8: Extending Logstash

Every plugin also has the register method inside which you should specify any-
thing needed to initialize the plugin, for example our stdin input sets the host
name instance variable.
Each type of plugin then has a method that contains its core execution:

• For inputs this is the run method, which is expected to run forever.
• For filters this is the filtermethod. For outputs this is the receivemethod.

So what happens in our stdin input? After the register method initializes the
plugin then the run method is called. The run method takes a parameter which
is the queue of events. In the case of the stdin input the loop inside this method
is initiated. The input then runs until stopped, processing any incoming events
from STDIN using the to_event method.
One last method is defined in our stdin input, teardown. When this method is
specified then Logstash will execute it when the plugin is being shutdown. It's
useful for cleaning up, in this case closing the pipe, and should call the finished
method when it's complete.

Creating our own input plugin
Now we've got a broad understanding of how a plugin works let's now create one
of our own. We're going to start with a simple plugin to read lines from a named
pipe: a poor man's file input. First let's add our requires and create our base
class.

Listing 8.5: The namedpipe framework

require 'logstash/namespace'
require 'logstash/inputs/base'

class LogStash::Inputs::NamedPipe < LogStash::Inputs::Base
. . .

end

Version: v1.4.2.1 (bce6609) 187

Chapter 8: Extending Logstash

We've added requires for an input and a class called LogStash::Inputs::↩
NamedPipe. Now let's add in our plugin's name and status using the config_name
and milestone methods. We're also going to specify the default codec, or format,
this plugin will expect events to arrive in. We're going to specify the plain codec
as we expect our events to be text strings.

Listing 8.6: The namedpipe framework plugin options

require 'logstash/namespace'
require 'logstash/inputs/base'

class LogStash::Inputs::NamedPipe < LogStash::Inputs::Base
config_name "namedpipe"
milestone 1
default :codec, "line"

The pipe to read from
config :pipe, :validate => :string, :required => true

. . .
end

You can see we've also added a configuration option, using the config method.
This method allows us to specify the configuration options and settings of our
plugins, for example if we were configuring this input we could now use an option
called pipe:

Version: v1.4.2.1 (bce6609) 188

Chapter 8: Extending Logstash

Listing 8.7: The namedpipe input configuration

input {
namedpipe {
pipe => "/tmp/ournamedpipe"
type => "pipe"

}
}

Configuration options have a variety of properties: you can validate the content
of an option, for example we're validating that the pipe option is a string. You
can add a default for an option, for example :default => "default option", or
indicate that the option is required. If an option is required and that option is not
provided then Logstash will not start.
Now let's add the guts of the namedpipe input.

Version: v1.4.2.1 (bce6609) 189

Chapter 8: Extending Logstash

Listing 8.8: The namedpipe input

require 'logstash/namespace'
require 'logstash/inputs/base'

class LogStash::Inputs::NamedPipe < LogStash::Inputs::Base
config_name "namedpipe"
milestone 1
default :codec, "line"
config :pipe, :validate => :string, :required => true

public
def register
@logger.info("Registering namedpipe input", :pipe => @pipe)

end

def run(queue)
@pipe = open(pipe, "r+")
@pipe.each do |line|
line = line.chomp
host = Socket.gethostname
path = pipe
@logger.debug("Received line", :pipe => pipe, :line => ↩
line)

e = to_event(line, host, path)
if e
queue << e

end
end

end

def teardown
@pipe.close
finished

end
endVersion: v1.4.2.1 (bce6609) 190

Chapter 8: Extending Logstash

We've added three new methods: register, run, and teardown.
The registermethod sends a log notification using the @logger instance variable.
Adding a log level method, in this case info sends an information log message.
We could also use debug to send a debug-level message.
The run method is our queue of log events. It opens a named pipe, identified
using our pipe configuration option. Our code constructs a source for our log
event, that'll eventually populate the host and path fields in our event. We then
generate a debug-level event and use the to_event method to take the content
from our named pipe, add our host and path and pass it to Logstash as an event.
The run method will keep sending events until the input is stopped.
When the input is stopped the teardown method will be run. This method closes
the named pipe and tells Logstash that the input is finished.
Let's add our new plugin to Logstash and see it in action.

Adding new plugins
Adding new plugins to Logstash is done by specifying a plugin directory and load-
ing plugins when Logstash starts. To do this we specify some plugins directories
and load our plugins from those directories. Let's start by creating those plugins
directories.

Listing 8.9: Creating plugins directories

$ sudo mkdir -p /etc/logstash/{inputs,filters,outputs}

Here we've created three directories under our existing /etc/logstash directory,
one directory for each type of plugin: inputs, filters and outputs. You will
need to do this on every Logstash host that requires the custom plugin.
Logstash expects plugins in a certain directory structure: logstash/type/↩
plugin_name.rb. So for our namedpipe input we'd place it into:

Version: v1.4.2.1 (bce6609) 191

Chapter 8: Extending Logstash

Listing 8.10: Adding the namedpipe input

$ sudo cp namedpipe.rb /etc/logstash/inputs

Now our plugin is in place we can start Logstash and specify the --pluginpath
command line flag, for example to start Logstash on our central server we'd run:

Listing 8.11: Running Logstash with plugin support

$ /opt/logstash/bin/logstash agent --verbose -f /etc/logstash/↩
conf.d/central.conf --log /var/log/logstash/logstash.log --↩
pluginpath /etc/

The --pluginpath command line flag specifies the root of the directory containing
the plugin directories, in our case /etc/.
Now if we start Logstash we should be able to see our namedpipe input being
registered:

Listing 8.12: Registering the namedpipe input

Input registered {:plugin=>#<LogStash::Inputs::NamedPipe:0↩
x163abd0 @add_field={}, . . .

NOTE You should also update your Logstash init script to add the --pluginpath
command line flag.

Version: v1.4.2.1 (bce6609) 192

Chapter 8: Extending Logstash

Writing a filter
Now we've written our first input let's look at another kind of plugin: a filter. As
we've discovered filters are designed to manipulate events in some way. We've
seen a variety of filters in Chapter 5 but we're going to write one of our own now.
In this filter we're going to add a suffix to all message fields. Let's start by adding
the code for our filter:

Listing 8.13: Our suffix filter

require "logstash/filters/base"
require "logstash/namespace"

class LogStash::Filters::AddSuffix < LogStash::Filters::Base
config_name "addsuffix"
milestone 1

config :suffix, :validate => :string

public
def register
end

public
def filter(event)
if @suffix
msg = event["message"] + " " + @suffix
event["message"] = msg

end
end

end

Let's examine what's happening in our filter. Firstly, we've required the prereq-
uisite classes and defined a class for our filter: LogStash::Filters::AddSuffix.
We've also named and set the status of our filter, the experimental addsuffix

Version: v1.4.2.1 (bce6609) 193

Chapter 8: Extending Logstash

filter, using the config_name and milestone methods.
We've also specified a configuration option using the config method which will
contain the suffix which we will be adding to the event's message field.
Next, we've specified an empty register method as we're not performing any
registration or plugin setup. The most important method, the filter method
itself, takes the event as a parameter. In our case it checks for the presence of
the @suffix instance variable that contains our configured suffix. If no suffix is
configured the filter is skipped. If the suffix is present it is applied to the end of
our message and the message returned.

TIP If you want to drop an event during filtering you can use the event.cancel
method.

Now we can configure our new filter, like so:

Listing 8.14: Configuring the addsuffix filter

filter {
addsuffix {
suffix => "ALERT"

}
}

If we now run Logstash we'll see that all incoming events now have a suffix added
to the message field of ALERT resulting in events like so:

Version: v1.4.2.1 (bce6609) 194

Chapter 8: Extending Logstash

Listing 8.15: An event with the ALERT suffix

{
"host" => "smoker.example.com",
"@timestamp" => "2013-01-21T18:43:34.531Z",
"message" => "testing ALERT",
"type" => "human"

}

You can now see how easy it is to manipulate events and their contents.

Writing an output
Our final task is to learn how to write the last type of plugin: an output. For
our last plugin we're going to be a little flippant and create an output that gener-
ates CowSay events. First, we need to install a CowSay package, for example on
Debian-distributions:

Listing 8.16: Installing CowSay on Debian and Ubuntu

$ sudo apt-get install cowsay

Or via a RubyGem:

Listing 8.17: Installing CowSay via a RubyGem

$ sudo gem install cowsay

This will provide a cowsay binary our output is going to use.
Now let's look at our CowSay output's code:

Version: v1.4.2.1 (bce6609) 195

Chapter 8: Extending Logstash

Listing 8.18: The CowSay output

require "logstash/outputs/base"
require "logstash/namespace"

class LogStash::Outputs::CowSay < LogStash::Outputs::Base
config_name "cowsay"
milestone 1

config :cowsay_log, :validate => :string, :default => "/var/↩
log/cowsay.log"

public
def register
end

public
def receive(event)
msg = `cowsay #{event["message"]}`
File.open(@cowsay_log, 'a+') { |file| file.write("#{msg}") }

end

end

Our output requires the prerequisite classes and creates a class called LogStash↩
::Outputs::CowSay. We've specified the name of the output, cowsay with
config_name method and marked it as an alpha release with the milestone of
1. We've specified a single configuration option using the config method. The
option, cowsay_log specifies a default log file location, /var/log/cowsay.log,
for our log output.
Next we've specified an empty register method as we don't have anything we'd
like to register.
The guts of our output is in the receive method which takes an event as a pa-

Version: v1.4.2.1 (bce6609) 196

Chapter 8: Extending Logstash

rameter. In this method we've shell'ed out to the cowsay binary and parsed the
event["message"] (the contents of the message field) with CowSay. It then writes
this "cow said" message to our /var/log/cowsay.log file.
We can now configure our cowsay output:

Listing 8.19: Configuring the cowsay output

output {
cowsay {}

}

You'll note we don't specify any options and use the default destination. If we
now run Logstash we can generate some CowSay statements like so:

Version: v1.4.2.1 (bce6609) 197

Chapter 8: Extending Logstash

Figure 8.1: Cow said "testing"

You can see we have an animal message. It's easy to see how you can extend an
output to send events or portions of events to a variety of destinations.

Summary
This has been a very simple introduction to writing Logstash plugins. It gives you
the basics of each plugin type and how to use them. You can build on these exam-
ples easily enough and solve your own problems with plugins you've developed
yourself.

Version: v1.4.2.1 (bce6609) 198

Index
@timestamp, 19, 44, 112, 129
@version, 19, 44
AMQP, 162
Apache, 85

% directives, 89
Combined Log Format, 86, 88
Common Log Format, 88, 91
CustomLog, 87, 91
LogFormat, 87, 89, 91
logging, 87

Apache Lucene, 27--29
query syntax, 50, 51

Beaver, 82
Chef, 22, 53, 81, 91, 152, 161
codec, 18, 188

json, 18
multiline, 119
plain, 18, 188

codecs, 18
conditionals, 116
Curator, 178
curl, 44
date

match, 113

plugin, 113, 129
drop, 116
Elasticsearch, 27, 44, 53, 160

BigDesk, 175
Cluster Health API, 172
cluster status, 173
clustering, 171
Curator, 178
DEB, 30
Delete API, 176
document, 28
index, 28
installation, 27
introduction, 28
mapping, 29
nodes, 30
optimize, 176
output plugin, 35, 44
packages, 30
Paramedic, 174
plugin, 174
RPM, 30
shard, 29, 173
primary, 29
replica, 29

template, 29

199

Index

elasticsearch, 35
cluster, 35
embedded, 27

email, 136
body, 138
from, 139
htmlbody, 138
options, 139
subject, 139
to, 139
type, 138
via, 139

fields, 85
file

exclude, 40
excluding files, 40
host, 44
input plugin, 39, 94
path, 44
sincedb, 39

fpm, 75
Go, 75
Graphite, 152
grep, 116
Grok

named capture, 127
tests, 134

grok, 98, 121
add_tag, 103
match, 100, 128
named_captures_only, 102
pattern, 122, 142
patterns_dir, 106
remove_tag, 103

host, 90, 91, 191
HTTP

404 status code, 95
ISO8601, 153
Java, 12, 13

application logs, 85
JAVA_HOME, 30, 171
Joda-Time, 113, 153
JVM, 8, 12
OpenJDK, 12

Jordan Sissel, 7, 10, 68
JRuby, 8, 14
JSON, 18, 27
Kibana, 10, 46
logger, 43, 67, 82
Logstash

adding tags, 103
Bug tracker, 11
codec option, 94
conditional configuration syntax,

116
cookbook, 10, 83
documentation, 11
GitHub, 10
grok patterns, 98
installation, 37
introduction, 7
IRC channel, 11
JSON codec, 18
json codec, 83, 89, 94, 98
Mailing list, 11
outputting metrics, 149

Version: v1.4.2.1 (bce6609) 200

Index

plain codec, 18, 94
scalability, 160
web interface, 46
website , 10

Logstash Forwarder, 68, 94
config, 77
input plugin, 69
installation, 74

Lumberjack, 68, 94
input plugin, 69, 72

message, 19, 51, 87, 91, 97, 117, 120--
122, 137, 138

Message::Passing, 83
multiline, 119

multiline_tag, 120
pattern, 120, 137
what, 120

multiline codec, 119, 137
mutate, 131

convert, 132
Nagios, 144
nagios

commandfile, 147
nagios_host, 145, 148
nagios_level, 148
nagios_service, 145, 148

openssl, 69
Paramedic, 174
Parsing custom logs, 85
path, 90, 91, 191
plugin

filter, 86

plugins
config method, 188
config_name, 186
date, 113, 129, 152
developing, 183
drop, 116
email, 136
file, 62, 115, 140
filter, 15, 87, 98, 183
filter method, 187
finished method, 187
grep, 116
grok, 98, 121, 141, 143, 145
pattern data type conversion, 102
pattern semantic, 100
pattern syntax, 100
patterns, 98

input, 15, 183
metrics, 159
mutate, 131
nagios, 144, 146
output, 15, 183
plugin_status, 186
receive method, 187
redis, 94, 165
register method, 187
run method, 187, 191
statsd, 152
teardown method, 187, 191
to_event method, 191
xmpp, 142

Postfix, 85
Puppet, 22, 53, 81, 91, 152, 161
Redis, 24, 53, 83, 160, 162

Version: v1.4.2.1 (bce6609) 201

Index

failover, 162
input plugin, 34, 57, 83
nutcracker, 163
output plugin, 40, 83, 94
redis-cli, 26, 165
security, 41
twemproxy, 163

redis, 34, 40
data_type, 35, 41
host, 34, 41, 166
key, 35, 41
shuffle_hosts, 166

RELP, 61
Remote_syslog, 83
RSpec, 134
RSyslog, 59, 60, 93

imfile, 62
self-signed SSL certificate, 69
statsd

count, 156
host, 158
increment, 154
namespace, 156
port, 158
timing, 157

stdin
input plugin, 15, 17, 83

stdout, 35
output plugin, 15, 35, 40

syslog, 55, 93
input plugin, 56

Syslog-NG, 59, 63
Syslog-shipper, 83
Syslogd, 59, 65

tags, 85, 90, 91, 103, 111
TCP

output plugin, 83
type, 34, 44, 45, 51
Woodchuck, 83
xmpp, 142

message, 143
password, 143
user, 143
users, 143

zeroMQ, 83

Version: v1.4.2.1 (bce6609) 202

Thanks! I hope you enjoyed the book.

© Copyright 2014 - James Turnbull <james@lovedthanlost.net>

mailto:james+thelogstashbook@lovedthanlost.net

	Foreword
	Who is this book for?
	Credits and Acknowledgments
	Technical Reviewers
	Jan-Piet Mens
	Paul Stack

	Technical Illustrator
	Author
	Conventions in the book
	Code and Examples
	Colophon
	Errata
	Trademarks
	Version
	Copyright

	Introduction or Why Should I Bother?
	Introducing Logstash
	Logstash design and architecture
	What's in the book?
	Logstash resources
	Getting help with Logstash
	A mild warning

	Getting Started with Logstash
	Installing Java
	On the Red Hat family
	On Debian & Ubuntu
	Testing Java is installed

	Getting Logstash
	Starting Logstash
	Our sample configuration file
	Running the Logstash agent
	Testing the Logstash agent

	Summary

	Shipping Events
	Our Event Lifecycle
	Installing Logstash on our central server
	Install Logstash
	Installing a broker
	Elasticsearch for search
	Creating a basic central configuration
	Running Logstash as a service

	Installing Logstash on our first agent
	Our agent configuration
	Installing Logstash as a service

	Sending our first events
	Checking Elasticsearch has received our events
	The Logstash Kibana Console

	Summary

	Shipping Events without the Logstash agent
	Using Syslog
	A quick introduction to Syslog
	Configuring Logstash for Syslog
	Configuring Syslog on remote agents

	Using the Logstash Forwarder
	Configure the Logstash Forwarder on our central server
	Installing the Logstash Forwarder on the remote host

	Other log shippers
	Beaver
	Woodchuck
	Others

	Summary

	Filtering Events with Logstash
	Apache Logs
	Configuring Apache for Custom Logging
	Sending Apache events to Logstash

	Postfix Logs
	Our first filter
	Adding our own filters
	Extracting from different events
	Setting the timestamp

	Filtering Java application logs
	Handling blank lines with drop
	Handling multi-line log events
	Grokking our Java events

	Parsing an in-house custom log format
	Summary

	Outputting Events from Logstash
	Send email alerts
	Updating our multiline filter
	Configuring the email output
	Email output

	Send instant messages
	Identifying the event to send
	Sending the instant message

	Send alerts to Nagios
	Nagios check types
	Identifying the trigger event
	The nagios output
	The Nagios external command
	The Nagios service

	Outputting metrics
	Collecting metrics
	StatsD
	Setting the date correctly
	The StatsD output
	Sending to a different StatsD server

	Summary

	Scaling Logstash
	Scaling Redis
	Installing new Redis instances
	Test Redis is running
	Configuring Redis output to send to multiple Redis servers
	Configuring Logstash to receive from multiple Redis servers
	Testing our Redis failover
	Shutting down our existing Redis instance

	Scaling Elasticsearch
	Installing additional Elasticsearch hosts
	Monitoring our Elasticsearch cluster
	Managing Elasticsearch data retention
	More Information

	Scaling Logstash
	Creating a second indexer

	Summary

	Extending Logstash
	Anatomy of a plugin
	Creating our own input plugin
	Adding new plugins
	Writing a filter
	Writing an output
	Summary

	Index

