
ptg7996124

From the Library of raphael schitz

ptg7996124

Storage Implementation
in vSphere® 5.0

From the Library of raphael schitz

ptg7996124

VMware Press is the official publisher of VMware books and training materials, which

provide guidance on the critical topics facing today’s technology professionals and

students. Enterprises, as well as small- and medium-sized organizations, adopt virtual-

ization as a more agile way of scaling IT to meet business needs. VMware Press provides

proven, technically accurate information that will help them meet their goals for custom-

izing, building, and maintaining their virtual environment.

With books, certification, study guides, video training, and learning tools produced by

world-class architects and IT experts, VMware Press helps IT professionals master a

diverse range of topics on virtualization and cloud computing and is the official source of

reference materials for preparing for the VMware Certified Professional Examination.

VMware Press is also pleased to have localization partners that can publish its products

into more than 42 languages, including, but not limited to, Chinese (Simplified), Chinese

(Traditional), French, German, Greek, Hindi, Japanese, Korean, Polish, Russian, and

Spanish.

For more information about VMware Press, please visit

http://www.vmware.com/go/vmwarepress.

VMware® Press is a publishing alliance between Pearson and VMware,

and is the official publisher of VMware books and training materials

that provide guidance for the critical topics facing today’s technology

professionals and students.

With books, certification and study guides, video training, and learning

tools produced by world-class architects and IT experts, VMware Press

helps IT professionals master a diverse range of topics on virtualization

and cloud computing, and is the official source of reference materials

for completing the VMware certification exams.

pearsonitcertification.com/vmwarepress

Make sure to connect with us!
informit.com/socialconnect

Complete list of products • Podcasts • Articles • Newsletters

From the Library of raphael schitz

http://www.vmware.com/go/vmwarepress

ptg7996124

VMware® Press is a publishing alliance between Pearson and VMware,

and is the official publisher of VMware books and training materials

that provide guidance for the critical topics facing today’s technology

professionals and students.

With books, certification and study guides, video training, and learning

tools produced by world-class architects and IT experts, VMware Press

helps IT professionals master a diverse range of topics on virtualization

and cloud computing, and is the official source of reference materials

for completing the VMware certification exams.

pearsonitcertification.com/vmwarepress

Make sure to connect with us!
informit.com/socialconnect

Complete list of products • Podcasts • Articles • Newsletters

From the Library of raphael schitz

ptg7996124

Storage Implementation in
vSphere® 5.0

TECHnoloGy DEEP DIVE

Mostafa Khalil, VCDX

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

From the Library of raphael schitz

ptg7996124

STORAGE IMPLEMENTATION IN VSPHERE® 5.0
Copyright ® 2013 VMware, Inc.

Published by VMware, Inc.

Publishing as VMware Press
All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.

ISBN-10: 0-321-79993-3

ISBN-10: 978-0-321-79993-7

Library of Congress Cataloging-in-Publication data is on file.

Printed in the United States of America

First Printing: August 2012

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. The publisher cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

VMware terms are trademarks or registered trademarks of VMware in the United
States, other countries, or both.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as pos-
sible, but no warranty or fitness is implied. The information provided is on an “as
is” basis. The authors, VMware Press, VMware, and the publisher shall have neither
liability nor responsibility to any person or entity with respect to any loss or dam-
ages arising from the information contained in this book or from the use of the CD
or programs accompanying it.

The opinions expressed in this book belong to the author and are not necessarily
those of VMware.

Corporate and Government Sales
VMware Press offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or custom
covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

VMware PreSS

PrograM Manager

Erik Ullanderson

aSSocIate PublISher

David Dusthimer

edItor

Joan Murray

deVeloPMent edItor

Ellie Bru

ManagIng edItor

Sandra Schroeder

Project edItor

Seth Kerney

coPy edItor

Charlotte Kughen

Proofreader

Megan Wade

edItorIal aSSIStant

Vanessa Evans

book deSIgner

Gary Adair

coMPoSItor

Studio Galou, llC.

From the Library of raphael schitz

ptg7996124

To my wife Gloria for her unconditional love and tireless efforts in helping make the time
to complete this book.

From the Library of raphael schitz

ptg7996124

contents at a glance

Part I: Storage Protocols and Block Devices

Chapter 1: Storage Types 1

Chapter 2: Fibre Channel Storage Connectivity 11

Chapter 3: FCoE Storage Connectivity 49

Chapter 4: iSCSI Storage Connectivity 85

Chapter 5: VMware Pluggable Storage Architecture (PSA) 165

Chapter 6: ALUA 227

Chapter 7: Multipathing and Failover 249

Chapter 8: Third-Party Multipathing Plug-ins 297

Chapter 9: Using Heterogeneous Storage Configurations 333

Chapter 10: Using VMDirectPath I/O 345

Chapter 11: Storage Virtualization Devices (SVDs) 369

Part II: File Systems

Chapter 12: VMFS Architecture 381

Chapter 13: Virtual Disks and RDMs 437

Chapter 14: Distributed Locks 505

Chapter 15: Snapshot Handling 529

Chapter 16: VAAI 549

Index 587

From the Library of raphael schitz

ptg7996124

contents

Part I: Storage Protocols and Block Devices

Chapter 1 Storage Types 1

History of Storage 1

Birth of the Hard Disks 4

Along Comes SCSI 4

PATA and SATA—SCSI’s Distant Cousins? 5

Units of Measuring Storage Capacity 7

Permanent Storage Media Relevant to vSphere 5 8

Chapter 2 Fibre Channel Storage Connectivity 11

SCSI Standards and Protocols 11

SCSI-2 and SCSI-3 Standards 11

Fibre Channel Protocol 12

Decoding EMC Symmetrix WWPn 25

locating Targets’ WWnn and WWPn Seen by vSphere 5 Hosts 27

SAn Topology 30

Fabric Switches 35

FC Zoning 37

Designing Storage with no Single Points of Failure 41

Chapter 3 FCoE Storage Connectivity 49

FCoE (Fibre Channel over Ethernet) 49

FCoE Initialization Protocol 51

FCoE Initiators 54

Hardware FCoE Adapter 54

Software FCoE Adapter 55

overcoming Ethernet limitations 56

Flow Control in FCoE 57

Protocols Required for FCoE 58

Priority-Based Flow Control 58

Enhanced Transmission Selection 58

Data Center Bridging Exchange 59

10GigE — A large Pipeline 59

802.1p Tag 60

From the Library of raphael schitz

ptg7996124

Hardware FCoE Adapters 62

How SW FCoE Is Implemented in ESXi 5 62

Configuring FCoE network Connections 64

Enabling Software FCoE Adapter 68

Removing or Disabling a Software FCoE Adapter 71

Using the UI to Remove the SW FCoE Adapter 71

Using the ClI to Remove the SW FCoE Adapter 72

Troubleshooting FCoE 73

ESXClI 73

FCoE-Related logs 76

Parting Tips 82

Chapter 4 iSCSI Storage Connectivity 85

iSCSI Protocol 85

Chapter 5 vSphere Pluggable Storage Architecture (PSA) 165

native Multipathing 166

Storage Array Type Plug-in (SATP) 167

How to list SATPs on an ESXi 5 Host 168

Path Selection Plugin (PSP) 169

How to list PSPs on an ESXi 5 Host 170

Third-Party Plug-ins 171

Multipathing Plugins (MPPs) 172

Anatomy of PSA Components 173

I/o Flow Through PSA and nMP 174

Classification of Arrays Based on How They Handle I/o 175

Paths and Path States 176

Preferred Path Setting 176

Flow of I/o Through nMP 178

listing Multipath Details 179

listing Paths to a lUn Using the UI 179

listing Paths to a lUn Using the Command-line Interface (ClI) 183

Identifying Path States and on Which Path the I/o Is Sent—FC 186

Example of listing Paths to an iSCSI-Attached Device 187

Identifying Path States and on Which Path the I/o Is Sent—iSCSI 190

Example of listing Paths to an FCoE-Attached Device 190

Identifying Path States and on Which Path the I/o Is Sent—FC 192

Claim Rules 192

MP Claim Rules 193

Plug-in Registration 196

SATP Claim Rules 197

From the Library of raphael schitz

ptg7996124

Contentsx

Modifying PSA Plug-in Configurations Using the UI 201

Which PSA Configurations Can Be Modified Using the UI? 202

Modifying PSA Plug-ins Using the ClI 204

Available ClI Tools and Their options 204

Adding a PSA Claim Rule 206

How to Delete a Claim Rule 215

How to Mask Paths to a Certain lUn 217

How to Unmask a lUn 219

Changing PSP Assignment via the ClI 220

Chapter 6 ALUA 227

AlUA Definition 228

AlUA Target Port Group 228

Asymmetric Access State 229

AlUA Management Modes 231

AlUA Followover 232

Identifying Device AlUA Configuration 237

Troubleshooting AlUA 243

Chapter 7 Multipathing and Failover 249

What Is a Path? 250

Where Is the Active Path? 255

Identifying the Current Path Using the ClI 255

Identifying the Io (Current) Path Using the UI 256

lUn Discovery and Path Enumeration 258

Sample lUn Discovery and Path Enumeration log Entries 261

Factors Affecting Multipathing 265

How to Access Advanced options 266

Failover Triggers 267

SCSI Sense Codes 267

Multipathing Failover Triggers 270

Path States 273

Factors Affecting Paths States 274

Path Selection Plug-ins 276

VMW_PSP_FIXED 276

VMW_PSP_MRU 277

VMW_PSP_RR 277

When and How to Change the Default PSP 277

When Should you Change the Default PSP? 277

How to Change the Default PSP 278

From the Library of raphael schitz

ptg7996124

Contents xi

PDl and APD 280

Unmounting a VMFS Volume 281

Detaching the Device Whose Datastore Was Unmounted 286

Path Ranking 291

Path Ranking for AlUA and non-AlUA Storage 291

How Does Path Ranking Work for AlUA Arrays? 292

How Does Path Ranking Work for non-AlUA Arrays? 293

Configuring Ranked Paths 295

Chapter 8 Third-Party Multipathing I/O Plug-ins 297

MPIo Implementations on vSphere 5 297

EMC PowerPath/VE 5.7 298

Downloading PowerPath/VE 298

Downloading Relevant PowerPath/VE Documentations 300

PowerPath/VE Installation overview 302

What Gets Installed? 303

Installation Using the local ClI 304

Installation Using vMA 5.0 306

Verifying Installation 307

listing Devices Claimed by PowerPath/VE 311

Managing PowerPath/VE 312

How to Uninstall PowerPath/VE 313

Hitachi Dynamic link Manager (HDlM) 315

obtaining Installation Files 316

Installing HDlM 317

Modifying HDlM PSP Assignments 322

locating Certified Storage on VMware HCl 326

Dell Equallogic PSP Routed 327

Downloading Documentation 328

Downloading the Installation File and the Setup Script 328

How Does It Work? 328

Installing EQl MEM on vSphere 5 329

Uninstalling Dell PSP EQl RoUTED MEM 331

Chapter 9 Using Heterogeneous Storage Configurations 333

What Is a “Heterogeneous” Storage Environment? 333

Scenarios of Heterogeneous Storage 334

ESXi 5 View of Heterogeneous Storage 335

Basic Rules of Using Heterogeneous Storage 335

From the Library of raphael schitz

ptg7996124

Contentsxii

naming Convention 336

So, How Does This All Fit Together? 337

Chapter 10 Using VMDirectPath I/O 345

What Is VMDirectPath? 345

Which I/o Devices Are Supported? 346

locating Hosts Supporting VMDirectPath Io on the HCl 348

VMDirectPath I/o Configuration 349

What Gets Added to the VM’s Configuration File? 358

Practical Examples of VM Design Scenarios Utilizing VMDirectPath I/o 358

HP Command View EVA Scenario 358

Passing Through Physical Tape Devices 360

What About vmDirectPath Gen. 2? 360

How Does SR-IoV Work? 361

Supported VMDirectPath I/o Devices 364

Example of DirectPath Io Gen. 2 364

Troubleshooting VMDirectPath I/o 364

Interrupt Handling and IRQ Sharing 364

Device Sharing 365

Chapter 11 Storage Virtualization Devices (SVDs) 369

SVD Concept 369

How Does It Work? 370

Constraints 372

Front-End Design Choices 373

Back-End Design Choices 376

lUn Presentation Considerations 377

RDM (RAW Device Mapping) Considerations 378

Part II: File Systems

Chapter 12 VMFS Architecture 381

History of VMFS 382

VMFS 3 on Disk layout 384

VMFS5 layout 391

Common Causes of Partition Table Problems 398

Re-creating a lost Partition Table for VMFS3 Datastores 399

Re-creating a lost Partition Table for VMFS5 Datastores 404

Preparing for the Worst! Can you Recover from a File System Corruption? 410

From the Library of raphael schitz

ptg7996124

Contents xiii

Span or Grow? 416

Upgrading to VMFS5 430

Chapter 13 Virtual Disks and RDMs 437

The Big Picture 437

Virtual Disks 438

Virtual Disk Types 441

Thin on Thin 443

Virtual Disk Modes 444

Creating Virtual Disks Using the UI 445

Creating Virtual Disks During VM Creation 445

Creating a Virtual Disk After VM Creation 448

Creating Virtual Disks Using vmkfstools 450

Creating a Zeroed Thick Virtual Disk Using vmkfstools 452

Creating an Eager Zeroed Thick Virtual Disk Using vmkfstools 452

Creating a Thin Virtual Disk Using vmkfstools 454

Cloning Virtual Disks Using vmkfstools 456

Raw Device Mappings 459

Creating Virtual Mode RDMs Using the UI 459

listing RDM Properties 466

Virtual Storage Adapters 472

Selecting the Type of Virtual Storage Adapter 473

VMware Paravirtual SCSI Controller 475

Virtual Machine Snapshots 477

Creating the VM’s First Snapshot While VM Is Powered off 478

Creating a VM Second Snapshot While Powered on 484

Snapshot operations 488

Go to a Snapshot operation 489

Delete a Snapshot operation 492

Consolidate Snapshots operation 494

Reverting to Snapshot 499

linked Clones 501

Chapter 14 Distributed Locks 505

Basic locking 506

What Happens When a Host Crashes? 507

optimistic locking 508

Dynamic Resource Allocation 509

SAn Aware Retries 509

optimistic I/o 511

From the Library of raphael schitz

ptg7996124

Contentsxiv

list of operations That Require SCSI Reservations 511

MSCS-Related SCSI Reservations 512

Perennial Reservations 514

Under the Hood of Distributed locks 519

Chapter 15 Snapshot Handling 529

What Is a Snapshot? 530

What Is a Replica? 530

What Is a Mirror? 530

VMFS Signature 531

listing Datastores’ UUIDs via the Command-line Interface 532

Effects of Snapshots on VMFS Signature 532

How to Handle VMFS Datastore on Snapshot lUns 533

Resignature 534

Resignature a VMFS Datastore Using the UI 534

Resignature a VMFS Datastore Using ESXClI 536

Force Mount 540

Force-Mounting VMFS Snapshot Using ESXClI 541

Sample Script to Force-Mount All Snapshots on Hosts in a Cluster 543

Chapter 16 VAAI 549

What Is VAAI? 550

VAAI Primitives 550

Hardware Acceleration APIs 550

Thin Provisioning APIs 551

Full Copy Primitive (XCoPy) 551

Block Zeroing Primitive (WRITE_SAME) 552

Hardware Accelerated locking Primitive (ATS) 553

ATS Enhancements on VMFS5 553

Thin Provisioned APIs 554

nAS VAAI Primitives 555

Enabling and Disabling Primitives 555

Disabling Block Device Primitives Using the UI 557

Disabling Block Device VAAI Primitives Using the ClI 559

Disabling the UnMAP Primitive Using the ClI 562

Disabling nAS VAAI Primitives 562

VAAI Plug-ins and VAAI Filter 564

locating Supported VAAI-Capable Block Devices 565

locating Supported VAAI-Capable nAS Devices 567

listing Registered Filter and VAAI Plug-ins 569

From the Library of raphael schitz

ptg7996124

Contents xv

listing VAAI Filters and Plug-ins Configuration 570

listing VAAI vmkernel Modules 573

Identifying VAAI Primitives Supported by a Device 574

listing Block Device VAAI Support Status Using the ClI 574

listing nAS Device VAAI Support Status 577

listing VAAI Support Status Using the UI 577

Displaying Block Device VAAI I/o Stats Using ESXToP 579

The VAAI T10 Standard Commands 582

Troubleshooting VAAI Primitives 583

Index 587

From the Library of raphael schitz

ptg7996124

Preface

This first edition of Storage Implementation in vSphere 5.0 is my first attempt to put all
the practical experience I have acquired over the years supporting VMware products
and drinking from the fountain of knowledge that is the VMware team. I share with
you in-depth details of how things work so that you can identify problems if and when
anything goes wrong. I originally planned to put everything in one book, but as I started
writing the page count kept growing, partly due to the large number of illustrations and
screenshots that I hope will make the picture clearer for you. As a result, I had to split
this book into two volumes so that I don’t have to sacrifice quality at the expense of page
count. I hope you will find this content as useful as I intended it to be and that you’ll watch
for the second volume, which is coming down the pike.

The book starts with a brief introduction to the history of storage as I experienced it. It
then provides details of the various storage connectivity choices and protocols supported
by VMware: Fibre Channel (FC), Fibre Channel over Ethernet (FCoE), and Internet
Small Computer System Interface (iSCSI). This transitions us to the foundation of
vSphere storage, which is Pluggable Storage Architecture (PSA). From there I build
upon this foundation with multipathing and failover (including third-party offerings)
and ALUA. I then discuss storage virtual devices (SVDs) and VMDirectPath I/O archi-
tecture, implementation, and configuration. I also cover in intricate details Virtual
Machine File System (VMFS) versions 3 and 5 and how this highly advanced clustered
file system arbitrates concurrent access to virtual machine files as well as raw device
mappings. I discuss the details of how distributed locks are handled as well as physical
snapshots and virtual machines snapshots. Finally, I share with you vStorage APIs for
Array Integration (VAAI) architecture and interactions with the relevant storage arrays.

Consider this volume as the first installment of more advanced content to come. I
plan to update the content to vSphere 5.1, which will bear the name of VMware Cloud
Infrastructure Suite (CIS), and add more information geared toward design topics and
performance optimization.

I would love to hear your opinions or suggestions for topics to cover. You can leave me a
comment at my blog: http://vSphereStorage.com.

Thank you and God bless!

Mostafa Khalil, VCDX

From the Library of raphael schitz

http://vSphereStorage.com

ptg7996124

acknowledgments

I would like to acknowledge the endless support I got from my wife Gloria. I would
also like to acknowledge the encouragement I got from Scot Bajtos, Senior VP
of VMware Global Support Services, and Eric Wansong, VP of VMware Global
Support Services (Americas).

I truly appreciate the feedback from those who took time out of their busy schedules
to volunteer to review parts of the books:

Craig Risinger, Consulting Architect at VMware

Mike Panas, Senior Member of Technical Staff at VMware

Aboubacar Diar, HP Storage

Vaughn Stewart, NetApp

Jonathan Van Meter

A special thanks to Cormac Hogan, Senior Technical Marketing Architect at
VMware, for permitting me to use some of his illustrations.

I also would like to acknowledge Pearson’s technical reviewers, whom I knew only by
their initials, and my editors Joan Murray and Ellie Bru for staying after me to get
this book completed.

One last acknowledgement is to all who have taught and mentored me along the way
throughout my journey. Their names are too many to count. You know who you are.
Thank you all!

From the Library of raphael schitz

ptg7996124

about the author

Mostafa Khalil is a senior staff engineer at VMware. He is a senior member of VMware
Global Support Services and has worked for VMware for more than 13 years. Prior to
joining VMware, he worked at Lotus/IBM. A native of Egypt, Mostafa graduated from
the Al-Azhar University’s School of Medicine, and practiced medicine in Cairo. He
became intrigued by the mini computer system used in his medical practice and began
to educate himself about computing and networking technologies. After moving to the
United States, Mostafa continued to focus on computing and acquired several profes-
sional certifications.

He is certified as VCDX (3, 4, & 5), VCAP (4 & 5)-DCD, VCAP4-DCA, VCP (2, 3, 4,
& 5), MCSE, Master CNE, HP ASE, IBM CSE, and Lotus CLP.

As storage became a central element in the virtualization environment, Mostafa became
an expert in this field and delivered several seminars and troubleshooting workshops at
various VMware public events in the United States and around the world.

From the Library of raphael schitz

ptg7996124

we want to hear from you!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

As an associate publisher for Pearson, I welcome your comments. You can email or write
me directly to let me know what you did or didn’t like about this book—as well as what
we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do
have a User Services group, however, where I will forward specific technical questions related to
the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and share
them with the author and editors who worked on the book.

Email: VMwarePress@vmware.com

Mail: David Dusthimer
 Associate Publisher
 Pearson
 800 East 96th Street
 Indianapolis, IN 46240 USA

reader Services
Visit our website at www.informit.com/title/9780321799937 and register this book
for convenient access to any updates, downloads, or errata that might be available for
this book.

From the Library of raphael schitz

www.informit.com/title/9780321799937

ptg7996124

This page intentionally left blank

From the Library of raphael schitz

ptg7996124

Chapter 1

Storage Types

History of Storage
Historically, the concept of storage goes as far back as the Ancient Egyptians (my
ancestors) who built silos to protect grains away from moisture and to store them for use
when a famine hit. The well-known example of that is the story of Joseph when he oversaw
the rationing and storage of grains as well as kept records of the stored amounts. This has
evolved over the generations and nations to where we are now as we store data instead of
dates (palm dates, that is)! Enough Ancient Egyptian history for now; let’s get down to the
wire or, in other words, the bits of computer storage history!

From a computing perspective, the smallest unit of data is a bit whose value is either a 0 or
a 1. As you might already know, bits trace their roots back to the very early mini computer
architecture in the form of toggle switches that can be in one of two positions: off (0) or
on (1), which means it uses the so-called binary data. The number of bits that made up one
character was 8; 8 bits are a byte of data.

Figure 1.1 shows an early model computer that utilized dip switches to program the bit
digital values 0 or 1.

From the Library of raphael schitz

ptg7996124

Chapter 1 Storage Types2

Figure 1.1 This photo of Data General’s Nova 1200 Mini Computer shows a 16-bit design
(16 toggle switches).

(Photo credit Arnold Reinhold, used under GNU free license)

(Trivia: Data General Corporation was the creator of EMC’s CLARiiON® family of
storage arrays.)

So, any data handled by a computer is simply a sequence of zeros and ones. I discuss the
units of measuring data and address spaces in the “Units of Measuring Storage Capacity”
section later in this chapter.

Data is stored on both volatile and permanent media forms.

Volatile data storage is also known as volatile memory or Random Access Memory (RAM).
Reading data from RAM is a lot faster than reading it from most other forms of memory/
storage because there are no moving parts. This type of memory/storage is used by
computers to load programs and data for runtime use. Modified data in RAM is written to
permanent storage at certain intervals and prior to shutting down the computer system.

Permanent data storage media types vary by the type of data to be stored or retrieved and
the type of controllers to which they are attached. The earliest form of data storage was
the magnetic tape used by mainframe computers. Data is written onto the tape in tracks
more or less like the old 8-track audio tape format made popular by car stereo players in
most American automobiles back in the 1970s. These tracks run parallel for the length of
the tape and are read back by heads matching the number of tracks. Mainframe computers
in the 1950s used 10.5" magnetic tape reels that were 0.5" wide. These have evolved into
quarter-inch tape cartridges used with modern personal computers for the purpose of data
backup.

From the Library of raphael schitz

ptg7996124

History of Storage 3

Later forms of removable permanent data storage were the floppy disks that ranged from 8"
all the way down to 2". The surviving most popular form factors were 5.25" and then later
3.5" floppy disks.

(Trivia: DOS 1.0 [Disk Operating System] used by the first model of IBM PC was shipped
on both compact cassette as well as 5.25" floppy disks.)

IBM PC (model 5150) shipped with two 5.25" floppy drives (see Figure 1.2). Later models
(5160 or XT) shipped with a 10MB MFM hard disk. This hard disk’s form factor was
5.25" full height (that is, it occupied the full slot) and replaced the second floppy disk
drive. I still have a couple of these systems in my collection, and I think there is one or
more on display at the Computer History Museum in Mountain View, California.

Figure 1.2 IBM PC (model 5150) shipped with two 5.25" floppy drives

Source: Wikipedia (retired document)

From the Library of raphael schitz

ptg7996124

Chapter 1 Storage Types4

Birth of the Hard Disks
As programs and applications grew larger in size, the need arose for larger internal forms
of permanent storage, which came to be known as hard disks or hard disk drives. The term
hard was used because the disks were inflexible compared to floppy disks and tapes. They
first appeared in the IBM PC/XT (Model 5160) mentioned in the previous section. It was
a whopping 10MB in data size and 5.25" in diameter with an average 150 milliseconds seek
time. This has been improved to 1/10 of the old seek time to about 15 milliseconds near
the latter half of the 1980s.

The IBM PC/XT referenced in the previous paragraph was configured with an MFM
(Modified Frequency Modulation) ST-506 interface. The Run Length Limited (RLL)
ST-412 interface was also used in the late 1980s and early 1990s. The latter type required
installing special software that provided a BIOS extension for expanding the Logical Block
Addressing (LBA).

There were other forms of persistent storage and hard disk drives such as Enhanced Small
Disk Interface (ESDI), which was rather common with early versions of AT&T UNIX
and XENIX operating systems on Intel platforms in the late 1980s.

Along Comes SCSI
The need for larger, faster, and more disks in a PC begat the Small Computer System
Interface or SCSI (pronounced scuzzy). This has proven to be the most successful and
reliable interface and protocol to date. It became an industry standard for attaching all
sorts of I/O devices including scanners; printers; tape drives; and storage devices, including
large sets of disks in Disk Array Enclosures (DAEs). The most commonly used SCSI
devices these days are disks and tape drives or libraries. The SCSI Protocol and standards
are covered in the “SCSI Standards and Protocols” section of Chapter 2, “Fibre Channel
Storage Connectivity”; Chapter 3, “FCoE Storage Connectivity”; and Chapter 4, “iSCSI
Storage Connectivity.”

SCSI disks, as well as their buffers, grew larger and faster. The interface also evolved from
parallel to serially attached SCSI (SAS). Here’s an oversimplification of the SAS concept:
Instead of daisy-chaining the disks between the controller and the power termination, they
are now attached to dedicated channels on the controller or plugged into an external SAS
disk enclosure connected to the computer’s external SAS controller channels.

From the Library of raphael schitz

ptg7996124

History of Storage 5

PATA and SATA—SCSI’s Distant Cousins?
After the introduction of IBM PC/AT computers, disks commonly known as IDE disks
were the next generation of disks to arrive. The Integrated Device Electronics (IDE)
interface for these disks was actually AT Attachment (ATA) and AT Attachment Packet
Interface (ATAPI), which was later renamed to Parallel ATA—PATA—to differentiate it
from its new sibling, Serial ATA—or SATA.

PATA was limited to two drives per controller interface (master and slave), whereas SATA
is limited by the number of channels provided by the controller.

The following are some differences between SAS and SATA:

�� SCSI drives are more expensive and faster than SATA drives because of the design
and performance achieved with this technology.

�� SCSI uses a tagged command queuing implementation that allows many commands
to be outstanding. This design provides significant performance gain for the drives/
controllers to be able to reorder these commands in the most optimal execution
manner possible.

�� SCSI drives also use a processor for executing commands and handling the interface
while a separate processor handles the head positioning through servos.

�� SCSI disks certified for use with storage arrays include ECC (Error Checking and
Correcting) buffers. This is critical for the integrity of the data especially in the
vSphere environment.

�� SATA 1.0 used Task Command Queuing (TCQ). This queuing technology was
intended to help bridge the gap between SCSI and PATA/SATA drives; however,
the overhead was fairly high and TCQ wasn’t efficient enough. TCQ is also referred
to as interrupt queuing.

�� SATA 2.0 introduced Native Command Queuing (NCQ), which is very similar to
the outstanding request queuing that SCSI uses. This technology drastically reduces
the number of interrupts that TCQ uses due to the integrated first party Direct
Memory Access (DMA) engine as well as the intelligent ordering of commands and
interrupting when it is most optimal to do so.

�� Buffer size has grown in newer SATA disks; however most do not provide ECC
capability.

From the Library of raphael schitz

ptg7996124

Chapter 1 Storage Types6

Table 1.1 lists various storage buses and their performance characteristics.

Table 1.1 Storage Interfaces Characteristics

Interface

Raw Bandwidth
(Mbit/s)

Max Transfer Speed
(MB/s)

Devices per Channel

SATA 3.0 6,000 600 1

SATA 2.0 3,000 300

SATA 1.0 1,500 150 1 per line

PATA 133 1,064 133.5 2

SAS 600 6,000 600 1 (more than 65,000
with expanders)

SAS 300 3,000 300

SAS 150 1,500 150

SCSI Ultra-640 5,120 640 15 (plus the HBA)

SCSI Ultra-320 2,560 320

Fibre Channel
over fiber optic

10,520 2,000 126
2563 = 16,777,216
(switched fabric)

Fibre Channel
over copper cable

4,000 400

InfiniBand 10,000 1,000 1 (point to point)

Quad Rate Many (switched
fabric)

Source http://en.wikipedia.org/wiki/Sata#Comparison_with_other_buses

Based on the varying performance characteristics of the various disk interfaces, capacity, and
cost, storage can be grouped in tiers that meet relevant Service Level Agreements (SLAs).

Table 1.2 lists common storage tiers and their pros and cons.

Table 1.2 Examples of Storage Tiers

Tier Storage Type Pros Cons

0 Solid State Drives
(SSD)

Highest raw bandwidth and
transfer speed. Fastest reads and
writes both sequential and random.
No moving parts.

Very expensive, lower
capacity, life span
is measured in write
operations.

From the Library of raphael schitz

http://en.wikipedia.org/wiki/Sata#Comparison_with_other_buses

ptg7996124

History of Storage 7

Tier Storage Type Pros Cons

1 SCSI/SAS—Fibre Higher raw bandwidth and transfer
speed.

Expensive, lower capacity.

2 SCSI/SAS—Copper Average transfer speed, less
expensive than tier 1.

Somewhat expensive,
lower capacity than tier 3.

3 SATA 2 or 3 Least expensive, higher capacity. Slower transfer rate.

The concept of storage tiers plays an important role in Storage DRS feature introduced in
vSphere 5.0.

Units of Measuring Storage Capacity
Storage capacity (binary) is measured in orders of magnitude of a bit where the smallest
unit is 20 (1 bit) and a byte is 23. The next unit is 210 (kilobyte or KB), then 220
(megabyte or MB), and so on in the increment of 10 powers of base 2. The actual storage
capacity is based on International Electrotechnical Commission (IEC), which is in incre-
ments of 1,000 when you count from a kilobyte onward. The former is commonly used to
represent RAM capacity whereas the latter is used for disks.

Table 1.3 lists the units of storage capacity.

Table 1.3 Units of Storage Capacity

Unit Abbreviation Binary Value Disk Capacity

Bit Bit 20 1 bit 1 bit

Byte Byte 23 8 bits 8 bits

Kilobyte KB 210 1,024 bytes 1,000 bytes

Megabyte MB 220 1,024KB 1,000KB

Gigabyte GB 230 1,024MB 1,000MB

Terabyte TB 240 1,024GB 1,000GB

Petabyte PB 250 1,024TB 1,000TB

Exabyte EB 260 1,024PB 1,000PB

From the Library of raphael schitz

ptg7996124

Chapter 1 Storage Types8

NoTe

The units of measuring bandwidth are based on bit count per second in increments of 1,024,
and the abbreviation uses lowercase b to represent bits compared to uppercase B that repre-
sents bytes. For example, the bandwidth of 10 megabits per seconds is written as 10Mb/s or
10Mbps. It is a common oversight using b and B interchangeably. You must be careful to not
specify the wrong naming convention or you might end up getting eight times less or more
than you bargained for!

Permanent Storage Media Relevant to vSphere 5
ESXi 5 is installed on local disks, Storage Area Network (SAN)–presented LUNs, or
iSCSI storage–presented LUNs (see Chapters 2 through 4).

(Trivia: Boot from iSCSI is not supported by ESX/ESXi releases prior to 4.1.)

Supported Local Storage Media

Supported local storage media can be the following types:

 1. SCSI disks (parallel)

 2. Serial SCSI disks (SAS)

 3. Serial ATA disks (SATA)

 4. SD flash drives and USB keys (This applies to versions as early as ESXi 3.5
embedded/installable configurations.)

 5. Solid State Drives (SSD)

Shared Storage Devices

vSphere 5.0 requires shared storage for certain features to work—for example, High
Availability (HA), Distributed Resource Scheduler (DRS), vMotion, Storage vMotion,
Storage DRS, and so on.

Such shared storage, both Network Attached Storage (NAS) and block devices, must be on
VMware’s Hardware Compatibility List (HCL). Being listed there means that the devices
have been tested and certified to meet minimum performance criteria, have capability of
multipathing and failover, and also have possible support for certain VMware APIs such as
vSphere Storage APIs for Array Integration (VAAI) and vSphere Storage APIs for Storage
Awareness (VASA).

From the Library of raphael schitz

ptg7996124

History of Storage 9

A typical block storage device meeting VMware’s HCL requirement is comprised of the
following:

 1. One or more storage processors (SP)—also referred to as storage controllers.

 2. Each SP has two or more ports of varying connectivity types and speed (for example,
Fibre Channel, iSCSI). See Chapters 2 through 4 for further details.

 3. Some EMC storage arrays provide multiple SPs (referred to as directors) with
multiple ports on each director (for example, EMC DMX arrays provide multiple FA
directors with four ports on each).

 4. Back end of the SPs connect to one or more DAEs that house disks of various types
listed in Table 1.2.

 5. Some storage arrays connect the SPs to the DAEs via Fibre Channel Loop Switches.

Tips for Selecting Storage Devices

When you design a vSphere 5 environment, the choices you make for selecting storage
components are crucial to successful design and implementation. The following guidelines
and tips will help you make the right choices:

 1. Identify the list of applications to be virtualized.

 2. Identify the disk I/O criteria of these applications.

 3. Identify the bandwidth requirements.

 4. Calculate the disk capacity requirements for the applications’ data.

 5. Identify the SLAs for these applications.

Note that it is often more important to design for I/O peaks than for capacity. Inadequate
storage architecture is one of the most common sources of performance problems for
virtualized environments.

Summary
This chapter introduced you to storage, storage types in general, and storage used by
vSphere ESXi 5. Further details are provided in the next few chapters.

From the Library of raphael schitz

ptg7996124

This page intentionally left blank

From the Library of raphael schitz

ptg7996124

Chapter 2

Fibre Channel Storage
Connectivity

In the field of diplomacy, protocols are defined as “the set of rules which guide how an
activity should be performed.” Comparably, protocols in the field of technology are not
that far off; protocols in technology also guide how certain activities are performed!

This chapter provides an overview of Fibre Channel (FC) storage protocol and connec-
tivity and the subsequent two chapters cover Fibre Channel over Ethernet (FCoE) and
Internet Small Computer System Interface (iSCSI) protocols.

SCSI Standards and Protocols
SCSI (Small Computer System Interface) is a set of standards for physically connecting
and transferring data between computers and SCSI peripheral devices. These standards
define commands and protocols.

SCSI-2 and SCSI-3 Standards
SCSI-2 and SCSI-3 standards are governed by the T10 Technical Committee (see
http://www.t10.org/drafts.htm).

SCSI-2 is the name given to the second-generation SCSI standard and SCSI-3 is the
name for the third-generation SCSI Standard. However, the subsequent generations have
dropped the number “-3” from the SCSI standard. When SCSI-3 Architecture Model
(SAM) was revised, it became SCSI Architecture Model - 2 (SAM-2). In other words, there
is no SCSI-4 standard. Rather, revisions of SAM are used and the subsequent generations
are named SAM-2, SAM-4, and so on.

From the Library of raphael schitz

http://www.t10.org/drafts.htm

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity12

The chart in Figure 2.1 shows the SCSI Standards Architecture and related protocols.

Primary Commands (for all devices)
(SPC-2, SPC-3, SPC-4)

SSA-TL2

USB
Attached

SCSl
(UAS,

UAS-2)

IEEE
1394

Serial
Bus

Protocol
(SBP-2,
SBP-3)

Fibre
Channel

(FC)

Fibre
Channel
Protocol

(FCP,
FCP-2,
FCP-3,
FCP-4)Related

standards
and technical
reports (SDV,

PIP, SSM,
SSM-2, EPI)

SCSl
Parallel
Interface

(SPl-2, SPl-5)

SSA
SCSl-3
Protocol
(SSA-
S3P)

SSA-PH1
or SSA-

PH2

iSCSl

USBInternet

SAS
Protocol

Layer (SPL,
SPL AM1,

SPL-2,
SPL-3)
Serial

Attached
SCSI
(SAS,

SAS1.1,
SAS-2, SAS-
2.1, SAS-3)

Automa-
tion Drive
Interface–
Transport
Protocol

(ADT,
ADT-2)

SCSI over
PCIe
(SOP)

PCIe
Queuing
interface

(PQI)

PCI Express (PCIe)

Enclosure
Services Commands

(SES, SES AM1,
SES-2, SES-3)

Object-Based
Storage Device
(O SD, O SD-2)

Automation Drive
Interface–Commands
(ADC, ADC-2, ADC-3)

Controller
Commands
(e.g., RAID)

(SCC-2)

Multi-Media
Commands

(MmC-2, MMC-3, MMC-4,
MMC-5, MmC-6,

MmC-6/AM1)

Media Changer
Commands

(e.g., jukebox)
(SMC, SMC-2, SMC-3)

Stream
Commands

(e.g., tape-drive)
(SSC, SSC-2,

SSC-3, SSC-4)

Reduced
Block

Commands
(e.g., disk drive)

(RBC, RBC AM1)

Block Commands
(e.g., disk drive)
(SBC, SBC-2,

SBC-3)

NVM
Express

Architecture Model (SAM-2, SAM-4, SAM-5)

Figure 2.1 SCSI Standard Architecture

ESXi 5 mostly uses SCSI-2 standard. It also uses SCSI-3 with certain operations
and configurations. I call out which standard is used with which vSphere 5 functions
throughout this book.

Fibre Channel Protocol
Fibre Channel Protocol (FCP) is governed by the T11 Technical Committee (see
http://www.t11.org/t11/stat.nsf/fcproj?OpenView&Count=70 for a list of current drafts).

FCP is used on Fibre Channel networks of varying line ratings (currently ranging between
1 and 8Gb/s, but higher ratings are in the works; for example, 16 and 20Gb/s). The basic
element of a Fibre Channel connection is a frame. Figure 2.2 shows the structure of the
FC frame. This is somewhat comparable to Ethernet frames or IP packets.

It is important to understand the FC frame structure as it aids you in interpreting storage-
related messages listed in various vSphere logs discussed later in this book.

From the Library of raphael schitz

http://www.t11.org/t11/stat.nsf/fcproj?OpenView&Count=70

ptg7996124

SCSI Standards and Protocols 13

64 bytes
Optional
Header

2048 bytes
Payload

4 bytes

Start of
Frame

24 bytes

Frame
Header

4 bytes

End of
Frame

4 bytes

CRC Error
Check

2112 byte data field

CTL Destination
Address

Exchange ID Sequence
ID

Sequence
Count

Type Source
Address

Figure 2.2 Fibre Channel frame architecture

Each frame contains 2KB of data being transmitted surrounded by fields that guarantee
the integrity of the frame as well as information that helps the targets (that is, destinations)
and initiators (that is, sources) reassemble the data at either ends of the connection. These
fields are the following:

�� Start of frame (4 bytes)

�� End of frame (4 bytes)

�� Frame header (24 bytes)

�� CTL (Control field)

�� Source Address

�� Destination Address

�� Type

�� Sequence Count

�� Sequence ID

�� Exchange ID

From the Library of raphael schitz

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity14

The communication between the different entities in the FC network is referred to as
exchange, which is a number of sequences. Each sequence is a number of frames. To
transfer information, FC protocol follows this process:

�� Checks the address of the destination port (more on port types and addresses later in
this chapter)

�� Checks the possibility of connection between the source and destination ports using
logins

�� Breaks down protocol information (referred to as exchange) into information units
(referred to as sequences)

�� Break down sequences into parts small enough to fit into FC frames

�� Labels each frame with (refer to the frame header diagram in Figure 2.2)

�� Source port address

�� Destination port address

�� Sequence number

�� Protocol

�� Exchange ID, and so on

�� Moves sequences of frames to destination port

�� At the destination it does the following:

�� Based on the frame labels, it reassembles the frames data to re-create the infor-
mation units (also known as the sequences).

�� Based on the protocol, it puts the sequences together to re-create the protocol
information (also known as the exchange).

The basic elements of storage can be grouped as initiators, targets, and the network that
connects them. That network is also referred to as the Fabric in certain configurations.
These elements vary based on the storage protocol in use.

This chapter covers Fibre Channel (FC) initiators, targets, and fabrics. Chapters 3 and 4
cover FCoE and iSCSI, respectively.

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 15

Fibre Channel (FC) Initiator

Initiators are the endpoints on the storage network that initiate SCSI sessions with the
SCSI targets. Examples are SCSI HBA (Host Bus Adapter), FC-HBA, iSCSI Hardware
Initiator, and iSCSI Software Initiator configured or installed in each vSphere host. I cover
iSCSI initiators in Chapter 4.

FC initiators are the FC HBAs that are available in 1, 2, 4, and 8 Gbit/s port speeds and
can be a single port or dual port. Higher speeds are planned as well but not released yet as
of the date of this writing.

Some FC HBAs are in the form of mezzanine cards in blade servers. A variety of that is the
Fibre Channel Flex-Connect technology from HP.

FC-Port Identifiers

FC Ports have unique identifiers referred to as World Wide Port Name (WWPN). It is
an ID assigned that is guaranteed to be unique in the fabric and is based on an Organi-
zationally Unique Identifier (OUI), which is assigned by the Institute for Electrical and
Electronics Engineers (IEEE) registration authority. (See http://standards.ieee.org/
develop/regauth/oui/public.html.) Each FC HBA manufacturer registers its own OUI and
generates the WWPN based on that OUI.

Sample WWPN: 21:00:00:1b:32:17:34:c9

The bytes highlighted are the OUI.

To identify the registered owner of the OUI, search for that OUI (without the colons) at
the IEEE URL—for example, you could search for 001b32.

FC-Node Identifiers

FC Nodes have unique identifiers referred to as World Wide Node Name (WWNN).
These IDs are generated by the HBA manufacturer using their unique OUIs in the same
fashion described in WWPN in the previous section.

Sample initiator WWNN: 20:00:00:1b:32:17:34:c9

This sample was taken from the same HBA used in the WWPN example in the previous
section. Notice that the OUI is identical. In this example, the HBA is QLogic QLE2462
model.

Sample Target WWNN: 50:06:01:60:c1:e0:65:22

From the Library of raphael schitz

http://standards.ieee.org/develop/regauth/oui/public.html
http://standards.ieee.org/develop/regauth/oui/public.html

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity16

This sample was taken from a CLARiiON SP port. Notice that the target OUI bits are in
a different position than in the WWNN.

Locating HBA’s WWPN and WWNN in vSphere 5 Hosts

In the process of troubleshooting storage area network (SAN) connectivity or mapping out
an existing vSphere 5.0 host’s SAN connectivity, you need to identify the installed HBAs’
WWPNs and WWNNs. In this section I show you how to do that via the user interface
(UI) as well as the command-line interface (CLI).

Procedure Using the UI

To locate HBA’s WWPN and WWNN, you may use this procedure:

 1. Log on to the vSphere 5.0 host directly or to the vCenter server that manages the
host using the VMware vSphere 5.0 Client as a user with Administrator privileges.

 2. While in the Inventory — Hosts and Clusters view, locate the vSphere 5.0 host in
the inventory tree and select it.

 3. Navigate to the Configuration tab.

 4. Under the Hardware section, select the Storage Adapters option.

 5. Locate the HBAs with the Type column showing Fibre Channel.

 6. Select one HBA at a time and in the Details pane locate the WWN field. There, you
see the WWNN followed by the WWPN listed, separated by a space.

See Figure 2.3 for an example.

WWNN WWPN

Figure 2.3 Locating HBAs’ WWNN and WWPN using the UI

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 17

Procedures Using the CLI

Storage adapter properties can also be identified via the CLI. The CLI is available via
multiple facilities:

�� SSH—SSH access to the host is disabled by default. To enable it, you may follow
the procedure in the “Enabling SSH Host Access” section. If you do not wish to do
so, follow one of the next two options: vMA or vShpere CLI (vCLI).

�� vMA—vSphere Management Assistant version 5.0 is a SuSE Linux Enterprise Server
11 Virtual Appliance that is preinstalled with all you need to remotely manage one or
more ESXi 5.0 hosts including vCLI. For more information see http://www.vmware.
com/go/vma.

�� vCLI—vCLI is available for both Windows and Linux. You can install it on your
management workstation. The syntax for using the Linux version is the same as
that for the Windows version. Keep in mind that additional OS-specific commands
and tools available on Linux might not be available on Windows. I cover the Linux
version only, and you may apply the same procedure on Windows substituting
non-ESXCLI commands with relevant ones that are available on Windows. For
example, on Linux I might infrequently use sed and awk, which are not available on
Windows by default. You might get a Windows version of sed from http://gnuwin32.
sourceforge.net/packages/sed.htm and awk from http://gnuwin32.sourceforge.net/
packages/gawk.htm.

Enabling SSH Host Access

Access to the ESXi 5.0 host is not enabled by default. To enable it, follow this procedure:

 1. Log on to the vSphere 5.0 host directly or to the vCenter server 5.0 that manages the
host using the VMware vSphere 5.0 Client as a user with Administrator privileges.

 2. While in the Inventory—Hosts and Clusters view, locate the vSphere 5.0 host in the
inventory tree and select it.

 3. Navigate to the Configuration tab.

 4. Under the Software section, select the Security Profile option, as shown in
Figure 2.4.

From the Library of raphael schitz

http://www.vmware.com/go/vma
http://www.vmware.com/go/vma
http://gnuwin32.sourceforge.net/packages/sed.htm
http://gnuwin32.sourceforge.net/packages/sed.htm
http://gnuwin32.sourceforge.net/packages/gawk.htm
http://gnuwin32.sourceforge.net/packages/gawk.htm

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity18

Figure 2.4 Modifying the security profile

 5. Click Properties in the Services section in the right-hand side pane. The dialog
shown in Figure 2.5 displays.

Figure 2.5 Modifying the service properties

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 19

 6. Click SSH under the list of services displayed in the resulting dialog.

 7. Click Options at the lower-right corner of the dialog. The dialog shown in
Figure 2.6 displays.

Figure 2.6 SSH options

 8. If you want to temporarily enable SSH access to the host, the radio button Start and
stop manually is selected by default; click the Start button, click OK, and then click
OK again and stop here. If you want to permanently enable SSH access to the host,
proceed to the next step.

 9. Select the Start and stop with host option.

 10. If you want to enable SSH access to the host when the SSH port is enabled, on the
ESXi Firewall, without having to manually start the SSH service, select the Start
automatically if any ports are open, and stop when all ports are closed option.

Procedure Using SSH

To locate HBA’s WWPN and WWNN using SSH, you may follow this procedure:

 1. Connect to the vSphere 5.0 host using an SSH client.

 2. If root SSH access is disabled, log on using the user account assigned to you; then
use su to elevate your privileges to root. Notice that your shell prompt changes from
$ to #. (Note that sudo is no longer available in ESXi 5.)

 3. Run the following command if you are using QLogic FC-HBAs:

grep adapter- /proc/scsi/qla2xxx/*

This returns an output similar to Figure 2.7.

From the Library of raphael schitz

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity20

Figure 2.7 Locating WWPN/WWNN via the CLI

The first line shows the first HBA’s WWNN between node= and the colon. In this
example, the WWNN is 2000001b321734c9. The value after the colon is the Port ID,
which I discuss later in this chapter.

The second line shows the first HBA’s WWPN between the port= and the colon. In this
example, the WWPN is 2100001b321734c9.

The third and fourth lines show the WWNN and WWPN of the second HBA/Port
respectively.

If you are using Emulex HBAs, substitute qla2xxx with the node relevant to your HBA’s
driver — for example, lpfc820 — but the command that searches for the string Port
instead of adapter- is a bit different, as listed here:

fgrep Port lpfc820/5
Portname: 10:00:00:00:c9:6a:ff:ac Nodename: 20:00:00:00:c9:6a:ff:ac

In this example, the WWPN and the WWNN are listed on the same line as Portname
and Nodename, respectively. Alternatively, you may run this command (output shown in
Figure 2.8):

esxcfg-mpath -b |grep WWNN |sed ‘s/.*fc //;s/Target.*$//’

Figure 2.8 Alternative command to identify HBAs WWPN and WWNN

This truncates the output up to the first occurrence of the string fc and removes the
trailing text starting with Target. I discuss identifying the targets IDs in the next section.

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 21

The output shows the HBAs’ (Adapters) WWNN and WWPN associated with all paths
to the attached storage devices (read more about paths and multipathing in Chapter 7,
“Multipathing and Failover”).

In this example, we have two HBAs with the following names:

First HBA:

WWNN: 20:01:00:1b:32:37:34:c9

WWPN: 21:01:00:1b:32:37:34:c9

Second HBA:

WWNN: 20:00:00:1b:32:17:34:c9

WWPN: 21:00:00:1b:32:17:34:c9

Procedure Using vMA (vSphere Management Assistant) 5.0

This procedure assumes that you have already installed and configured vMA 5.0 as
outlined in documentations available at http://www.vmware.com/go/vma where you can
also find the link to download it:

 1. Log on to vMA as vi-admin or a user that can use sudo (that is, added to the sudoers
file using visudo editor).

 2. The first time you use vMA after a fresh installation, you need to add each ESXi host
you plan to manage via this appliance (Figure 2.9).

Figure 2.9 Adding a managed host

 3. The command to add a managed host is

vifp addserver <ESXi host name> --username root --password <root’s
password>

 4. Verify that the host has been successfully added

vifp listservers

You should see the host name you just added listed along with its host type being
ESXi (Figure 2.9).

From the Library of raphael schitz

http://www.vmware.com/go/vma

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity22

 5. Repeat steps 2 and 3 for each host you want to manage via this vMA. Set the ESXi
server as the current managed target host (see Figure 2.10).

Figure 2.10 Setting the target managed host

The command to accomplish that is

vifptarget –s <ESXi host name>

Notice that the prompt changes to include the managed target ESXi Host name.

From this point on, all subsequent commands apply to that host without
the need to specify the host name with each command. You may repeat this
command using another host name later when you want to manage a different
host.

You can use the CLI to locate the HBA’s WWPN and WWNN as shown in
Figure 2.11.

Figure 2.11 Locating the HBA’s WWPN and WWNN using CLI

 6. To locate the HBA’s WWPN and WWNN, run the following command:

esxcfg-mpath -b |grep WWNN |sed ‘s/.*fc //;s/Target.*$//’

Note

You cannot use the procedure listing the proc node for the HBAs because these nodes are
not available remotely.

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 23

Procedure Using Linux vCLI

Using vCLI is similar to using vMA but without fast-pass (FP) facility, which provides vifp
and vifptarget commands. This means that you have to provide the host’s credentials with
each command, which include --server, --username, and --password in addition to
the rest of the command options used in section “Procedure Using vMA 5.0.”

For example, the command would be

esxcfg-mpath -b --server <host name> --username root --password <password>
|grep WWNN |sed ‘s/.*fc //;s/Target.*$//’

tIP

You may use the --credstore option (variable VI_CREDSTORE) to avoid providing the
credentials details with every command you run against the ESXi hosts.

The name of the credential store file defaults to <HOME>/.vmware/credstore/
vicredentials.xml on Linux and <APPDATA>/VMware/credstore/vicredentials.xml
on Windows.

See the vMA 5.0 user guide for additional details.

FC targets

Targets are the SCSI endpoints that wait for the initiators commands and provide the
required input/output (I/O) data transfer to/from them. This is where LUNs (Logical
Units) are defined and presented to the initiators.

Examples of SCSI targets are Storage Arrays’ Controllers (also known as Processors) ports.
These ports can be FC, iSCSI, FCoE, or Serial Attached Storage (SAS) ports. I discuss FC
targets in this chapter and cover FCoE and iSCSI targets in Chapters 3 and 4, respectively.

FC targets are the FC ports on one or more Storage Array Controllers/Processors (SPs).
These ports have globally unique identifiers like those we discussed in the “FC Initiator”
section. In most configurations, a given Storage Array uses a single WWNN whereas each
SP port has a unique WWPN.

Most storage vendors Original Equipment Manufacturer (OEM) the FC ports from an
original manufacturer and the former assign WWNN and WWPN using their own
registered OUI in a similar fashion as those assigned to FC HBAs discussed in the “FC
Initiators” section.

Storage array vendors have different algorithms for generating the WWPNs of their SP
ports. Table 2.1 lists some of the patterns that I have identified over the years of reading

From the Library of raphael schitz

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity24

through hundreds of vSphere logs and with help from storage partners. The table lists the
WWPNs of the SP ports where the nonsignificant bytes are replaced with the letter X
leaving the relevant bytes to show the pattern (with the exception of IBM DS4000 family
where I masked the nonsignificant bytes as zeros).

table 2.1 Identifying SP Port Association with Each SP

Array Family SP Port ID WWPN

EMC CLARiiON CX SPA0 xx:xx:xx:60:xx:xx:xx:xx

SPA1 xx:xx:xx:61:xx:xx:xx:xx

SPA2 xx:xx:xx:62:xx:xx:xx:xx

SPA3 xx:xx:xx:63:xx:xx:xx:xx

SPA4 xx:xx:xx:64:xx:xx:xx:xx

SPA5 xx:xx:xx:65:xx:xx:xx:xx

SPA6 xx:xx:xx:66:xx:xx:xx:xx

SPA7 xx:xx:xx:67:xx:xx:xx:xx

SPB0 xx:xx:xx:68:xx:xx:xx:xx

SPB1 xx:xx:xx:69:xx:xx:xx:xx

SPB2 xx:xx:xx:6A:xx:xx:xx:xx

SPB3 xx:xx:xx:6B:xx:xx:xx:xx

SPB4 xx:xx:xx:6C:xx:xx:xx:xx

SPB5 xx:xx:xx:6D:xx:xx:xx:xx

SPB6 xx:xx:xx:6e:xx:xx:xx:xx

SPB7 xx:xx:xx:6F:xx:xx:xx:xx

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 25

Array Family SP Port ID WWPN

HDS Lightning (95XXv) SP0A xx:xx:xx:xx:xx:xx:xx:90

SP0B xx:xx:xx:xx:xx:xx:xx:91

SP0C xx:xx:xx:xx:xx:xx:xx:92

SP0D xx:xx:xx:xx:xx:xx:xx:93

SP1A xx:xx:xx:xx:xx:xx:xx:94

SP1B xx:xx:xx:xx:xx:xx:xx:95

SP1C xx:xx:xx:xx:xx:xx:xx:96

SP1D xx:xx:xx:xx:xx:xx:xx:97

HP EVA SPA1 xx:xx:xx:xx:xx:xx:xx:x9

SPA2 xx:xx:xx:xx:xx:xx:xx:x8

SPB1 xx:xx:xx:xx:xx:xx:xx:xD

SPB2 xx:xx:xx:xx:xx:xx:xx:xC

IBM FAStT/DS4000 family See note 20:0X:00:00:00:00:xx

See note 20:0Z:00:00:00:00:zz

Compare the X and Y where the lower value indicates the primary SP and the higher
one indicates the secondary SP. Also, Compare xx and zz where the higher the value, the
higher SP port number.

Decoding eMC Symmetrix WWPN
To decode the EMC Symmetrix/DMX WWPN is a bit tricky. Figure 2.12 helps explain
this process.

From the Library of raphael schitz

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity26

5 3 9884 14 C5 0 0 0 846

0100 0100 01011000 10011000 0011

00 01 00 0000 0100 10 01 10 01 1111 10

1 12 6 0 d 7

10

0

0

0

1

1 1

1

0

0

1

System Serial Number in Hex 112160d7 = 287400151

1st bit of Processor Number

Director Number - 1

2nd bit of Processor Number

Port Number

Processor A

Processor B

Processor C

Processor D0 0 00 01

00010011

Figure 2.12 Decoding EMC Symmetrix WWPN

The Symmetrix/DMX FA Director port WWPN begins with 5006048 (because EMC’s
OUI is 006048). Each word in the diagram is converted from hex to decimal in the box
directly connected to it. For example, the first word after the OUI has a value of “0x4” hex
which translates to “0100” binary.

The first bit combined with the bit labeled “2nd bit of Processor Number” is used to
identify which processor it is on the FA Director.

Note

FA Director Boards have two sides with two processors on each making total of four
processors per Director Board (labeled processors A, B, C, and D in Figure 2.12).

The number of FA Ports is four or eight depending on the options ordered with the array.

When the first bit (or first half) of the processor number is not set (the value is 0), the
processor ID is A or B, and when it is set (the value is 1) the ID is C or D. The second bit
differentiates which processor of the pair it is.

The identification of the processors is shown in Figure 2.12 and is also listed in Table 2.2.

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 27

table 2.2 Calculating FA Director Processor Number

First Bit (First Half of ID) Second Bit (Second Half of ID) Processor Number

0 0 Processor A

0 1 Processor B

1 0 Processor C

1 1 Processor D

Locating targets’ WWNN and WWPN Seen by vSphere 5 Hosts
Targets’ WWPNs and WWNNs can be located using similar approaches to what’s
covered in the “Locating HBA’s WWPN and WWNN in vSphere 5 Hosts” section.

Procedure Using the UI

To locate targets’ WWNN and WWPN using the UI, you may follow this procedure:

 1. Log on to the vSphere 5.0 host directly or to the vCenter server that manages the
host using the VMware vSphere 5.0 Client as a user with Administrator privileges.

 2. While in the Inventory — Hosts and Clusters view, locate the vSphere 5.0 host in
the inventory tree and select it.

 3. Navigate to the Configuration tab.

 4. Under the Hardware section, select the Storage Adapters option.

 5. Select one of the HBAs whose Type column is Fibre Channel.

 6. Under the Details pane, click the Paths button.

 7. Click the LUN column to sort by the LUN number.

 8. The UI should look similar to Figure 2.13:

a. The target column shows the WWNN and WWPN separated by a space.

b. Each row lists the target ID for a separate path from the selected HBA to a
LUN.

From the Library of raphael schitz

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity28

Figure 2.13 Locating targets’ WWPN and WWNN

 9. Repeat steps 5 through 8 for each HBA.

An Alternative Procedure Using the UI

To list all targets accessible by all HBAs in the vSphere 5.0 host, you may use the
following procedure, which lists all paths to a given LUN and then identifies the target IDs:

 1. Log on to the vSphere 5.0 host directly or to the vCenter server that manages the
host using the VMware vSphere 5.0 Client as a user with Administrator privileges.

 2. While in the Inventory — Hosts and Clusters view, locate the vSphere 5.0 host in
the inventory tree and select it.

 3. Navigate to the Configuration tab.

 4. Under the Hardware section, select the Storage option.

 5. Under the View field, click the Devices button.

 6. Under the Devices pane, select one of the SAN LUNs (see Figure 2.14). In this
example, its name starts with DGC Fibre Channel Disk.

Figure 2.14 Listing datastores

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 29

 7. Select Manage Paths in the Device Details pane.

 8. Figure 2.15 shows the LUN details. In this example, I sorted on the Runtime Name
field in ascending order:

�� The Paths section shows all available paths to the LUN in the format.

�� Runtime Name: vmhbaX:C0:Ty:Lz where X is the HBA number, y is the tar-
get number, and z is the LUN number. More on that later in this chapter.

�� Target: Both the WWNN followed by the WWPN of the target separated by
a space.

 9. You can also select one of the paths at a time. The path details displays in the lower
pane in the Fibre Channel field:

�� Adapter: the HBA’s WWNN then WWPN separated by a space

�� Target: The SP WWNN then WWPN.

Figure 2.15 Listing paths to the SAN LUN

In this example, the targets have the IDs listed in Table 2.3.

table 2.3 List of Target IDs

HBA Number target Number target WWNN target WWPN

2 0 50:06:01:60:c1:e0:65:22 50:06:01:60:c1:e0:65:22

2 1 50:06:01:60:c1:e0:65:22 50:06:01:68:41:e0:65:22

3 0 50:06:01:60:c1:e0:65:22 50:06:01:61:41:e0:65:22

3 1 50:06:01:60:c1:e0:65:22 50:06:01:69:41:e0:65:22

From the Library of raphael schitz

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity30

Notice that in this example the WWNN is the same for all targets whereas the WWPNs
are unique.

Using Table 2.1, we can identify which WWPN belongs to which SP port on the array as
listed in Table 2.4.

table 2.4 Mapping Targets to the SP Ports

HBA Number target Number SP Number Port Number

2 0 A 0

2 1 B 0

3 0 A 1

3 1 B 1

SAN topology
SAN Topology is a term that refers to how objects are connected in the Storage Area
Network.

Fibre Channel (FC)

FC is the infrastructure and the medium that connects storage devices utilizing FC
Protocol.

FC Layers

Fibre Channel is comprised of five layers as shown in Figure 2.16 .

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 31

La
ye

r 2
 Network

FC Fabric
FC Zoning

Registered State Change Notification
(RSCN)

Protocol Mapping
LUN Masking

La
ye

r 4

Data Link
Fibre Channel Encoding

(8 bytes/10 bytes)

Common Services
Encryption, RAID algorithms

Physical
Cabling, Connectors

La
ye

r 0

La
ye

r 3

La
ye

r 1

Figure 2.16 Fibre channel layers

FC Ports

FC ports vary based on their function in the FC network. They can be one of the types
listed in Table 2.5.

table 2.5 FC Port Types

FC Port type expanded Name Description

N-Port Node Port Node port that connects nodes with each other
using Point-to-Point topology and also connects
nodes to the fabric via FC switch ports

NL-Port Node Loop Port Node ports when they connect via Arbitrated
Loop (FC-AL) topology

F-Port Fabric Port Switch port that connects to Nodes N-Port in a
Point-to-Point topology

FL-Port Fabric Loop Port Switch port that connects to Nodes NL-Port in
an Arbitrated Loop Topology

e-Port Expansion Port Switch port that connects FC switches forming
an ISL (Inter-Switch Link)

te-Port Trunking E-Port Only on Cisco switches; connects FC switches
and routes between VSANs

From the Library of raphael schitz

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity32

FC network connects ports with or without FC switches. The way the ports are connected
with each other is defined by the topology.

FC topology

FC topologies describe how the various ports are connected together. There are three
major FC topologies: Point-to-Point (FC-P2P), Arbitrated Loop (FC-AL), and Switched
Fabric (FC-SW).

FC-P2P (Point-to-Point)

FC Point-to-Point topology is where two devices are connected directly to each other as
shown in Figure 2.17.

SP-Port

HBA

Storage Array

N-Port

N-Port

ESXi Host

Figure 2.17 Point-to-Point topology

An example of FC-P2P topology is connecting an ESXi host’s FC HBA directly to
a Storage Array’s SP port. Some storage arrays are supported by VMware with this
topology. Check the HCL for the Array Test Configuration option FC Direct Attached.

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 33

When you configure FC-HBA BIOS, this is the setting to select regardless of using this
topology or Switched Fabric.

FC-AL (Arbitrated Loop)

Arbitrated Loop topology is similar to the Token Ring networking where all devices are
connected in a loop or a ring, as shown in Figure 2.18.

NL-Port

Device 4

NL-Port

Device 2

NL-Port

Device 3

Device 1

NL-Port

Figure 2.18 FC-AL topology

Adding or removing any device breaks the ring, and all devices are affected. This topology
is not supported by VMware.

Some models of HP EVA arrays use FC Loop Switches to connect the SPs to the Disk
Array Enclosures (DAEs), as shown in Figure 2.19.

From the Library of raphael schitz

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity34

NL-Port

Device 4

Loop Switch NL-Port

Device 2

NL-Port

Device 3

Device 1

NL-Port

Figure 2.19 FC Loop Switch

This solution helps avoid breaking the loop when adding or removing devices.

Switched Fabric

Switched Fabric configuration is when nodes (N-port or NL-Port) connect to FC switches
(see Figure 2.20).

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 35

N-Port

Device 4

Device 1

N-Port

N-Port

Device 2

N-Port

Device 3

F-Port F-Port

F-Port

F-Port

Fabric

Figure 2.20 FC switched fabric configuration

In this configuration, switches are connected to each other via Inter-Switch-Links
(ISLs) to form a Fabric. Design decisions for switch connectivity are covered later in the
“Designing Storage with No Single Points of Failure” section.

Fabric Switches
The FC Fabric is composed of one or more interconnected FC switches that share a set
of services provided by the switches’ fabric OS. Some of these services are Name Services,
RSCN, FDMI, and FLOGI.

Name Service

Maintains a list of attributes of all hosts and storage devices currently connected to the
fabric, or that were connected to it sometime in the past, and that have successfully regis-
tered their own port information.

Examples of attributes maintained by the name service are WWPN, WWNN, and Port
Aliases.

From the Library of raphael schitz

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity36

Registered State Change Notification

Registered State Change Notification (RSCN) is a Fibre Channel service that informs
hosts about changes in the fabric.

State Change Notifications are sent to all registered nodes (within the same zone) and
reachable fabric switches in case of major fabric changes. This refreshes the nodes’
knowledge of the fabric so that they may react to these changes.

RSCNs are implemented on the fabric switches. This is part of Layer 2 of the Fibre
Channel model (Network Layer).

Events triggering RSCNs are

�� Nodes joining or leaving the fabric

�� Switches joining or leaving the fabric

�� Switch name change

�� New zone enforcement

�� Switch IP address change

�� Disks joining or leaving the fabric

Fabric-Device Management Interface

Fabric-Device Management Interface (FDMI) is a Fibre Channel service that enables
management of devices such as Fibre Channel HBAs through in-band (via the storage
network) communications. This service complements name service and management
service functions of the Fabric Switch. This service extracts information from connected
nodes and stores it in a persistent database.

Examples of extracted information are

�� Manufacturer, model, and serial number

�� Node name and node symbolic name

�� Hardware, driver, and firmware versions

�� Host operating system (OS) name and version number

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 37

Fabric Login

The Fabric Login (FLOGI) service receives and executes login requests from nodes
connected to the fabric.

FC Zoning
FC Fabric can experience large numbers of events that can be disruptive to entities not
involved in these events. In addition, a certain level of security must be considered while
designing the FC SAN (Storage Area Network). Main elements of FC SAN security are
Zoning and LUN Masking.

Zoning enables you to partition the FC Fabric into a smaller subset for better security and
easier management. In addition, fabric events occurring on one zone are isolated to that
zone only and the rest of the zones are spared the noise.

Zone types

Zoning is available in two types: Soft Zoning and Hard Zoning. Zoning combines the
following attributes:

�� Name—The name given to the zone

�� Port—The initiator, target, or switch port that is a member of this zone

Fabric switches group multiple zone definitions into one or more ZoneSets. However, only
one ZoneSet can be active at a time. Figure 2.21 shows a logical representation of two
zones with separate members. In this example, Node 1 and Node 2 can only access SPA
on the storage array whereas Node 3 and Node 4 can only access SPB of the same storage
array. Depending on the entities that make up the zone definition, zone types can be
classified as soft or hard zones.

From the Library of raphael schitz

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity38

Node 3

Yellow Zone

Fabric Switch

Green Zone Node 4Node 1

Node 2

Storage Array

SPA SPB

Figure 2.21 Zoning logical diagram

Soft Zoning

The fabric name service allows each device to query the addresses of all other devices. Soft
zoning restricts the fabric name service so that it shows only an allowed subset of devices.
Effectively, when a node that is a member of a soft zone looks at the content of the fabric,
it only sees the devices that belong to that soft zone.

The addresses listed in the soft zone are any of the following:

�� Initiators’ WWPN.

�� Targets’ WWPN.

�� Aliases of the initiators’ or targets’ WWPNs.

�� Using aliases simplifies identification of the various WWPNs by providing
descriptive names to the complex WWPNs and makes it easier for SAN admins to
select the correct members of the zones.

In the event of a switch port failure, reconnecting the affected node to another port in
the switch or the fabric allows the node to reconnect to the rest of the zone members.

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 39

However, if the node’s HBA fails, replacing it requires a zone modification to use the
new HBA’s WWPN instead of that of the failed one. Figure 2.22 shows a logical repre-
sentation of soft zones. Here, you see the members of the zone are defined by the aliases
assigned to the initiators ports and the target ports.

Node 3

Yellow Zone

Fabric Switch

Green Zone Node 4Node 1

Node 2

Storage Array

SPA SPB

Node1
Node2

SPA-Port2

Node3
Node4

SPA-Port2

Port1 Port2 Port1 Port2

Figure 2.22 Soft zoning

Hard Zoning

Hard zoning is a similar concept to soft zoning with the difference that switch ports are
used as members of the zones instead of the nodes’ WWPNs. This means that whichever
node connected to a switch port in a given zone can access devices connected to any of the
ports in that are members of that zone. Disconnecting that node from the switch port and
connecting a different node to that port permits the latter node to access all ports in that
zone without any zone modifications.

Figure 2.23 shows a logical representation of hard zones. Here, you see the members of
the zone are defined by the physical switch ports to which the initiators and targets ports
are connected.

From the Library of raphael schitz

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity40

Node 3

Yellow Zone

Fabric Switch

Green Zone Node 4Node 1

Node 2

Storage Array

SPA SPB

Port5
Port6
Port7

Port4
Port8
Port9

Port1 Port2 Port1 Port2

Port7 Port8

Port6

Port5 Port4

Port9

Figure 2.23 Hard zoning

Multi Initiator Zoning Versus Single Initiator Zoning

Based on the entities included in a zone configuration the can be grouped as

�� Single Initiator—Single Target Zones —This type includes two nodes only: an
initiator and a target. It is the most restrictive type and requires more administrative
efforts. The advantage of this type is limiting the RSCNs to a single target and a
single initiator and the fabric in between. It results in less disruption to other initi-
ators due to event originating from members of the zone. This is recommended by
most of VMware’s storage partners.

�� Single Initiator—Multiple Target Zones —This is similar to the previous type
but with more targets in the zone. This is recommended by some of VMware’s
storage partners.

�� Multi-Initiator Zones —This type includes multiple initiators and multiple targets.
This is not recommended by VMware as it exposes all nodes in the zone to RSCNs
and other events originating from any of the nodes in the zone. Although this has the
least effect on administrative efforts, it is the most disruptive configuration and must
be avoided in production environments.

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 41

Note

VMware recommends single initiator zoning but single-initiator—multi-target zoning is
also acceptable unless the storage vendor does not support it.

Designing Storage with No Single Points of Failure
Storage is a critical element of vSphere 5.0 environment. If it becomes unavailable, all
virtual machines residing on it suffer outages that can be very costly to your business. In
order to avoid unplanned outages, you must design your storage without single points of
failure.

Additional aspects of Business Continuity/Disaster Recovery (BC/DR) are covered later
in this book.

SAN Design Guidelines

The basic Fibre Channel SAN design elements include

�� FC Host Bus Adapters

�� FC Cables

�� Fabric Switches

�� Storage Arrays and Storage Processors

I share some sample design choices over the next few pages and point out the points of
failure in a gradual fashion until we build the best environment possible.

Design Scenario 1

In this scenario, each ESX host has a single HBA with a single port and one port from one
of the two SPs are all connected to a single Fabric Switch (see Figure 2.24).

From the Library of raphael schitz

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity42

Host A

HBA0

Host B

HBA1

SPA SPB

Active/Passive Storage Array

1 2 1 2

FC Switch

Figure 2.24 Design 1—All points

This is the worst design that can possibly exist. Every element in the design is a single
point of failure. In other words, I would call this All Points of Failure!

The points of failure include

�� If the FC switch fails, both hosts lose access to the Storage Array.

�� If the HBA in one of the hosts or its cable fail, that host loses access to the Storage
Array.

�� If the cable connecting SPA Port 1 to the FC switch fails, both hosts lose access to
the Storage Array.

�� If any of the connected ports on the FC switch fails, the node connected to that port
loses access to the FC switch.

�� If SPA fails, both hosts lose access to the Storage Array.

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 43

Design Scenario 2

The same as Design 1 (see Figure 2.24) with the addition of a link between SPA port 2 and
the FC switch. (See Figure 2.25.)

Host A

HBA0

FC Switch

Host B

HBA1

SPA SPB

Active/Passive Storage Array

1 2 1 2

Figure 2.25 Design 2—Multiple points of failure

There are redundant connections to the fabric switch from SPA. However, SPA itself is a
point of failure. All other components are still points of failure as described in Design 1.

Design Scenario 3

In this scenario, the storage array is no longer a point of failure because there is a link from
each SP to the fabric switch. The remaining elements are still points of failure.

Each host now has a path to each SP with a total of two paths (see Figure 2.26).

From the Library of raphael schitz

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity44

Host A

HBA0

FC Switch

Host B

HBA1

SPA SPB

Active/Passive Storage Array

1 2 1 2

Figure 2.26 Design 3—Fewer points of failure

Design Scenario 4

In this scenario, each host has a dual port HBA but everything else remained the same.
Even though on the HBA port level there is redundancy, the HBA itself can still fail and
with it both HBA ports would fail leaving the host with no SAN connectivity. The fabric
switch is still a point of failure. (See Figure 2.27.)

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 45

Host B

SPA SPB

1 2 1 2

Active/Passive Storage Array

Host A

HBA0 HBA1 HBA0 HBA1

FC Switch

Figure 2.27 Design 4—Still a few points of failure

Design Scenario 5

Now, each host has two separate single port HBAs (see Figure 2.28). This eliminates the
HBAs and the Storage Array’s SPs as points of failure, leaving us with the fabric switch as
the only remaining point of failure.

Each host still has four paths to the storage array because each HBA can access SPA1 and
SPB1.

From the Library of raphael schitz

ptg7996124

Chapter 2 Fibre Channel Storage Connectivity46

Host B

SPA SPB

1 2 1 2

Active/Passive Storage Array

Host A

HBA0 HBA0 HBA1

FC Switch

HBA1

Figure 2.28 Design 5—One point of failure remaining

Design Scenario 6

Now, we have fully redundant fabric by adding a second FC switch (see Figure 2.29). Each
host still has four paths to the storage array. However, these paths have no single points of
failure.

From the Library of raphael schitz

ptg7996124

SCSI Standards and Protocols 47

Host B

SPA SPB

1 2 1 2

Active/Passive Storage Array

Host A

HBA0 HBA0 HBA1

FC Switch FC Switch

HBA1

Figure 2.29 Design 6—Fully redundant fabric

The Design Scenarios 1–6 are overly simplified for the purpose of illustrating the various
combinations. Actual FC fabric design would include multiple FC switches connected to
form two separate fabrics. Furthermore, switches in each fabric would be connected as
edge switches and core switches.

Summary

vSphere 5.0 utilizes SCSI-2 and SCSI-3 standards and supports block storage protocols
FC, iSCSI, and FCoE. This chapter dealt with FC protocol and FC SAN. I discussed how
to design Fibre Channel connectivity without single points of failure. I also explained in
detail FC initiators and targets and how to identify each. The next two chapters cover
FCoE and iSCSI protocols, respectively.

From the Library of raphael schitz

ptg7996124

This page intentionally left blank

From the Library of raphael schitz

ptg7996124

Chapter 3

FCoE Storage Connectivity

FCoE (Fibre Channel over Ethernet)
Fiber Channel over Ethernet, or FCoE (pronounced Ef-See-Oh-Ee), is an encapsulation
of FC frames over Ethernet networks. The spec is governed by the T11 committee, which
is part of the INCITS (InterNational Committee for Information Technology Standards).
It is defined in T11 FC-BB-5 standard (Fibre Channel BackBone — 5) available at http://
www.t11.org/ftp/t11/pub/fc/bb-5/09-056v5.pdf (later revisions might exist by the time this
book is published).

FCoE maps FC directly over Ethernet but is independent of the Ethernet forwarding
scheme. The spec replaces layers 0 and 1 of the FC stack (see Chapter 2, “Fibre Channel
Storage Connectivity”), which are the Physical and the Data Link layers, with Ethernet.
Simply put, FCoE utilizes Ethernet (10GigE or faster) as a backbone for FC. It provides
a loss-less transport over Ethernet even though Ethernet itself is prone to errors and
dropped frames.

The FCoE encapsulation (see Figure 3.1) is somewhat like the childhood toy you may have
had which is a figurine nested within another which is in turn nested within a third one.
Here, the FC frame is encapsulated within the FCoE frame. The latter is encapsulated
within an Ethernet frame.

The encapsulated FC frame architecture is unmodified from what I covered in Chapter 2.

From the Library of raphael schitz

http://www.t11.org/ftp/t11/pub/fc/bb-5/09-056v5.pdf
http://www.t11.org/ftp/t11/pub/fc/bb-5/09-056v5.pdf

ptg7996124

Chapter 3 FCoE Storage Connectivity50

Fr
am

e
C

he
ck

Se
qu

en
ce

Ethernet Frame

EO
F

Et
he

rn
et

 H
ea

de
r

FC FrameFC
oE

 H
ea

de
r

FC
 H

ea
de

r

CR
C

EO
FFC Payload

FCoE Frame

Figure 3.1 FCoE encapsulation

Figure 3.2 shows the architecture of the FCoE frame within an Ethernet frame with the
following structure:

It starts with the Destination and Source MAC address fields followed by IEE 802.1Q
tag (more on VLAN requirements later). Then an Ethernet Type field with a value of
FCoE (hex value is 0x8906) followed by the Version field. The start of the Frame (SOF)
field follows some reserved space, then the Encapsulated FC Frame and the End of Frame
(EOF) field. The Ethernet FCS (Frame Check Sequence) is at the end of the FCoE frame.

Reserved
Reserved
Reserved

Reserved

Reserved

Source MAC Address

VersionEthernet Type=FCoE
IEEE 802.1Q Tag

Encapsulated.FC.Frame

EOF

SOF

Ethernet FCS (Frame Check Sequence)

Destination MACAddress

Figure 3.2 FCoE frame architecture

From the Library of raphael schitz

ptg7996124

FCoE Initialization Protocol 51

Because the encapsulated FC frame payload can be as large as 2.2 KB, the Ethernet frame
has to be larger than 1500 bytes. As a result, Ethernet mini Jumbo Frames (2240 bytes) are
used for FCoE encapsulation.

NotE

FCoE runs directly on Ethernet (not on top of TCP or IP like iSCSI) as a Layer 3 protocol
and cannot be routed. Based on this fact, both initiators and targets (native FCoE targets)
must be on the same network.

If native FC targets are accessible via FCoE switches, the latter must be on the same
network as the FCoE initiators.

FCoE Initialization Protocol
FCoE Initialization Protocol (FIP) is an integral part of the FCoE protocol. It is used to
discover FCoE-capable devices connected to an Ethernet network and to negotiate their
capabilities and MAC addresses for use for further transactions.

The FIP header has its own Ethernet Type FIP (0x8914) as well as an encapsulated FIP
operation (for example, Discovery, Advertise). This is different from the FCoE Ether
Type listed earlier. Compared to FCoE frames, FIP frames describe a new set of protocols
that do not exist in native Fibre Channel whereas FCoE frames encapsulate native FC
payloads.

There are two types of FCoE endpoints:

�� End-Nodes (ENodes) — FCoE Adapters are the FCoE endpoints on the hosts’
side. I expand on this further in the “FCoE Initiators” section.

�� FCoE Forwarders (FCF) — As shown in Figure 3.3, FCoE Forwarders are Dual
Stack Switches (understand both FC and Ethernet). These switches connect to FC
switches using an E_Port type (Expansion Port), which is an ISL (Inter-Switch-
Link). In addition, they connect to other Ethernet switches and routers natively.

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity52

N_Port

N_Port

E_Port
E_Port

FCF
FCF

ENode

F_Port

F_Port

SAN A SAN B

FC Switch

LAN

ESXi 5 Host ESXi 5 Host

FC Switch

FC Storage
Array

ENode

E_Port

E_Port

Figure 3.3 FCoE endpoints connectivity

FIP as a control protocol is designed to establish and maintain virtual links between pairs
of FCoE devices: ENodes (FCoE Initiators) and FCFs (Dual Stack Switches).

The process of establishing these virtual links is outlined in the following steps and is illus-
trated in Figure 3.4.

From the Library of raphael schitz

ptg7996124

FCoE Initialization Protocol 53

ENode FCF

VLAN
Discovery

VLAN
Discovery

FCF
Discovery

FCF
Discovery

FLOGI and
FDISC

FLOGI and
FDISC

ACCEPT

FC
COMMAND

FC
COMMAND
RESPONSE

SOLICITATION

ADVERTISEMENT

FCOE
PROTOCOL

FIP

Figure 3.4 Establishing virtual links
(Image courtesy http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/
white_paper_c11-560403.html)

 1. FIP discovers FCoE VLANs and remote virtual FC Interfaces.

 2. FIP performs virtual link initialization functions (similar to native FC equivalents):

a. FLOGI: Fabric Login

b. FDISC: Fabric Discovery

c. ELP: Exchange Link Parameters

After establishing the virtual link, FC payloads can be exchanged on that link. FIP remains
in the background to perform virtual link maintenance functions. It continuously verifies
reachability between the two virtual FC interfaces on the Ethernet network. It also offers
primitives to delete the virtual link in response to administrative actions.

From the Library of raphael schitz

http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/white_paper_c11-560403.html
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/white_paper_c11-560403.html

ptg7996124

Chapter 3 FCoE Storage Connectivity54

FCoE Initiators
To use FCoE, your vSphere host should have an FCoE Initiator. These initiators are of
two types: Hardware and Software FCoE Initiators.

Hardware FCoE Adapter
An I/O card that is usually available as a CNA (Converged Network Adapter). This class
of adapters combines different types of I/O cards that utilize Ethernet as a backbone; for
example, Network Interface Card (NIC) and iSCSI initiator or FC HBA (using FCoE). An
example of such CNAs is Emulex OneConnect OCe10102 (which is rebranded by HP as
NC551i).

Figure 3.5 clarifies how FCoE and CNAs fit in vSphere 5.0 configurations.

FC IP

FCoE Switch

10 G
igE

vSphere 5 Host

FC
driver

NIC
driver

CNA

Figure 3.5 FCoE and Converged Network Adapters (CNAs)

From the Library of raphael schitz

ptg7996124

FCoE Initiators 55

This diagram shows an FC driver and a NIC driver both loaded for the CNA. The latter
connects to an FCoE switch via a 10GigE connection. The FCoE switch unencapsulates
the FC frames and sends them via the FC connection to the Storage fabric. The switch
also receives regular Ethernet frames sent by the NIC driver and sends them to the
Ethernet network unmodified.

Software FCoE Adapter
You can also use Software FCoE Adapter if your ESXi 5 host is equipped with a Software
FCoE Enabled NIC that is certified for use with on vSphere 5. An example of such NICs
is Intel 82599 10 Gigabit Adapter. Several NICs on VMware HCL are based on Intel
82599 chipset such as Cisco M61-KR, Dell X520, and IBM X520.

tIP

To search VMware HCL for 10GbE NICs supported for use with Software FCoE Adapter,
use the Search Compatibility Guide field instead of the search criteria. The text you use is
Software FCoE Enabled, and you get matches to the footnotes of the device listing.

The Software FCoE Adapter in ESXi 5 is based on Intel’s Open FCoE Software.
Figure 3.6 shows how SW FCoE Adapter runs on top of the NIC driver side-by-side
with TCP/IP.

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity56

FCoE
SW

Initiator

TCP/
IP

DCB Capable
NIC

NIC driver

FC IP

FCoE Switch

10 G
igE

vSphere 5 Host

Figure 3.6 Software FCoE and a DCB-capable NIC

The transmit and receive queues of the NIC are split between the stacks sharing the NIC.

overcoming Ethernet Limitations
For Fibre Channel to work reliably over Ethernet, several limitations of the latter must be
overcome first:

 1. Packets/Frames loss — Making sure that no packets are dropped is the most critical
aspect of using FCoE. If the traffic were TCP/IP, retransmits would have taken care
of this. However, FCoE does not run over TCP/IP and it has to ensure that it is
lossless!

 2. Congestion — As you might have noticed in Figure 3.5, the FCoE interface and the
Ethernet interface share a 10GigE link. In some blades, there might be a single CNA
in each blade. This means that FCoE, VM, vMotion, Management, and FT traffic
share the same 10GigE link, which might result in congestion (I/O bottleneck).

From the Library of raphael schitz

ptg7996124

Protocols Required for FCoE 57

 3. Bandwidth — Sharing a 10GigE pipe with everything else might necessitate dividing
that pipe among the various types of traffic. However, this is not generally doable
without specialized technology like HP Virtual Connect Flex-10 and similar technol-
ogies from other vendors.

Flow Control in FCoE
Fibre Channel has Flow control using Buffer-to-Buffer Credits (BBC), which represents
the number of frames a given port can store. Every time a port transmits a frame, the
port’s BBC is decremented by one. Conversely, for each R-RDY received, the port’s BBC
is incremented by one. If the BBC reaches Zero, the port cannot transmit until at least an
R-RDY is received back.

However, Ethernet does not have such a function. So, FCoE required an enhancement in
Ethernet so that it supports flow control. When this is accomplished, it prevents packet
loss.

Such a flow control also helps Ethernet handle congestion and avoid packet drop that
would have resulted from such congestion.

So, the solution was to implement a flow control PAUSE mechanism to be used by FCoE.
This PAUSE mechanism works in a fashion similar to FC’s BBC I mentioned previously
by “telling” the sender to hold off sending frames until the receiver’s buffer is cleared.

Considering the fact that the PAUSE mechanism does not have the same intelligence
provided by FC’s BBC, the QoS priority bit in the VLAN tag (refer to Figure 3.2) is
used to ensure that the most important data is delivered to its destination first and not
be affected by congestion. Utilizing this mechanism, Ethernet is divided to eight virtual
lanes according to the QoS priority bit in the VLAN tag. Each of these virtual lanes can
be subject to different policies such as Lossless-ness, Bandwidth Allocation, and Congestion
Control. This mechanism is referred to as Priority based Flow Control (PFC).

Protocols Required for FCoE
FCoE depends on a set of extension protocols that enhance Ethernet for use to bridge
datacenters. This set of protocols is referred to as Data Center Bridging (DCB).

DCB is a standard body term that Cisco refers to as Data Center Ethernet (DCE) and
IBM refers to as Converged Enhanced Ethernet (CEE).

vSphere 5 supports the DCB set of protocols for FCoE that are described in the following
sections.

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity58

Priority-Based Flow Control
Priority-based Flow Control (PFC) is an extension of the current Ethernet pause
mechanism, sometimes called Per-Priority PAUSE. To emulate lossless-ness, per priority
pause frames are used. This way it can pause traffic with a specific priority and allow all
other traffic to flow (for example, pause FCoE traffic while allowing other network traffic
to flow).

As mentioned in the previous section, PFC creates eight separate virtual links on the
physical link and allows any of these links to be paused and restarted independently from
each other based on the flow control mechanism applied to each of these virtual links.
This allows multiple traffic types to share the same 10GigE link with separate flow control
mechanisms. Based on that, it is advantageous to have different types of traffic classes with
PFC (for example, FCoE, vMotion, and VM traffic) because vMotion is not used most
of the time; the virtual link it uses is available until vMotion traffic starts again. When
needed, some of the traffic on other virtual links may be paused if there is congestion and
the QoS priority for one of the virtual links is higher than the rest. See the “802.1p tag”
section for further details on how QoS priority tags work.

Enhanced transmission Selection
Enhanced Transmission Selection (ETS) provides a means to allocate bandwidth to traffic
that has a particular priority. The protocol supports changing the bandwidth dynami-
cally. So, PFC creates eight different lanes with different traffic classes/priorities and ETS
allocates the bandwidth according to the assigned priorities.

ETS is the means to providing traffic differentiation so that multiple traffic classes can
share the same consolidated Ethernet link without impacting each other.

Data Center Bridging Exchange
Data Center Bridging Exchange (DCBX) exchanges the PFC and ETS information with
the link peers before an FCoE link is established. This is the management protocol and
uses specific Type Length Values (TLV) in the Link Layer Discovery Protocol (LLDP) to
negotiate values.

DCBX has the following functions:

 1. Discovery of DCB capability: DCB-capable devices can discover and identify capabil-
ities of DCB peers and identify non-DCB capable legacy devices.

From the Library of raphael schitz

ptg7996124

Protocols Required for FCoE 59

 2. Identification of misconfigured DCB features: Discover misconfiguration of features
between DCB peers. Some DCB features can be configured differently on each
end of a link. Other features must match on both sides to be effective. This allows
detection of configuration errors for these symmetric features

 3. Configuration of peers: DCBX passes configuration information to DCB peer. A
DCB-capable switch can pass PFC information to the Converged Network Adapter
(CNA) to ensure FCoE traffic is appropriately tagged and that PAUSE is enabled on
the appropriate traffic class.

DCBX relies on LLDP in order to pass this configuration information. LLDP is
an industry standard version of Cisco Discovery Protocol (CDP).

NotE

Any link supporting DCBX must have LLDP enabled on both ends of the link for
Transmit/Receive (Tx/Rx). If LLDP to be disabled on a port for either Rx or Tx; DCBX
TLV within received LLDP frames are ignored.

That is the reason why the NIC must be bound to a vSwitch. Frames are forwarded to the
Datacenter Bridging Daemon (DCBD) to DCBX via the CDP vmkernel module. The latter
does both CDP and LLDP. I discuss DCBD later in this chapter.

10GigE — A Large Pipeline
The bandwidth provided by 10Gb/s Ethernet accommodates several types and classes of
traffic (see Figure 3.7).

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity60

Data Center Bridging Protocol

VLAN tagged frames

FCoE/FIP tagged frames

Figure 3.7 10GigE pipeline
(Image courtesy http://nickapedia.com/2011/01/22/the-vce-model-yes-it-is-different/#more-1446)

For example, Voice over IP (VoIP), Video, Messaging, and Storage can travel over a
common Ethernet infrastructure. With faster Ethernet being under development at the
time of writing this, 100GigE is eminent, which makes for even better convergence of
these various types of traffic.

802.1p tag
802.1p priority is carried in the VLAN tags defined in IEEE 802.1q/p (802.1p).

A field in the 802.1q tag carries one of eight priority values (3 bits in length), which is
recognized by Layer 2 devices on the network. This priority tag determines the service
level that packets receive when crossing an 802.1p-enabled network.

Figure 3.8 shows the structure of a frame tagged with 802.1p tag for Ethernet frames.

From the Library of raphael schitz

http://nickapedia.com/2011/01/22/the-vce-model-yes-it-is-different/#more-1446

ptg7996124

802.1p Tag 61

6 Bytes 6 Bytes 2 Bytes

2 Bytes 2 Bytes

3 Bits 1 Bit 12 Bits

Variable

Standard
Frame

Tagged
Frame

TCI

VIDCFIPriority

Destination Source L/T Data

Destination DataSource Length
/Type

TPID

Figure 3.8 802.1p tag

The fields in the tag are

�� TPID — Tag Protocol Identifier: 2 bytes long and carries the IEEE 802.1Q/802.1P
tag when the frame has “EtherType” value of 0x8100

�� TC I — Tag Control Information: 2 bytes long and includes User Priority (3 bits),
Canonical Format Indicator “CFI” (1bit), and VLAN ID “VID” (12 bits)

The value in the Priority field defines the class of service as shown in Table 3.1.

table 3.1 QoS Priority Levels

Priority traffic Characteristics

0 (Lowest) Background

1 Best Effort

2 Excellent Effort

3 Critical Application

4 Video, < 100 ms Latency

5 Voice, < 10 ms Latency

6 Internetwork Control

7 (Highest) Network Control

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity62

Hardware FCoE Adapters
Hardware (HW) FCoE Adapters are CNAs that are capable of fully offloading FCoE
processing and network connectivity. Although physically we see the CNA as one card, to
the ESXi environment, they just show up in the UI as two separate adapters: a Network
Adapter and an FC Adapter. You can identify them by FCoE listed in the physical CNA’s
name. Figure 3.9 shows an example of how HW FCoE adapters are listed in the user
interface (UI).

Figure 3.9 UI listing of HW FCoE adapters (CNA)

Figure 3.9 shows a dual-port 10GbE CNA based on an ISP81XX adapter. Its FCoE part
shows up as Fibre Channel type and is given the names vmhba4 and vmhba5.

If you look closely at the attached LUNs, you notice that the Transport used is also Fibre
Channel. However, the Details section shows the Model as ISP81xx-based 10 GbE FCoE
to PCI Express CNA.

How SW FCoE Is Implemented in ESXi 5
Software FCoE adapter is a VMware-provided component on vSphere 5 that performs
some FCoE processing. You can use it with a number of network cards (NICs) that
support partial FCoE offload. The vSphere Administrator needs to manually enable this
adapter before it can be configured and used. Software FCoE is based on Open FCoE

From the Library of raphael schitz

ptg7996124

How SW FCoE Is Implemented in ESXi 5 63

stack, which was created by Intel and is licensed under GPL. It is loaded as a vmkernel
module that you can list using this command:

vmkload_mod -l |grep ‘Name\|fc’

Name Used Size (kb)

libfc 2 112

libfcoe 1 28

fcoe 3 32

Notice that there are three modules: libfc, libfcoe, and fcoe. The latter is the FCoE stack
kernel module and the former two are VMware common libraries that provide APIs used
by FCoE driver as well as third-party drivers.

The mechanism through which FCoE works on ESXi 5 is as follows:

�� The NICs that support partial FCoE offloading create a pseudo netdev interface for
use by vmklinux. The former is a Linux network device interface, and the latter is the
ESXi facility that allows drivers ported from Linux to run on ESXi.

�� FCoE transport module is registered with vmklinux.

�� Each NIC (or CNA capable of FCoE) is made visible to the user via vSphere Client.
From there, the user can enable and configure software FCoE. Once configured,
vmklinux performs the discovery.

�� DCBD, which is located in /sbin/dcbd and its init script is in /etc/init.d/dcbd, is then
started on the ESXi host.

�� FCoE module registers one adapter with the ESXi Storage stack. I cover the latter in
Chapter 5, “VMware Pluggable Storage Architecture (PSA).”

�� FCoE Adapter information is stored in /etc/vmware/esx.conf file. This ensures that
the configuration and information persist across host reboots. Do not change any
of the content of esx.conf file directly. You should use esxcli command-line options
to make FCoE changes. I cover the esxcli options where relevant throughout this
chapter.

NotE

FIP, Jumbo frame (actually baby jumbo frames, which are configured on the physical switch,
are used to accommodate the FC frame payload which is 2112 bytes long), FCoE, and
DCBX modules are enabled in ESXi 5 Software FCoE initiator by default.

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity64

Configuring FCoE Network Connections
NICs ports, used with SW FCoE Adapters, should be connected to switch ports
configured as follows:

�� Spanning Tree Protocol(STP): Disabled

If this is not done, FIP (See the “FIP” section earlier in this chapter) response
at the switch can experience excessive delays which, in turn, result in an All
Paths down (APD) state (see Chapter 7, “Multipathing and Failover,” for more
information about APD).

�� LLDP: Enabled.

�� PFC: AUTO.

�� VLAN ID: Specify a VLAN dedicated to FCoE traffic. Do not mix FCoE traffic
with other storage or data traffic because you need to take advantage of PFC.

NotE

VMware recommends the following switch firmware minimum versions:

Cisco Nexus 5000: version 4.1(3)N2

Brocade FCoE Switch: version 6.3.1

In contrast to HW FCoE Adapters, which do not require special ESXi network configu-
ration, the NIC, on which you configure SW FCoE Adapter, must be bound to a vmkernel
Standard Virtual Switch. To do so, follow this procedure:

 1. Connect to the ESXi 5 host using the vSphere 5.0 client as a user with root
privileges, or connect to the vCenter server that manages that host as a user with
Administrator privileges.

 2. If logged into vCenter, navigate to the Inventory — Hosts and Clusters view and
then locate the vSphere 5.0 host in the inventory tree and select it. Otherwise, skip
to the next step.

 3. Navigate to the Configuration tab.

 4. Under the Networking section, select the Add Networking link (see Figure 3.10).

From the Library of raphael schitz

ptg7996124

Configuring FCoE Network Connections 65

Figure 3.10 Network configuration tab — vSphere 5.0 Client

 5. Select VMkernel connection type and then click Next (see Figure 3.11).

Figure 3.11 Creating a VMkernel port group — Connection Type — vSphere 5.0 Client

 6. Select Create a vSphere standard switch, select the vmnic that supports FCoE,
and then click Next. (See Figure 3.12.)

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity66

Figure 3.12 Creating a VMkernel port group — creating a vSwitch — vSphere 5.0 Client

 7. You might be tempted to add all ports that support FCoE to the newly created
vSwitch. However, it is not recommended that you do that because any changes you
make to the vSwitch in the future can be disruptive, which would affect all FCoE
traffic. This might result in an APD state. It would be a better design to create a
separate vSwitch for each SW FCoE Adapter.

NotE

You can configure up to four SW FCoE adapters on a single vSphere 5 host.

 8. Enter the port group name (for example, FCoE1, FCoE2, and so on).

 9. Enter the VLAN ID configured on the physical switch for FCoE traffic. Leave all
checkboxes unchecked and then click Next (see Figure 3.13).

From the Library of raphael schitz

ptg7996124

Configuring FCoE Network Connections 67

Figure 3.13 Configuring port group properties

 10. Enter the IP configuration shown in Figure 3.14, and then click Next.

Figure 3.14 Configuring port group IP address

 11. Click Finish (see Figure 3.15).

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity68

Figure 3.15 Completed FCoE virtual switch configuration

Figure 3.16 shows the host’s network configuration after adding the FCoE port
group and its Standard Virtual Switch.

Figure 3.16 ESXi host networking after adding port group and its Standard Virtual Switch

Enabling Software FCoE Adapter
To enable Software FCoE Adapter after completing Steps 1–11 in the previous section,
continue with Step 12:

 12. In the Hardware section, select the Storage Adapters link.

From the Library of raphael schitz

ptg7996124

Enabling Software FCoE Adapter 69

 13. Next to the Storage Adapters section heading, select the Add link or right-click any
empty space below the last adapter listed. (See Figure 3.17.)

Figure 3.17 Adding a software FCoE initiator — Step 1 — vSphere 5.0 Client

 14. Select the Add Software FCoE Adapter menu option or radio button, and then
click OK (see Figure 3.18).

Figure 3.18 Adding a software FCoE adapter — Step 2 — vSphere 5.0 Client

 15. In the resulting dialog (see Figure 3.19), select the vmnic that you bound earlier to
the vSwitch in Step 7.

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity70

Figure 3.19 Adding a software FCoE adapter — Step 4 — vSphere 5.0 Client

NotE

The VLAN ID is not selectable in this dialog. However, it was discovered automatically via
FIP VLAN discovery process.

Notice that the Priority Class, which is set to 3, is also not selectable. Based on Table 3.1,
this means that the priority is set to Critical Application.

 16. Click OK.

The SW FCoE Adapter should appear in the UI now as a vmhba; in this example it is
vmhba33. Figure 3.20 shows the FCoE Adapter identified by arrows.

Figure 3.20 Software FCoE adapter added

From the Library of raphael schitz

ptg7996124

Removing or Disabling a Software FCoE Adapter 71

tIP

The number assigned to the vmhba is a hint to whether it is Hardware or Software FCoE
Adapter. vmhba numbers lower than 32 are assigned to Hardware (SCSI-related) Adapters,
for example, SCSI HBA, RAID Controller, FC HBA, HW FCoE, and HW iSCSI HBAs.
vmhba numbers 32 and higher are assigned to Software Adapters and non-SCSI Adapters;
for example, SW FCoE, SW iSCSI Adapters, IDE, SATA, and USB storage controllers.

Notice that the new vmhba has been assigned an FC WWN. Also, the targets and LUNs
have been discovered without the need to rescan.

At this point let’s compare Figure 3.20 to Figure 3.9. The HBA type in Figure 3.20 (the
top red arrow) is Fibre Channel over Ethernet because this is a software FCoE Adapter. In
contrast, Figure 3.9 shows the type Fibre Channel because it is a hardware FCoE Adapter.

Removing or Disabling a Software FCoE Adapter
You may remove a Software FCoE Adapter via the UI or the CLI.

Using the UI to Remove the SW FCoE Adapter
To remove the Software FCoE Adapter via the UI, follow this procedure:

 1. While logged into vCenter Server and after selecting the ESXi 5 host that you want
to modify, select the configuration tab and then select the Storage Adapters option.
The UI should look like Figure 3.20.

 2. Click the vmhba representing the SW FCoE Adapter you want to remove.

 3. Select the Remove menu option or right-click the vmhba in the list, and then click
Remove (see Figure 3.21).

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity72

Figure 3.21 Removing SW FCoE adapter

 4. Confirm the removal when prompted (see Figure 3.22).

Figure 3.22 Confirming SW FCoE adapter removal

 5. The adapter has been disabled in the ESXi host configuration and is removed when
the host is rebooted.

Using the CLI to Remove the SW FCoE Adapter
To remove the Software FCoE Adapter via the CLI, follow this procedure:

 1. Access vMA, vCLI, or SSH, or directly access the ESXi host’s CLI. See the
“Locating HBA’s WWPN and WWNN in vSphere 5 Hosts” section in Chapter 2
for details.

From the Library of raphael schitz

ptg7996124

Troubleshooting FCoE 73

 2. Run the following command to identify which vmnic is used by the FCoE Adapter:

esxcli fcoe adapter list

vmhba36

 Source MAC: 00:1b:21:3f:a1:c2

 FCF MAC: 00:0d:ec:6d:a7:40

 VNPort MAC: 0e:fc:00:1b:00:0a

 Physical NIC: vmnic4

 User Priority: 3

 VLAN id: 123

The field named Physical NIC lists the vmnic you use in the next step. In this
example, it is vmnic4.

 3. To remove the SW FCoE Adapter, disable the vmnic it is using by running this
command:

esxcli fcoe nic disable --nic-name=vmnic4

Discovery on device ‘vmnic4’ will be disabled on the next reboot

If the operation is successful, you should get the following prompt: Discovery on
device ‘vmnic4’ will be disabled on the next reboot.

 4. To complete the procedure, reboot the ESXi host.

troubleshooting FCoE
To troubleshoot and manage FCoE, there are two facilities to help you: ESXCLI
commands and DCBD logs.

ESXCLI
ESXCLI provides a dedicated Software FCoE namespace, which you can list using the
command shown in Figure 3.23:

esxcli fcoe

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity74

Figure 3.23 ESXCLI FCoE namespace

The next level is adapter or nic.

Running the following returns the output shown in Figure 3.24:

esxcli fcoe adapter

Figure 3.24 ESXCLI FCoE adapter namespace

If you run the list command, it lists the SW FCoE adapters and their configurations:

~ # esxcli fcoe adapter list

vmhba33

 Source MAC: 00:1b:21:5c:fe:e6

 FCF MAC: 00:0d:ec:6d:a7:40

 VNPort MAC: 0e:fc:00:1b:00:0a

 Physical NIC: vmnic2

 User Priority: 3

 VLAN id: 123

NotE

This output shows FCF MAC, which is the physical switch port MAC (FCF stands for FCoE
Forwarder).

See the “FIP” section for more information.

From the Library of raphael schitz

ptg7996124

Troubleshooting FCoE 75

On the other hand, the nic namespace works directly on the physical NIC (vmnic) and
provides disable, discover, and list options.

The disable option is used to disable rediscovery of FCoE storage on behalf of a specific
vmnic, that is FCoE capable, upon the next boot. The command option example is

esxcli fcoe nic disable --nic-name=vmnic2

The discover option is used to initiate FCoE adapter discovery on behalf of an FCoE-
capable vmnic. The command-line syntax is similar to the disable option (this time I am
using the -n option, which is shorthand for the --nic-name option):

esxcli fcoe nic discover -n vmnic2

Sample outputs of this command in various configurations are listed here:

In this example, vmnic2 was successfully enabled for discovery:

~ # esxcli fcoe nic discover -n vmnic2

Discovery enabled on device ‘vmnic2‘

In the following example, vmnic0 is bound to a vmkernel port group on a standard vSwitch
but the NIC is not DCB-capable (Data Center Bridging), which means it is not FCoE-
capable:

~ # esxcli fcoe nic discover -n vmnic0

PNIC "vmnic0" is not DCB-capable

In this example, the vmnic was not bound to a vmkernel port on a standard vSwitch. You
cannot enable the vmnic for discovery until it is bound as such:

~ # esxcli fcoe nic discover -n vmnic5

Error: Failed to obtain the port for vmnic5. This adapter must be bound to
a switch uplink port for activation.

Figure 3.25 shows a similar message when using the vSphere Client to add a Software
FCoE Adapter for a vmnic that is not bound to a vSwitch uplink port.

Figure 3.25 Error adding a software FCoE adaptor to an unbound vmnic

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity76

Finally, the list option is used to list all FCoE-capable vmnics:

~ # esxcli fcoe nic list

vmnic2

 User Priority: 3

 Source MAC: 00:1b:21:5c:fe:e6

 Active: true

 Priority Settable: false

 Source MAC Settable: false

 VLAN Range Settable: false

vmnic3

 User Priority: 3

 Source MAC: 00:1b:21:5c:fe:e7

 Active: false

 Priority Settable: false

 Source MAC Settable: false

 VLAN Range Settable: false

In this example vmnic2 was already configured with FCoE whereas vmnic3 was not but is
FCoE capable.

FCoE-Related Logs
FCoE discovery- and communication-related events generated by DCBD are logged to
/var/log/syslog.log and the events are prefixed with dcbd.

This listing shows a sample log entry from /var/log/syslog.log:

2011-10-08T06:00:25Z root: init Running dcbd start

2011-10-08T06:00:25Z watchdog-dcbd: [2936] Begin ‘/usr/sbin/dcbd
++group=net-daemons’, min-uptime = 60, max-quick-failures = 1, max-total-
failures = 5, bg_pid_file = ‘’

2011-10-08T06:00:25Z watchdog-dcbd: Executing ‘/usr/sbin/dcbd ++group=net-
daemons’

2011-10-08T06:00:25Z dcbd: [info] Not adding inactive FCOE adapter:
"vmnic2"

2011-10-08T06:00:26Z dcbd: [info] Not adding inactive FCOE adapter:
"vmnic3"

2011-10-08T06:00:26Z dcbd: [info] Main loop running.

The first line shows the event of starting dcbd daemon.

From the Library of raphael schitz

ptg7996124

Troubleshooting FCoE 77

The second line shows the watchdog for dcbd daemon startup parameter. They are as
follows:

�� group is net-daemons, which means that the watchdog monitors the status of this
daemon in the group with that name.

�� min-uptime is 60 seconds. It is the minimum time the daemon should be up. If
it runs for less than that time, the watchdog considers it a quick-failure (see next
parameter).

�� max-quick-failures is 1, which means that the watchdog gives up on restarting
the daemon if it runs for less than 60 seconds. If it stays up for 60 seconds or more, it
reloads it. If this value were 2, the daemon would have to die quickly two times in a
row before the watchdog gives up. Consider the following sequence of events:

The daemon could stay up for 40 seconds, gets restarted, stays up for 70 seconds
(not a quick failure), gets restarted, stays up for 30 seconds, gets restarted,
stays up for 55 seconds, and then crashes.

In this sequence of events, the daemon stays down because there were two quick
failures in a row.

�� max-total-failures is 5 which is the total number of times the daemon fails to
run over any length of time before the watchdog gives up on reloading the daemon.
For example, after the dcbd daemon fails five times since the ESXi host booted, the
watchdog no longer restarts it.

�� bg_pid_file is set to null, which means that no background process ID file is
created.

NotE

The Watchdog is a script that manages VMware services and is located in /sbin/watchdog.sh.

It launches the specified process and respawns it after it exits.

It gives up after recording the specified number of quick failures in succession or after
recording a specified total number of failures (over any length of time).

The third line is the execution of loading the watchdog.

The fourth and fifth lines indicate that vmnic2 and vmnic3 are not activated as FCoE
adapters.

The last line shows that the daemon is now running.

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity78

The log snippet in Listing 3.1 shows events related to adding vmnic2 as an FCoE adapter:

Listing 3.1 /var/log/syslog.log Listing of addinc vmnic as an FCoE Adapter

2011-03-08T06:06:33Z dcbd: [info] add_adapter (vmnic2)

2011-03-08T06:06:33Z dcbd: [info] dcbx subtype = 2

2011-03-08T06:06:33Z dcbd: [info] get_dcb_capabilities for "vmnic2"

2011-03-08T06:06:33Z dcbd: [info] get_dcb_numtcs for "vmnic2"

2011-03-08T06:06:33Z dcbd: [info] Reconciled device numTCs (PG 4, PFC
4)

2011-03-08T06:06:33Z dcbd: [info] Set Syncd to 0 [3682]

2011-03-08T06:06:33Z dcbd: [info] Feature state machine (flags 1)

2011-03-08T06:06:33Z dcbd: [info] Local change: PG

2011-03-08T06:06:33Z dcbd: [info] Set Syncd to 0 [3682]

2011-03-08T06:06:33Z dcbd: [info] Feature state machine (flags 2)

2011-03-08T06:06:33Z dcbd: [info] Local change: PFC

2011-03-08T06:06:33Z dcbd: [info] CopyConfigToOper vmnic2

2011-03-08T06:06:33Z dcbd: [info] set_pfc_cfg for "vmnic2", operMode: 0

2011-03-08T06:06:33Z dcbd: [info] set_pfc_state for "vmnic2", pfc_
state: FALSE

2011-03-08T06:06:33Z dcbd: [info] Set Syncd to 0 [3682]

2011-03-08T06:06:33Z dcbd: [info] Feature state machine (flags 4)

2011-03-08T06:06:33Z dcbd: [info] Local change: APP

2011-03-08T06:06:33Z dcbd: [info] DCB Ctrl in LISTEN

2011-03-08T06:06:33Z dcbd: [info] Local change detected: PG PFC APP

2011-03-08T06:06:33Z dcbd: [info] Local SeqNo == Local AckNo

2011-03-08T06:06:33Z dcbd: [info] *** Sending packet -- SeqNo = 1
AckNo = 0

2011-03-08T06:06:33Z dcbd: [info] Set portset name for "vmnic2" :
"vSwitch1"

2011-03-08T06:06:33Z dcbd: [info] Added adapter "vmnic2" via IPC

2011-03-08T06:06:35Z dcbd: [info] *** Received a DCB_CONTROL_TLV: --
SeqNo=1, AckNo=1 ID(37) MSG_INFO_PG_OPER: vmnic2

After the adapter vmnic2 was added, it is identified as a dcbx subtype 2. This means that it
is a Converged Enhanced Ethernet (CEE) port that supports FCoE. In other words, the
I/O card represented by vmnic2 is FCoE-capable.

FCoE device and path claiming events are logged to the ESXi syslog.log file which is
located in /var/log directory. A sample syslog.log file is shown in Listing 3.2.

From the Library of raphael schitz

ptg7996124

Troubleshooting FCoE 79

Listing 3.2 /var/log/syslog.log Snippet Showing Device and Path Claiming Events

dcbd: [info] Connect event for vmnic2, portset name: "vSwitch1"

storageDeviceInfo.plugStoreTopology.adapter["key-vim.host.
PlugStoreTopology.Adapter-vmhba33"].path["key-vim.host.PlugStoreTopology.
Path-fcoe.1000001b215cfee6:2000001b215cfee6-fcoe.500601609020fd54:500601611
020fd54-naa.60060160d1911400a3878ec1656edf11"]

storageDeviceInfo.plugStoreTopology.path["key-vim.host.PlugStoreTopology.
Path-fcoe.1000001b215cfee6:2000001b215cfee6-fcoe.500601609020fd54:500601611
020fd54-naa.60060160d1911400a3878ec1656edf11"],

storageDeviceInfo.plugStoreTopology.target["key-vim.host.PlugStoreTopology.
Target-fcoe.500601609020fd54:500601611020fd54"],

storageDeviceInfo.plugStoreTopology.device["key-vim.host.PlugStoreTopology.
Device-020008000060060160d1911400a3878ec1656edf11524149442030"],

storageDeviceInfo.plugStoreTopology.plugin["key-vim.host.PlugStoreTopology.
Plugin-NMP"].device["key-vim.host.PlugStoreTopology.Device-
020008000060060160d1911400a3878ec1656edf11524149442030"],

storageDeviceInfo.plugStoreTopology.plugin["key-vim.host.PlugStoreTopology.
Plugin-NMP"].claimedPath["key-vim.host.PlugStoreTopology.Path-fcoe.1000001b
215cfee6:2000001b215cfee6-fcoe.500601609020fd54:500601611020fd54-"],

In the log snippet shown in Listing 3.2, I removed the time stamp and added a blank line
between log entries for readability.

The first line shows a Connect event for the FCoE port that is on vmnic2 (what was bound
on vSwitch1).

The second line shows the connection topology as follows:

�� The FCoE adapter name (as seen in the UI) is vmhba33.

�� The Adapter’s WWNN:WWPN combination is 1000001b215cfee6:2000001b21
5cfee6.

�� The Storage Processor Port WWNN:WWPN combination is 500601609020fd54:5
00601611020fd54.

�� Based on Table 2.1 in Chapter 2, the SP WWPN translates to SPA-Port 1 of a
CLARiiON CX Storage Array.

�� The LUN visible on this path has NAA ID 60060160d1911400a3878ec1656edf11.

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity80

The third line identifies the path details, which is the combination of the information
listed in bullets 2 through 4.

The fourth line identifies the target, which is the WWNN:WWPN combination listed in
the second bullet.

The fifth line shows the device ID. This is similar to the vml device ID seen in /vmfs/
devices/disks but without the prefix vml.

NotE

vml is a vmkernel list link that points to the corresponding device ID, for example, NAA ID.
This is for backward compatibility with earlier releases prior to introducing the use of device
IDs. I provide more details on this in Chapter 13, “Virtual Disks and RDMs.”

This command lists the vml IDs and the device IDs to which they link:

ls -al /vmfs/devices/disks/

733909245952 Jan 22 06:05 naa.600508b1001037383941424344450400

36 Jan 22 06:05 vml.0200000000600508b10010373839414243444504004c
4f47494341 -> naa.600508b1001037383941424344450400

I truncated the permissions and owners from the output and added a blank line between
outputs for readability.

The sixth line shows that the Native Multipathing Plugin (NMP) has claimed the device
identified in the previous line. I discuss NMP later in Chapter 5.

The last line shows that NMP has claimed the path that begins with the FCoE adapter’s
WWNN:WWPN combination going through the SPA-Port1 I explained previously.

NotE

The reference to plugStoreTopology refers to Pluggable Storage Architecture (PSA),
which I discuss later in Chapter 5.

I also discuss the definition of path and multipathing in Chapter 7.

The log snippet shown in Listing 3.3 is a continuation of the previous log sample.

From the Library of raphael schitz

ptg7996124

Troubleshooting FCoE 81

Listing 3.3 Continuation of /var/log/syslog.log

storageDeviceInfo.hostBusAdapter["key-vim.host.FibreChannelOverEthernetHba-
vmhba33"].status,

storageDeviceInfo.hostBusAdapter["key-vim.host.FibreChannelOverEthernetHba-
vmhba33"].linkInfo.vnportMac,

storageDeviceInfo.hostBusAdapter["key-vim.host.FibreChannelOverEthernetHba-
vmhba33"].linkInfo.fcfMac,

storageDeviceInfo.hostBusAdapter["key-vim.host.FibreChannelOverEthernetHba-
vmhba33"].linkInfo.vlanId]

storageDeviceInfo.scsiTopology.adapter["key-vim.host.ScsiTopology.
Interface-vmhba33"].target["key-vim.host.ScsiTopology.Target-vmhba33:0:0"].
lun["key-vim.host.ScsiTopology.Lun-020001000060060160d19114008de22dbb5e5e
df11524149442035"],

It continues on to request the (vmhba33) HBA status on line 1.

On lines 2, 3, and 4 it requests the link information of the following entities:

 1. linkInfo.vnportMac — VN_Port is the FCoE equivalent of the FC’s N_Port,
which is the type of port for the FCoE Adapters.

 2. linkInfo.fcfMac — FCF is the FCoE Forwarder, which is the switch port’s MAC.

 3. linkInfo.vlanId is the VLAN ID.

The three entities make up the FCoE link.

The last line shows the canonical name of the path (see Chapter 7) with the exception that
the LUN is identified by its “vml” name I mentioned previously. This is composed of the
combination of the Adapter:Channel:Target:LUN. The channel number is always “0”
except for direct attached storages via a dual-channel HBA (for example, a RAID Adapter
with an internal channel and an external one) where it would use 0 for the internal channel
and 1 for the external one — for example, vmhba2:0:0 and vmhba2:1:0. However, because
this does not apply to FCoE Adapters, the channel number is always 0. So, the canonical
name here is “vmhba33:0:0:<LUN>”.

These connection properties are also displayed in the FCoE Adapter’s properties via the
UI. Figure 3.26 shows these properties in addition to the physical NIC’s vmnic name as
well as the Priority class, which is discussed in Table 3.1.

From the Library of raphael schitz

ptg7996124

Chapter 3 FCoE Storage Connectivity82

Figure 3.26 FCoE adapter properties

Parting tips
Consider the following scenario:

A vSphere administrator configures FCoE on an ESXi 5 host. The linked vmnic is
connected to a 10GigE network and from there to an FCoE switch, which in turn
connects to the storage array via a 4Gig FC fabric. Because the FCoE traffic would
not benefit from more than the bandwidth provided by the FC SAN, the administrator
attempts to guarantee it 4Gbps bandwidth by configuring network I/O control and assigns
the FCoE 40% of the total bandwidth. So, effectively, the FCoE traffic gets assigned
a priority on the networking stream after it has already assigned that priority via the
protocol itself. However, the administrator notices that FCoE is not getting the bandwidth
dedicated to it.

As a famous TV detective says, “I solved the case! Here is what happened”:

FCoE uses 802.1p User Priority for dedicated bandwidth (Enhanced Transmission
Selection — ETS).

Network I/O Control feature of vSphere 5 also uses 802.1p User Priority for Quality of
Service (QoS).

The bandwidth split happens at a “Priority Group” (PG) level between the NIC/CNA
and the switch. Each PG consists of multiple priorities, and most administrators typically
configure FCoE in a separate PG.

The switch sees multiple streams of data: FCoE and L2 Network (which happen to be
both for the same FCoE traffic). If the combined capacity exceeds the 40% allocated to
FCoE traffic, the switch would try to throttle the rate by sending a PFC on the FCoE
priority. This effectively stops the FCoE traffic.

From the Library of raphael schitz

ptg7996124

Parting Tips 83

The moral of the story: Don’t get overzealous and attempt to guarantee FCoE bandwidth
using Network I/O Control because it is already assigned the appropriate priority via
the FCoE protocol. Doing so results in a negative effect and the FCoE traffic is stopped
instead.

Summary

This chapter covered the details of the FCoE protocol and its architecture and how it is
implemented in vSphere 5. It also provided details of configuring SW FCoE Adapters on
vSphere 5. I shared some sample logs and familiarized you with how to interpret them.
Finally, I discussed a potential gotcha if using Network I/O Control and FCoE.

From the Library of raphael schitz

ptg7996124

This page intentionally left blank

From the Library of raphael schitz

ptg7996124

Chapter 4

iSCSI Storage Connectivity

iSCSI Protocol
IETF (Internet Engineering Task Force) is responsible for the iSCSI protocol. (See RFC
3720 at http://tools.ietf.org/html/rfc3720.)

iSCSI (Internet Small Computer System Interface) is an IP (Internet protocol)-based
storage standard that connects iSCSI initiators to iSCSI targets over IP networks. To
put it simply, the SCSI packets are encapsulated in IP packets and sent over a standard
IP network where the initiators and targets reassemble the packets and interpret the
commands carried by these packets.

This standard takes advantage of existing IP infrastructure unlike FC (Fibre Channel),
which requires special cables and switches.

From the Library of raphael schitz

http://tools.ietf.org/html/rfc3720

ptg7996124

Chapter 4 iSCSI Storage Connectivity86

Overview of iSCSI Connectivity

The main elements of iSCSI connectivity are initiators, targets, portals, sessions, and
connections. I’m starting first with iSCSI Sessions as a high-level connectivity overview,
and then I cover the remaining elements in later sections of this chapter.

iSCSI Sessions

Each iSCSI Initiator establishes a single session with each iSCSI target server via TCP
(Transmission Control Protocol). Within that session, there can be one or more connec-
tions between initiators and portals on the target server. (See Figure 4.1.)

Session

Initiator Target Server

Connection 1

Connection 2

Connection 3

Connection 4

Figure 4.1 iSCSI sessions

A portal is an IP address and TCP port combination. (Find out more details on portals in
the next section, “iSCSI Portals.”) The default TCP port is 3260.

Figure 4.2 shows an example of an ESXi 5.0 host with two iSCSI initiators (vmhba2 and
vmhba3) connected to an iSCSI storage array.

iSCSI Storage ArrayESXi Host
vmhba3

vmhba2

Session ID X
Connection 1

Connection 2

Connection 3

Connection 4

Session ID Y
Connection 1

Connection 2

Connection 3

Connection 4

Figure 4.2 iSCSI sessions from multiple initiators

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 87

vmhba2 established session X with the storage array and has four connections within that
session.

In the same fashion, vmhba3 established session Y with the same iSCSI storage array and
also has four connections within that session.

To understand this better, examine Listing 4.1 with output collected from the ESXi host
used in this example. I truncated some of the lines in the output, leaving the lines relevant
to this section.

Listing 4.1 Listing iSCSI Sessions

~ # esxcli iscsi session list

vmhba2,iqn.1992-04.com.emc:cx.apm00064000064.a0,00c0dd09b6c3

 Adapter: vmhba2

 Target: iqn.1992-04.com.emc:cx.apm00064000064.a0

 ISID: 00c0dd09b6c3

 TargetPortalGroupTag: 1

vmhba2,iqn.1992-04.com.emc:cx.apm00064000064.a1,00c0dd09b6c3

 Adapter: vmhba2

 Target: iqn.1992-04.com.emc:cx.apm00064000064.a1

 ISID: 00c0dd09b6c3

 TargetPortalGroupTag: 2

vmhba2,iqn.1992-04.com.emc:cx.apm00064000064.b0,00c0dd09b6c3

 Adapter: vmhba2

 Target: iqn.1992-04.com.emc:cx.apm00064000064.b0

 ISID: 00c0dd09b6c3

 TargetPortalGroupTag: 3

vmhba2,iqn.1992-04.com.emc:cx.apm00064000064.b1,00c0dd09b6c3

 Adapter: vmhba2

 Target: iqn.1992-04.com.emc:cx.apm00064000064.b1

 ISID: 00c0dd09b6c3

 TargetPortalGroupTag: 4

vmhba3,iqn.1992-04.com.emc:cx.apm00064000064.a0,00c0dd09b6c5

 Adapter: vmhba3

 Target: iqn.1992-04.com.emc:cx.apm00064000064.a0

 ISID: 00c0dd09b6c5

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity88

 TargetPortalGroupTag: 1

vmhba3,iqn.1992-04.com.emc:cx.apm00064000064.a1,00c0dd09b6c5

 Adapter: vmhba3

 Target: iqn.1992-04.com.emc:cx.apm00064000064.a1

 ISID: 00c0dd09b6c5

 TargetPortalGroupTag: 2

vmhba3,iqn.1992-04.com.emc:cx.apm00064000064.b0,00c0dd09b6c5

 Adapter: vmhba3

 Target: iqn.1992-04.com.emc:cx.apm00064000064.b0

 ISID: 00c0dd09b6c5

 TargetPortalGroupTag: 3

vmhba3,iqn.1992-04.com.emc:cx.apm00064000064.b1,00c0dd09b6c5

 Adapter: vmhba3

 Target: iqn.1992-04.com.emc:cx.apm00064000064.b1

 ISID: 00c0dd09b6c5

 TargetPortalGroupTag: 4

In Listing 4.1, I removed some of the output content to highlight the portions relevant to
this section. Notice the ISID value, which is the iSCSI Session ID. Each HBA is associated
with one session ID to four targets.

The correlation between initiators, targets, sessions, and connections in this example are
shown in Table 4.1.

Table 4.1 Correlating Initiators, Targets, Sessions, and Connections

Target IQN

Session ID

Target Portal
Group Tag

Notes

vmhba2

iqn.1992-04.com.emc:cx.
apm00064000064.a0

00c0dd09b6c3 1 SPA Port 0

iqn.1992-04.com.emc:cx.
apm00064000064.a1

00c0dd09b6c3 2 SPA Port 1

iqn.1992-04.com.emc:cx.
apm00064000064.b0

00c0dd09b6c3 3 SPB Port 0

iqn.1992-04.com.emc:cx.
apm00064000064.b1

00c0dd09b6c3 4 SPB Port 1

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 89

Target IQN

Session ID

Target Portal
Group Tag

Notes

vmhba3

iqn.1992-04.com.emc:cx.
apm00064000064.a0

00c0dd09b6c5 1 SPA Port 0

iqn.1992-04.com.emc:cx.
apm00064000064.a1

00c0dd09b6c5 2 SPA Port 1

iqn.1992-04.com.emc:cx.
apm00064000064.b0

00c0dd09b6c5 3 SPB Port 0

iqn.1992-04.com.emc:cx.
apm00064000064.b1

00c0dd09b6c5 4 SPB Port 1

Table 4.1 shows that vmhba2 and vmhba3 are connected to the same targets. The latter
are two ports on each Storage Processor (SP). Notice the SP-Port combination is part of
the target’s IQN (which is explained further in the “iSCSI Targets” section).

You can also list Active Target Sessions information for a given HBA using the following
command:

vmkiscsi-tool -C <hba-name>

Or using esxcli:

esxcli storage iscsi session list --adapter=<hba-name>

The following is the shorthand version of this command:

esxcli storage iscsi session list -A <hba-name>

Example:

vmkiscsi-tool -C vmhba2

Or

esxcli storage iscsi session list -A vmhba2

To list the same information for one target, you can instead use the following command:

vmkiscsi-tool -C –t <target iqn> <hba-name>

Or

esxcli storage iscsi session list --name <iSCSI Target Name>

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity90

The shorthand version of this command is

esxcli storage iscsi session list --n <iSCSI Target Name>

Example:

vmkiscsi-tool -C -t iqn.1992-04.com.emc:cx.apm00064000064.a0 vmhba2

Or

esxcli storage iscsi session list --name iqn.1992-04.com.emc:cx.
apm00064000064.a0

Listing 4.2 is a sample output of the first command using vmkiscsi-tool.

Listing 4.2 Listing iSCSI Sessions with a Specific Target Using vmkiscsi-tool

vmkiscsi-tool -C -t iqn.1992-04.com.emc:cx.apm00064000064.a0 vmhba3

------ Target [iqn.1992-04.com.emc:cx.apm00064000064.a0] info ------

NAME : iqn.1992-04.com.emc:cx.apm00064000064.a0

ALIAS : 0064.a0

DISCOVERY METHOD FLAGS : 8

SEND TARGETS DISCOVERY SETTABLE : 0

SEND TARGETS DISCOVERY ENABLED : 1

Portal 0 : 10.23.1.30:3260

 Session info [isid:00:c0:dd:09:b6:c5]:

 - authMethod: NONE

 - dataPduInOrder: YES

 - dataSequenceInOrder: YES

 - defaultTime2Retain: 0

 - errorRecoveryLevel: 0

 - firstBurstLength: 128

 - immediateData: NO

 - initialR2T: YES

 - isid: 00:c0:dd:09:b6:c5

 - maxBurstLength: 512

 - maxConnections: 1

 - maxOutstandingR2T: 1

 - targetPortalGroupTag: 1

 Connection info [id:0]:

 - connectionId: 0

 - dataDigest: NONE

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 91

 - headerDigest: NONE

 - ifMarker: NO

 - ifMarkInt: 0

 - maxRecvDataSegmentLength: 128

 - maxTransmitDataSegmentLength: 128

 - ofMarker: NO

 - ofMarkInt: 0

 - Initial Remote Address: 10.23.1.30

 - Current Remote Address: 10.23.1.30

 - Current Local Address: 10.23.1.215

 - Session Created at: Not Available

 - Connection Created at: Not Available

 - Connection Started at: Not Available

 - State: LOGGED_IN

In Listing 4.2, the iSCSI Session ID (ISID) is listed with colons separating the bytes.
Listing 4.3 is a sample of the output from the second command using esxcli.

Listing 4.3 Listing Active iSCSI Sessions with a Specific Target Using esxli

esxcli iscsi session list -n iqn.1992-04.com.emc:cx.apm00064000064.a0

vmhba3,iqn.1992-04.com.emc:cx.apm00064000064.a0,00c0dd09b6c5

 Adapter: vmhba3

 Target: iqn.1992-04.com.emc:cx.apm00064000064.a0

 ISID: 00c0dd09b6c5

 TargetPortalGroupTag: 1

 AuthenticationMethod: none

 DataPduInOrder: true

 DataSequenceInOrder: true

 DefaultTime2Retain: 0

 DefaultTime2Wait: 2

 ErrorRecoveryLevel: 0

 FirstBurstLength: Irrelevant

 ImmediateData: false

 InitialR2T: true

 MaxBurstLength: 512

 MaxConnections: 1

 MaxOutstandingR2T: 1

 TSIH: 0

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity92

Notice that the esxcli output does not include connection information. You can obtain a
list of connections within the same iSCSI session using the following esxcli command:

esxcli iscsi session connection list --isid=<session-id>

The shorthand version for this command is

esxcli iscsi session connection list -s <session-id>

Example:

esxcli iscsi session connection list -s 00c0dd09b6c5

The output is shown in Listing 4.4.

Listing 4.4 Listing iSCSI Session’s Connection Information

vmhba3,iqn.1992-04.com.emc:cx.apm00064000064.a0,00c0dd09b6c5,0

 Adapter: vmhba3

 Target: iqn.1992-04.com.emc:cx.apm00064000064.a0

 ISID: 00c0dd09b6c5

 CID: 0

 DataDigest: NONE

 HeaderDigest: NONE

 IFMarker: false

 IFMarkerInterval: 0

 MaxRecvDataSegmentLength: 128

 MaxTransmitDataSegmentLength: 128

 OFMarker: false

 OFMarkerInterval: 0

 ConnectionAddress: 10.23.1.30

 RemoteAddress: 10.23.1.30

 LocalAddress: 10.23.1.215

 SessionCreateTime: Not Available

 ConnectionCreateTime: Not Available

 ConnectionStartTime: Not Available

 State: logged_in

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 93

vmhba3,iqn.1992-04.com.emc:cx.apm00064000064.b0,00c0dd09b6c5,0

 Adapter: vmhba3

 Target: iqn.1992-04.com.emc:cx.apm00064000064.b0

 ISID: 00c0dd09b6c5

 CID: 0

 DataDigest: NONE

 HeaderDigest: NONE

 IFMarker: false

 IFMarkerInterval: 0

 MaxRecvDataSegmentLength: 128

 MaxTransmitDataSegmentLength: 16

 OFMarker: false

 OFMarkerInterval: 0

 ConnectionAddress: 10.23.2.30

 RemoteAddress: 10.23.2.30

 LocalAddress: 10.23.1.215

 SessionCreateTime: Not Available

 ConnectionCreateTime: Not Available

 ConnectionStartTime: Not Available

 State: free

I truncated the output in Listing 4.4 to show two connections. Note in the listing that
the two connections are between the same HBA vmhba3 and the same remote address
10.23.1.30. This is an example of multiple connections within the same session. Also note
that the first connection shows the state is logged_in, whereas the second one shows the
state is free. This means that the first one is an active connection, but the second one is
not.

iSCSI Portals

A portal is defined as a component of a network entity that has a TCP/IP network address
and may be used by an iSCSI node within that network entity for the connection within
one of its iSCSI sessions.

A portal in an initiator is identified by its IP address.

A portal in a target is identified by its IP address and its listening TCP port. The default
port is 3260. Figure 4.3 shows network portals on an iSCSI Server listening on port 3260.
On the host’s side, two iSCSI initiators also have network portals associated with the initi-
ators’ IP addresses.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity94

ISCSI Server

Network Portal
IP 10.1.5.3
TCP Port: 3260

Network Portal
IP 10.1.4.3
TCP Port: 3260

iSCSI Target

iSCSI Target

ESXi Host

iSCSI Initiator

iSCSI Initiator

Network Portal
 10.1.5.56

Network Portal
 10.1.4.56

Figure 4.3 iSCSI portals

Using SSH, vMA, or ESXCLI (I cover details about using these facilities later in this
chapter), you can list the iSCSI target portals using esxcli commands. The commands
shown in Listings 4.5 and 4.6 return the target portals for HW Initiators and SW
Initiators, respectively.

Listing 4.5 Listing iSCSI Target Portals—HW Initiators

~ # esxcli iscsi adapter target portal list

Adapter Target IP Port Tpgt

------- -- ---------- ---- ----

vmhba2 iqn.1992-04.com.emc:cx.apm00064000064.a0 10.23.1.30 3260 1

vmhba2 iqn.1992-04.com.emc:cx.apm00064000064.a1 10.23.1.31 3260 2

vmhba2 iqn.1992-04.com.emc:cx.apm00064000064.b0 10.23.2.30 3260 3

vmhba2 iqn.1992-04.com.emc:cx.apm00064000064.b1 10.23.2.31 3260 4

vmhba3 iqn.1992-04.com.emc:cx.apm00064000064.a0 10.23.1.30 3260 1

vmhba3 iqn.1992-04.com.emc:cx.apm00064000064.a1 10.23.1.31 3260 2

vmhba3 iqn.1992-04.com.emc:cx.apm00064000064.b0 10.23.2.30 3260 3

vmhba3 iqn.1992-04.com.emc:cx.apm00064000064.b1 10.23.2.31 3260 4

NOTe

I added a blank line between HBAs for readability.

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 95

Listing 4.6 Listing iSCSI Target Portals—SW Initiators

~ # esxcli iscsi adapter target portal list

Adapter Target IP Port Tpgt

------- -- ------------ ---- ----

vmhba34 iqn.1992-04.com.emc:cx.apm00071501971.a0 10.131.7.179 3260 1

vmhba34 iqn.1992-04.com.emc:cx.apm00071501971.b0 10.131.7.180 3260 2

The main difference between HW and SW Initiators outputs is the vmhba enumeration. I
provide more details on this fact in the “iSCSI Initiators” section later in this chapter.

You may use an alternative command using vmkiscsi-tool, which might be deprecated in a
future release. It is also not available remotely via vMA or vCLI. This command is shown
in Listings 4.7 and 4.8.

Listing 4.7 Alternative Method for Listing iSCSI Target Portals—HW Initiators

~ # vmkiscsi-tool -T -l vmhba3 |awk ‘/iqn/||/Portal/{print}’

------ Target [iqn.1992-04.com.emc:cx.apm00064000064.a0] info ------

NAME : iqn.1992-04.com.emc:cx.apm00064000064.a0

Portal 0 : 10.23.1.30:3260

------ Target [iqn.1992-04.com.emc:cx.apm00064000064.a1] info ------

NAME : iqn.1992-04.com.emc:cx.apm00064000064.a1

Portal 0 : 10.23.1.31:3260

Listing 4.8 Alternative Method for Listing iSCSI Target Portals—SW Initiators

~ # vmkiscsi-tool -T -l vmhba34 |awk ‘/iqn/||/Portal/{print}’

------ Target [iqn.1992-04.com.emc:cx.apm00071501971.a0] info ------

NAME : iqn.1992-04.com.emc:cx.apm00071501971.a0

Portal 0 : 10.131.7.179:3260

------ Target [iqn.1992-04.com.emc:cx.apm00071501971.b0] info ------

NAME : iqn.1992-04.com.emc:cx.apm00071501971.b0

Portal 0 : 10.131.7.180:3260

The main difference between the outputs from HW and SW Initiator is the vmhba
number used. The next section, “iSCSI Initiators,” provides details about the differences
between these initiators.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity96

iSCSI Initiators

iSCSI Initiators are used to connect hosts to iSCSI storage arrays over an Ethernet
network. vSphere 5 supports two types of iSCSI initiators:

�� Hardware Initiators, which are available in two classes:

�� Dependent—These are physical adapters that depend on ESXi for network
stack, initiator configuration, and management. The adapter offloads iSCSI
processing from the host using TOE or TCP Offload Engine. It requires a
vmkernel port group configured and linked to the adapter.

�� Independent—These are physical adapters that offload iSCSI and network
processing from the host. They provide their own management capabilities via
their firmware. However, you can still configure them via vSphere Client.

�� Software initiator—This is a software implementation of the iSCSI Initiator. ESXi
includes this software as a vmkernel component. It requires a vmkernel port group
configured and linked to physical network interface cards (NICs) in the ESXi host.

iSCSI Names and Addresses

According to RFC 3721 (http://tools.ietf.org/html/rfc3721):

“The main addressable, discoverable entity in iSCSI is an iSCSI Node. An iSCSI node can
be an initiator, a target, or both. The rules for constructing an iSCSI name are specified in
RFC3720.”

iSCSI nodes, initiators, and targets require special names for the purpose of identification.
These names can be in one of the following formats:

�� IQN (iSCSI Qualified Name)

�� EUI (Extended Unique Identifier)

�� NAA (T11 Network Address Authority)

�� Alias

IQN

IQN is an iSCSI naming scheme constructed to give an organizational naming authority
the flexibility to further subdivide the responsibility for name creation to subordinate
naming authorities.

From the Library of raphael schitz

http://tools.ietf.org/html/rfc3721

ptg7996124

iSCSI Protocol 97

This is the commonly used identifier among HBA and array vendors. The IQN format is
defined in RFC 372. The example in Figure 4.4 shows a Hardware Initiator’s IQN.

iqn. 2000-04.com.qlogic:qla4052c.prme-iox215-1

Port

Unique Node
Name

Unique Node
Name

Host NameModelDate Registered Domain Name

Date Register Domain Name

iqn.<YYYY-MM>.<domain>:<Unique Node Name>

Figure 4.4 HW Initiators—anatomy of iqn

The following items are the breakdown of the IQN:

 1. The string iqn.

 2. <YYYY-MM>: A date code specifying the year and month in which the organization
registered the domain or subdomain name used as the naming authority string.

 3. <domain>: The organizational naming authority string, which consists of a valid,
reversed DNS domain or subdomain name.

 4. <Node Identifier>: A unique identifier for each node which is assigned by the
Organizational Naming Authority stated in item 3 (in this example it is qlogic.com),
or you can manually assign it during configuration. A colon “:” separates this from
the previous strings.

In Figure 4.4, the node name is based on the HBA’s model (qla4052c) in addition to other
strings assigned during the HBA configuration. In this case, it is the ESXi relative DNS
host name (FQDN without the domain name). The -1 at the end of the name in this case
is a port identifier of a dualport HBA. The second port of this HBA would be named

iqn.2000-04.com.qlogic:qla4052c.prme-iox215-2

A similar approach is used for software initiators as illustrated in Figure 4.5 with the
difference that the Naming Authority is com.vmware. The unique node name is a combi-
nation of the host name and a unique string.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity98

iqn. 1998-01.com.vmware:wdc-tse-d98-75ef2a85

Unique Node
Name

Unique Node
Name

Host Name Unique stringDate Registered Domain Name

Date Register Domain Name

iqn.<YYYY-MM>.<domain>:<Unique Node Name>

Figure 4.5 SW Initiators—anatomy of iqn

iSCSI EUI

The iSCSI EUI naming format allows a naming authority to use IEEE EUI-64 identifiers
in constructing iSCSI names. The details of constructing EUI-64 identifiers are specified
by the IEEE Registration Authority (see http://standards.ieee.org/develop/regauth/tut/
eui64.pdf). I discuss this further in Chapter 5, “VMware Pluggable Storage Architecture
(PSA).”

EUI is not commonly used by HBA vendors. However, you might see some LUNs using
this ID format regardless of being iSCSI based, but the ID is usually longer than the
following example:

eui.02004567A425678D

NAA ID

I discuss NAA IDs in Chapter 5 in the context of identifying LUNs.

Alias

iSCSI alias is used to simplify identification of initiators or targets. The alias is not used as
part of the authentication credentials. It is ignored by arrays that do not use it.

From the Library of raphael schitz

http://standards.ieee.org/develop/regauth/tut/eui64.pdf
http://standards.ieee.org/develop/regauth/tut/eui64.pdf

ptg7996124

iSCSI Protocol 99

Here is an example from an alias table from a storage array configuration:

+--Connected-To-These-Targets----------------------

|

| Alias Target Name

|

| ESXi1 HBA1 iqn.1995-04.com.example:sn.5551212.target.450

| ESXi1 HBA2 iqn.1995-04.com.example:sn.5551212.target.489

| Exchange 2 iqn.1995-04.com.example:sn.8675309

|

+--

Locating iSCSI Initiators’ IQN in vSphere 5 Hosts

In the process of troubleshooting iSCSI connectivity or mapping out an existing vSphere
5.0 host’s iSCSI connectivity, you need to identify the installed initiators’ IQNs. In this
section I show you how to do that via the user interface (UI) as well as the command-line
interface (CLI).

Procedure Using the UI

To locate the iSCSI Initiators’ IQN using the UI, you may follow this procedure:

 1. Log on to the vSphere 5.0 host directly or to the vCenter server that manages the
host using the VMware vSphere 5.0 Client as a user with Administrator privileges.

 2. While in the Inventory—Hosts and Clusters view, locate the vSphere 5.0 host in the
inventory tree and select it.

 3. Navigate to the Configuration tab.

 4. Under the Hardware section, select the Storage Adapters option.

 5. Locate the HBAs with the Type column showing iSCSI type.

 6. The next column in the UI is WWN, which is where you can locate the IQN for
each iSCSI type adapter. Alternatively, select one HBA at a time and in the Details
pane locate the iSCSI Name field. There, you also see the IQN.

Figure 4.6 shows an example of Hardware (HW) Initiators.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity100

Figure 4.6 Example of HW Initiators—vSphere 5.0 Client UI

Observe that, in the Storage Adapters pane, the HBAs are grouped under the heading
QLA405Xc iSCSI Host Bus Adapter, which is the HBA’s model. You can see this model
also listed in the Details pane in the field Model.

The WWN column values here are

iqn.2000-04.com.qlogic:qla4052c.prme-iox215-1

iqn.2000-04.com.qlogic:qla4052c.prme-iox215-2

These are the IQNs used as examples in IQN subsection of the “iSCSI Names and
Addresses” section. Figure 4.7 shows an example of Software (SW) Initiators.

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 101

Figure 4.7 Example of SW Initiators—vSphere 5.0 Client UI

Observe that, in the Storage Adapters pane, the HBAs are grouped under the heading
iSCSI Software Adapter, which is the HBA’s type. You can also see this listed in the
Details pane in the Model field.

The WWN column value here is

iqn.1998-01.com.vmware:wdc-tse-d98-75ef2a85

Using what was discussed in the previous sections, you can identify this IQN as follows:

 1. The Naming Authority is registered to vmware.com.

 2. The intiator name is wdc-tse-d98.

 3. The port ID/Unique string is 75ef2a85.

NOTe

An ESXi host can have only one SW Initiator, which can be connected to more than one
vmnic (Uplink). (See more about port-binding later in this chapter.)

In contrast, the ESXi host can have more than one HW Initiator, which are dedicated to
one physical port each. More on that in the next section, “Configuring iSCSI Initiators.”

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity102

Procedure Using SSH

To list the iSCSI Initiators using the CLI, you may follow this procedure:

 1. Connect to the vSphere 5.0 host using an SSH client.

 2. If root SSH access is disabled, log on with the user account assigned to you and then
use su to elevate your privileges to root. Notice that your shell prompt changes from
$ to #. You need to provide root’s password when prompted.

 3. You may use the following command to list all iSCSI initators in the ESXi host:

esxcli iscsi adapter list

The output for SW Initiators is similar to Figure 4.8.

Figure 4.8 Listing SW Initiator—SSH

In this example, the initiator has the attributes listed in Table 4.2.

Table 4.2 Attributes of an iSCSI Initiator

Attribute Value

Adapter (name) vmhba35

Driver iscsi_vmk

State Online

UID iqn.1998-01.com.vmware:wdc-tse-d98-75ef2a85

Description iSCSI Software Adapter

The output for HW Initiators is similar to Figure 4.9.

Figure 4.9 Listing HW Initiators—SSH

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 103

In this example, the initiator (vmhba2) has the attributes listed in Table 4.3.

Table 4.3 Attributes of an iSCSI HW Initiator

Attribute Value

Adapter (name) Vmhba2

Driver qla4xxx

State Online

UID iqn.2000-04.com.qlogic:qla4052c.prme-iox215-1

Description 4022 Family iSCSI Controller

From the last two examples, the initiator type is clearly stated in the description column of
the output.

An Alternative Approach to Listing iSCSI Initiators Using the CLI

For an alternative approach to listing the iSCSI Initiators using the CLI, you may follow
this procedure:

 1. Follow Steps 1 and 2 in the “Procedure Using SSH” section.

 2. Run the following command if you are using QLogic HW Initiators:

grep –i “iscsi name” /proc/scsi/qla4xxx/*

If you are using a different brand/model, substitute qla4xxx with the HBA’s
relevant proc node. Output similar to Figure 4.10 returns.

Figure 4.10 Alternative method for listing HW Initiators—SSH

In this example, the ESXi host has two QLogic HW iSCSI Initiators. Observe
that both adapters share the same name but have two different port IDs—-1 and
-2—which might indicate that this is a dual port HBA.

You can verify the number of adapters by checking the PCI Hardware
information using the following command:

lspci | grep -i qla4

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity104

Output similar to Figure 4.11 is returned.

Figure 4.11 Locating PCI location of iSCSI HW Initiators—SSH

The first column shows the location of the adapter on the PCI bus in the format

ddd:BBB:DD:F

where

ddd: PCI Domain number (this is usually 000)

BBB: PCI Bus number

DD: PCI Device number

F: PCI Function number

In this example, the adapters are at the following PCI location:

Bus 5: Device 7: Function 0

Bus 5: Device 7: Function 1

which means that it is a single adapter with two functions (that is, ports).

This is due to the adapter not having a PCI-to-PCI bridge; otherwise, each
adapder would have a different device number and a single PCI function.

Notice that the output also lists the assigned vmhba number: vmhba2 and
vmhba3. You can match this with what you see in the UI.

 3. Run the following command if you have a SW Initiator:

esxcfg-mpath --list-paths |grep -i iqn |sed ‘s/Target.*$//’

You may also run the shorthand version of the command:

esxcfg-mpath -b |grep -i iqn |sed ‘s/Target.*$//’

The output of the shorthand version looks like Figure 4.12.

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 105

Figure 4.12 Alternative method for listing iSCSI SW Initiators

In this example the SW Initiator is vmhba35 with WWN:

iqn.1998-01.com.vmware:wdc-tse-d98-75ef2a85

NOTe

The same procedure can be used for HW Initiators.

You can tell the difference from the IQN; if it has “com.vmware” as the naming authority, it
is a SW Initiator. Otherwise, it is an HW Initiator.

Procedure Using vMA 5.0

If you have already used “Procedure Using vMA 5.0” under FC Initiators earlier in
Chapter 2, “Fibre Channel Storage Connectivity,” skip to Step 5.

The following procedure assumes that you have already installed and configured vMA 5.0
as outlined in the VMA Guide available at: http://www.vmware.com/go/vma, which is also
where you can download the appliance:

 1. Log on to vMA as vi-admin or a user that can use sudo (that is, added to the sudoers
file using visudo editor).

 2. Add each ESXi host you plan to manage via this appliance.

vifp addserver <ESXi host name> --username root --password <root’s
password>

 3. Verify that the host has been successfully added.

vifp listservers

NOTe

If you omit the –password parameter, you are prompted to enter it as shown in
Figure 4.13.

From the Library of raphael schitz

http://www.vmware.com/go/vma

ptg7996124

Chapter 4 iSCSI Storage Connectivity106

Figure 4.13 Adding a managed host

 4. Repeat Steps 2 and 3 for each host you want to manage via this vMA.

 5. Set the ESXi server as the target for subsequent commands:

vifptarget –-set <ESXi host name>

You may also use the shorthand version of the command:

vifptarget –s <ESXi host name>

The output of the shorthand version of the command is shown in Figure 4.14.

Figure 4.14 Setting the target managed host

Notice that the prompt changes to include the ESXi host name.

 6. Run the following command to list iSCSI initiators:

esxcli iscsi adapter list

The output is similar to Figure 4.15.

Figure 4.15 Listing iSCSI SW Initiators—vMA 5.0

In this example, the initiator has the attributes listed in Table 4.4.

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 107

Table 4.4 Attributes of an iSCSI Initiator

Attribute Value

Adapter (name) vmhba35

Driver Iscsi_vmk

State Online

UID iqn.1998-01.com.vmware:wdc-tse-d98-75ef2a85

Description iSCSI Software Adapter

The output for HW Initiators is similar to Figure 4.16.

Figure 4.16 Listing iSCSI HW Initiators—vMA 5.0

In this example, the initiator (vmhba2) has the attributes listed in Table 4.5.

Table 4.5 Attributes of an iSCSI HW Initiator

Attribute Value

Adapter (name) Vmhba2

Driver qla4xxx

State Online

UID iqn.2000-04.com.qlogic:qla4052c.prme-iox215-1

Description 4022 Family iSCSI Controller

From the last two examples, the initiator type is clearly stated in the description column of
the output.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity108

An Alternative Command to List iSCSI Initiators Using vMA 5.0

You may use the following command to list all iSCSI initators in an ESXi host:

esxcfg-mpath --list-paths |grep -i iqn |sed ‘s/Target.*$//’

You may also use the shorthand version of the command:

esxcfg-mpath -b |grep -i iqn |sed ‘s/Target.*$//’

This lists the output lines (see Figure 4.17) that include iqn and then truncates the rest of
the lines starting with the word Target.

Figure 4.17 Alternative method to list iSCSI SW Initiators—vMA 5.0

In this example, the iSCSI initiator is a software initiator because the naming authority is
com.vmware. It is listed twice because it is associated with two different targets. For more
details on Targets, see the “iSCSI Sessions” section earlier in this chapter.

Notice that the host name is part of the node name listed after the colon.

Procedure Using Linux vCLI

Using vCLI is similar to using vMA but without fast-pass facility (FP), which provides
vifp and vifptarget commands. This means that you have to provide the host’s credentials
with each command, which include --server, --username, and --password in addition
to the rest of the command options used in the “Procedure Using vMA 5.0” section. For
example, the commands would be

esxcli --server <host name> --username root --password <password> iscsi
adapter list

and

esxcfg-mpath --list-paths --server <host name> --username root --password
<password> |grep iqn |sed ‘s/Target.*$//’

The shorthand version is

esxcfg-mpath -b --server <host name> --username root --password <password>
|grep iqn |sed ‘s/Target.*$//’

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 109

TIP

You may use the --credstore option (variable VI_CREDSTORE) to avoid providing the
credentials details with every command you run against the ESXi hosts.

The name of the credential store file defaults to <HOME>/.vmware/credstore/
vicredentials.xml on Linux and <APPDATA>/VMware/credstore/vicredentials.
xml on Windows.

See the vMA 5.0 user guide for additional details.

NOTe

The syntax for using the Windows version is the same as that for the Linux version of vCLI.
Keep in mind that additional OS-specific commands/tools available on Linux might not
be available on Windows. I covered the Linux version only, and you may apply the same
procedure on Windows substituting non-ESXCLI commands with relevant commands that
are available on Windows. For example, on Linux I infrequently use sed and awk, which
are not available on Windows by default. You may get a Windows version of sed from
http://gnuwin32.sourceforge.net/packages/sed.htm and awk from
http://gnuwin32.sourceforge.net/packages/gawk.htm.

Configuring iSCSI Initiators

Configuring iSCSI initiators for HW Initiators is somewhat different from configuring
SW Initiators. Before diving into the details of each, make sure to review the “iSCSI
Connectivity” section at the beginning of this chapter.

Configuring Independent HW Initiator

You can configure hardware initiators via their own firmware, and you can modify them
using the vSphere client.

Configuring HW iSCSI Initiator via HBA’s BIOS

Using QLA405x Dual Port HBA as an example, here are the steps to configure the HBA
using its BIOS:

 1. Boot the host and, when prompted, press the key combination to access the HBA’s
BIOS. In this example, the hotkey for the QLogic HBA is Ctrl-Q. (See Figure 4.18.)

From the Library of raphael schitz

http://gnuwin32.sourceforge.net/packages/sed.htm
http://gnuwin32.sourceforge.net/packages/gawk.htm

ptg7996124

Chapter 4 iSCSI Storage Connectivity110

Figure 4.18 Accessing the QLogic HBA’s BIOS

 2. If you have more than one HBA installed, select the HBA you want to configure and
then press Enter.

 3. The QLogic Fast1UTIL menu is displayed. Select the Configuration Settings
option then press Enter. (See Figure 4.19.)

Figure 4.19 QLogic Fast! UTIL Options menu

 4. Select the Host Adapter Settings option then press Enter. (See Figure 4.20.)

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 111

Figure 4.20 Accessing the Host Adapter Settings menu

 5. Enter the HBA’s IP settings by selecting each field and then pressing Enter. Fill
in the corresponding address/subnet mask. When done entering each field’s value,
press Enter to go back to the Host Adapter Settings menu. (See Figure 4.21.)

Figure 4.21 Host adapter settings menu

 6. Press Esc twice.

 7. When prompted, select Save Changes and then press Enter. (See Figure 4.22.)

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity112

Figure 4.22 Saving adapter configuration changes

 8. To configure a second port on the HBA or on another QLogic iSCSI HBA, at the
Fast!UTIL Options menu, scroll down to the Select Host Adapter and then press
Enter. (See Figure 4.23.)

Figure 4.23 Accessing Host Adapter selection menu

 9. Select the adapter from the displayed list and then press Enter. (See Figure 4.24.)

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 113

Figure 4.24 Selecting Host Adapter

 10. Repeat Steps 2 through 7.

 11. When done configuring all the HBAs’ ports, press Esc twice at the Fast!UTIL
Options menu.

 12. When prompted, select Reboot System. (See Figure 4.25.)

Figure 4.25 Exiting Fast!UTIL and rebooting the system

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity114

Modifying Independent HW iSCSI Initiator’s Configuration via vSphere 5 Client

There is no virtual network configuration required for this class of initiators. The
following steps cover using vSphere client to configure or to make configuration changes
to Independent HW Initiators:

 1. Install the HBA into an available PCI slot matching the adapter’s PCI standard and
clock speed.

 2. Connect the HBA to the iSCSI network and configure the VLAN if the design calls
for it. (Read more about design decisions later in this chapter.)

 3. Power on the ESXi host and use the vSphere 5.0 client to connect to it as a user with
root privileges or connect to the vCenter server that manages that host as a user with
Administrator privileges.

 4. If logged into vCenter, navigate to the Inventory—Hosts and Clusters view and then
locate the vSphere 5.0 host in the inventory tree and select it. Otherwise, proceed to
the next step.

 5. Navigate to the Configuration tab.

 6. Under the Hardware section, select Storage Adapters.

 7. Locate the HBA with the model name or HBA family name matching the HBA you
are configuring and select it. In this example it is a QLA405xc family and the HBA
name is vmhba2. (See Figure 4.26.)

Figure 4.26 Selecting the iSCSI HW Initiator—vSphere 5.0 Client

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 115

 8. In the Details pane, click Properties to view the dialog shown in Figure 4.27.

Figure 4.27 Viewing iSCSI HW Initiator configuration properties—vSphere 5.0 Client

 9. Click the Configure button. (Figure 4.27 was actually collected from an HBA that
was already configured.)

 10. In the resulting dialog (shown in Figure 4.28), the iSCSI Name is populated with the
vendor’s Name Authority and the device name. You may modify the latter part, if the
design calls for it.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity116

Figure 4.28 Configuring or modifying iSCSI HW Initiator’s iSCSI properties and IP settings

 11. Type an alias, if you want to assign one to this HBA.

 12. Under the Hardware Initiator Properties, fill in the IP settings with the IP address
you want to assign to this HBA. DNS servers are optional.

 13. Click OK. You return to the dialog shown previously in Figure 4.27.

 14. If your storage array requires the CHAP (Challenge-Handshake Authentication
Protocol) authentication method, click the CHAP button to configure it. You should
see the dialog shown in Figure 4.29.

 15. Select Use CHAP unless prohibited by target option from the pull-down menu.

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 117

 16. Check the Use initiator name box unless you want to manually enter the IQN here.
It is easier to use the checkbox to avoid any typographical errors.

 17. In the Secret field, enter the password assigned by the storage array to this initiator.

 18. Click OK.

Figure 4.29 Configuring CHAP credentials—vSphere 5.0 Client

HW Initiators provide Static Discovery as well as Dynamic Discovery of
iSCSI targets. SW Initiators also support both Static Discovery and Dynamic
Discovery as early as ESX 4.0. However, with certain iSCSI storage arrays that
present each LUN on a separate target, using static discovery can be impractical.

Figure 4.30 shows the list of discovered targets on this host.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity118

Figure 4.30 Adding iSCSI HW Initiator’s static discovery address—Step 1—vSphere 5.0 Client

 19. To add Static Discovery targets, click the Add button. You should see the dialog
shown in Figure 4.31.

Figure 4.31 Adding iSCSI HW Initiator’s static discovery address—Step 2—vSphere 5.0 Client

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 119

 20. In the Add Static Target Server dialog, enter

a. iSCSI Server IP address.

b. iSCSI port (default is 3260).

c. iSCSI Target Name—This is the IQN of one of the iSCSI ports on the
storage array. You can obtain this from the array management utility.

Configuring Dependent HW Initiators

Configuring dependent HW initiators is identical to the steps in the “Configuring
Independent HW Initiators” section. The only differences are that you can only configure
them via the vSphere UI whereas independent HW initiators can be configured via the
HBA’s firmware as well. You also must create a vmkernel port group to assign to the
dependent HW Initiator HBA.

Configuring SW iSCSI Initiator

Configuring the SW initiator is identical to the steps outlined in the “Configuring
Independent HW Initiators” section. The only differences are that you can only configure
it via the vSphere UI and that you cannot configure Static Discovery of iSCSI targets. You
also must create a vmkernel port group to assign to the SW Initiator.

To create and configure an SW Initiator, use the following steps:

 1. Install one or more Ethernet NIC (1Gb/s or preferably 10Gb/s) into an available
PCI slot matching the adapter’s PCI standard and clock speed.

 2. Connect the NIC to the iSCSI network and configure the VLAN if the design calls
for it. (Read more about design decisions later in this chapter.)

 3. Power on the ESXi host, and connect to it using the vSphere 5.0 client as a user with
root privileges or connect to the vCenter server that manages that host as a user with
Administrator privileges.

 4. If logged into vCenter, navigate to the Inventory—Hosts and Clusters view, and
then locate the vSphere 5.0 host in the inventory tree and select it. Otherwise, skip
to the next step.

 5. Navigate to the Configuration tab.

 6. In the Networking section, select the Add Networking link (see Figure 4.32).

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity120

Figure 4.32 Network configuration tab—vSphere 5.0 Client

 7. Select VMkernel as the connection type and then click Next. (See Figure 4.33.)

Figure 4.33 Creating a vmkernel Port Group—Connection Type—vSphere 5.0 Client

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 121

 8. Select the Use vSwitch0 (if you’re using a standard vSwitch) or the Use dvSwtich0
(if you’re using a vNetwork Distributed Switch vDS) radio button if you want to add
this port group to the existing vSwitch/vDS. Otherwise, select the Create a vSphere
standard switch radio button as shown in Figure 4.34. I cover the detailed network
design choices later in this chapter.

Figure 4.34 Creating a Vmkernel Port Group—Selecting vSwitch—vSphere 5.0 Client

 9. Select the vmnics to which you want to link this port group. In this example, I only
have two NICs available for storage in this host. I use one of the NICs for iSCSI and
share it as a standby NIC with the Management Network.

 10. Click Next.

 11. Type the name you selected for the port group Network Label. In this example I am
using iSCSI Network.

 12. Select the VLAN ID if your design calls for it. Make sure to match the VLAN to
which the iSCSI storage array is connected.

 13. Leave all checkboxes unchecked as shown in Figure 4.35. Click Next.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity122

Figure 4.35 Creating a Vmkernel Port Group—Entering port group properties—vSphere 5.0 Client

 14. Select the Use the following IP settings radio button and then enter the IP settings
you allocated for this port group.

 15. If the iSCSI network has a default gateway that is different from the VMkernel Port
group, click the Edit button and enter the iSCSI default gateway (see Figure 4.36).

 16. Click Next.

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 123

Figure 4.36 Creating a Vmkernel Port Group—IP settings—vSphere 5.0 Client

 17. Review the information in the preview screen and, if you have no corrections to
make, click the Finish button. (See Figure 4.37.)

Figure 4.37 Creating a Vmkernel port group—summary—vSphere 5.0 Client

Figure 4.35 Creating a Vmkernel Port Group—Entering port group properties—vSphere 5.0 Client

 14. Select the Use the following IP settings radio button and then enter the IP settings
you allocated for this port group.

 15. If the iSCSI network has a default gateway that is different from the VMkernel Port
group, click the Edit button and enter the iSCSI default gateway (see Figure 4.36).

 16. Click Next.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity124

 18. Figure 4.38 shows the network configuration after the previous changes.

Notice that both Management Network and iSCSI Network are using vmnic0
as the active uplink (vmnic1 shows as stand by). You need to change the NIC
teaming configuration so that the iSCSI port group uses vmnic1 as the active
uplink and vmnic0 as unused. I discuss NIC teaming design choices later in this
chapter.

 19. Select the Properties link under the Standard Switch: vSwitch0 section.

Figure 4.38 Networking configuration tab after adding port group—vSphere 5.0 Client

 20. Select the iSCSI Network port group and then click the Edit button. (See
Figure 4.39.)

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 125

Figure 4.39 Editing iSCSI Port Group—vSphere 5.0 Client

The Software Initiator does not support Active/Active or Active/Standby NIC
teaming on vSphere 5. So, if your current configuration looks like Figure 4.40,
proceed with the Step 21. Otherwise, if you have no NIC teaming configured,
your Network Property should look like Figure 4.41 and you may skip to
Step 27.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity126

Figure 4.40 Editing iSCSI Port Group—modifying failover order—vSphere 5.0 Client

 21. Select the NIC Teaming tab and then check the Override switch failover order
checkbox.

 22. Select vmnic1 and click the Move Up button twice to place it in the top of the Active
Adapters.

 23. Select the vmnic0 and then click the Move Down button twice to place it in the
Unused Adapters section.

 24. The failover order should look similar to Figure 4.41.

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 127

Figure 4.41 Editing iSCSI Port Group—failover order after modifications—vSphere 5.0 Client

 25. Click OK and then click Close.

 26. To verify the failover order changes, click the bubble icon to the left side of the
iSCSI Network port group. You should see a box similar to Figure 4.42. Notice that
the Active Adapter is now vmnic1 and that vmnic0 is unused.

Figure 4.42 Displaying the iSCSI Network Port Group Failover Order—vSphere 5.0 Client

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity128

 27. Add the SW Initiator. In the Hardware Section, select the Storage Adapters link,
shown in Figure 4.43.

Figure 4.43 Adding an iSCSI SW Initiator—Step 1—vSphere 5.0 Client

 28. Next to the Storage Adapters section heading, select the Add link. The Add Storage
Adapter dialog displays as shown in Figure 4.44.

Figure 4.44 Adding an iSCSI SW Initiator—Step 2—vSphere 5.0 Client

 29. Select the Add Software iSCSI Adapter radio button and then click OK.

 30. Acknowledge the displayed message (see Figure 4.45) by clicking OK.

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 129

Figure 4.45 Adding an iSCSI SW Initiator—Step 3—vSphere 5.0 Client

 31. You should now see the SW Initiator listed in the Storage Adapters section as shown
in Figure 4.46.

NOTe

The number assigned to the SW Initiator name (for example, vmhba34 or vmhba35) is
based on the next available vmhba number. In this example, the next number is vmhba34
since the IDE adapter was assigned vmhba33. The reason for the high vmhba numbers is
that the numbers lower than 32 are reserved for physical SCSI, FC, and Independent
FCoE/iSCSI HBAs.

 32. Under the Details section, select Properties. (See Figure 4.46.)

Figure 4.46 Viewing Storage Adapters after adding iSCSI SW Initiator

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity130

 33. Select the Network Configuration tab; then click Add. (See Figure 4.47.)

Figure 4.47 iSCSI initiator properties—displaying Network Configuration tab—vSphere 5.0 Client

 34. Select the iSCSI Network Port Group (vmk0 VMkernel Adapter) and then click OK.
(See Figure 4.48.)

Figure 4.48 Selecting VMkernel port group to bind with iSCSI SW Initiator—vSphere 5.0 Client

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 131

 35. Repeat Steps 33 and 34 to bind the Management Network with the iSCSI Adapter.
If you have enough NICs to dedicate to iSCSI storage, select the corresponding
port group instead. This provides an alternative NIC (the active NIC used by the
Management Network port group, in this example vmnic0) for availability.

NOTe

If you had not changed the NIC Teaming failover order so that the iSCSI Network Port
Group has one active NIC and no standby NICs, you would have received a message similar
to Figure 4.49 which states the following:

“The selected physical network adapter is not associated with VMkernel with compliant
teaming and failover policy. VMkernel network adapter must have exactly one active uplink
and no standby uplinks to be eligible for binding to the iSCSI HBA.”

All bound ports must be connected to the same network as the targets because Software
iSCSI Initiators traffic is not routable in this release. This may change in a future release,
though.

Figure 4.49 What you see if Failover Order was not set correctly—vSphere 5.0 Client

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity132

 36. A successful addition should look similar to Figure 4.50.

Figure 4.50 iSCSI SW Initiator after Port Groups binding—vSphere 5.0 Client

 37. Click the Dynamic Discovery tab; then click the Add button. Figure 4.51 shows
a blank Dynamic Discovery list because this is the first time you have configured
iSCSI Initiator.

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 133

Figure 4.51 iSCSI SW Initiator—adding dynamic discovery—Step 1—vSphere 5.0 Client

 38. Enter the iSCSI Server’s IP Address and then click OK. (See Figure 4.52.)

Figure 4.52 iSCSI SW Initiator—adding dynamic discovery—Step 2—vSphere 5.0 Client

 39. Repeat for each iSCSI Server’s IP address.

 40. The target should look similar to Figure 4.53. Click Close.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity134

Figure 4.53 iSCSI software initiator—dynamic discovery address added—vSphere 5.0 Client

 41. When you receive the dialog in Figure 4.54, click OK to rescan.

Figure 4.54 iSCSI SW Initiator—accepting “Rescan” dialog—vSphere 5.0 Client

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 135

 42. To verify the discovered targets, examine the Details section of the iSCSI Software
Adapter. The example exhibited in Figure 4.55 shows that there are two connected
targets, one device, and two paths.

Figure 4.55 iSCSI SW Initiator—configuration detail upon completion

 43. To display the list of paths, click the Paths button. You should see something similar
to Figure 4.56.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity136

Figure 4.56 iSCSI SW Initiator—displaying paths—vSphere 5.0 Client

In this example, two paths to the device are available; one of them is Active (I/O)
and the other is Stand by. I discuss this further in Chapter 7, “Multipathing and
Failover.”

TIP

The iSCSI initiator configuration is facilitated by iSCSI “Plug-ins” installed on the ESXi
host. To identify these plug-ins, run the following command:

esxcli iscsi plugin list

You should get an output similar to Figure 4.57.

In this example, there are two plug-ins: VMware and QLogic. For more information
on IMA iSCSI Management API, see the “iSCSI Architecture” section later in this
chapter. Also, see the SNIA white paper at http://www.snia.org/sites/default/files/
iSCSI_Management_API_SNIA_White_Paper.pdf.

From the Library of raphael schitz

http://www.snia.org/sites/default/files/iSCSI_Management_API_SNIA_White_Paper.pdf
http://www.snia.org/sites/default/files/iSCSI_Management_API_SNIA_White_Paper.pdf

ptg7996124

iSCSI Protocol 137

Figure 4.57 Listing iSCSI Plug-ins installed on ESXi 5.0 host—SSH

Configuring Independent HW iSCSI Initiator with Jumbo Frames

To configure Jumbo Frames on Independent HW iSCSI initiators, you can use the HBA’s
BIOS directly. The following is only the procedure for doing that:

 1. Boot the host and, when prompted, press the key combination to access the HBA’s
BIOS. In this example, the hotkey for the QLogic HBA is Ctrl-Q. (Refer to
Figure 4.18 earlier in this chapter.)

 2. If you have more than one HBA installed, select the HBA you want to configure and
then press Enter.

 3. The QLogic Fast1UTIL Options menu is displayed. Select the Configuration
Settings option and then press Enter. (Refer to Figure 4.19 earlier in this chapter.)

 4. Scroll down to Advanced Adapter Settings and then press Enter. (See
Figure 4.58.)

Figure 4.58 Selecting Advanced Adapter Settings

 5. Select the MTU field and press Enter—as shown in Figure 4.59—and then select
the value 9000. Press Enter.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity138

Figure 4.59 Modifying the MTU size

 6. Press Esc to return to the previous menu. When prompted, select Save changes as
shown in Figure 4.60 and press Enter.

Figure 4.60 Saving MTU changes

 7. To configure a second port on the HBA or on another QLogic iSCSI HBA, at the
Fast!UTIL Options menu, scroll down to Select Host Adapter; then press Enter.

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 139

Figure 4.61 Preparing to select the host adapter

 8. Select the adapter from the displayed list and then press Enter. (See Figure 4.62.)

Figure 4.62 Selecting the host adapter

 9. Repeat Steps 1 through 3 in this procedure.

 10. At the Fast!UTIL Options menu, press Esc again.

 11. Select Reboot System. (See Figure 4.63.)

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity140

Figure 4.63 Exiting the Fast!UTIL menu and rebooting the system

Configuring SW Initiator with Jumbo Frame

To compensate for lack of offloading capabilities of the iSCSI SW Initiator, enabling
Jumbo Frame can significantly improve I/O throughput.

Here I’m covering the procedure of enabling Jumbo Frame assuming that your design
meets the requirements:

 1. Connect to the ESXi host using the vSphere 5.0 client as a user with root privileges,
or connect to the vCenter server that manages that host as a user with Administrator
privileges.

 2. If logged into vCenter, navigate to the Inventory—Hosts and Clusters view, locate
the vSphere 5.0 host in the inventory tree, and select it. Otherwise, skip to the next
step.

 3. Navigate to the Configuration tab and then select Networking under the Hardware
section.

 4. Select the Properties link under the Standard Switch: vSwitch0 section (see
Figure 4.64). Your vSwitch number might vary depending on your design.

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 141

Figure 4.64 Navigating to the Networking configuration—vSphere 5.0 Client

 5. Select vSwitch; then click the Edit button as shown in Figure 4.65.

Figure 4.65 Editing vSwitch properties

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity142

 6. Under the General Tab, enter the value 9000 in the MTU field and then click OK
(see Figure 4.66).

Figure 4.66 Modifying MTU size—vSphere 5.0 Client

 7. Select the port group you bound to the iSCSI SW Initiator (in this example, it is
iSCSI Network); then click the Edit button (see Figure 4.67).

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 143

Figure 4.67 Editing the iSCSI port group—vSphere 5.0 Client

 8. Under the General tab, enter the value 9000 in the MTU field and then click OK,
as shown in Figure 4.68.

Figure 4.68 Modifying the iSCSI port group properties—vSphere 5.0 Client

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity144

 9. Acknowledge the resulting warning dialog (see Figure 4.69) by clicking Yes.

Figure 4.69 Possible iSCSI connection disruption warning dialog

 10. Repeat Steps 7 through 9 for each port group you bound to the iSCSI SW Initiator.

 11. Click the Close button.

If you compare Figure 4.70 to Figure 4.67, you should notice that the MTU field under
the NIC Settings section has changed from 1500 to 9000.

Figure 4.70 vSwitch Properties after portgroup changes

iSCSI Targets

On most iSCSI storage arrays, targets are represented by Storage Processor Ports.
However, there are some exceptions, such as Dell Equallogic, where each iSCSI LUN has

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 145

a unique target. For the former type of iSCSI array, you can use the following procedure
to identify iSCSI targets from vSphere 5.0 hosts. You can run one command to check for
iSCSI targets for HW and SW Initiators:

esxcli iscsi adapter target list

The output looks similar to Figure 4.71 for SW Initiators and Figure 4.72 for HW
Initiators.

Figure 4.71 SW Initiator—listing iSCSI targets—SSH

Figure 4.72 HW Initiators—listing iSCSI targets—SSH

NOTe

In these two examples, the initiators’ IQNs do not show by using this command. However,
you might recognize the SW Initiators from the Adapter name, which by default is of a
high adapter number (for example, vmhba35) whereas the HW Initiator is assigned the next
available adapter number after the local SCSI and other HBAs (for example, vmhba2 or
vmhba3).

Also note that Figure 4.57 shows an example of using iSCSI aliases (discussed earlier in the
“iSCSI Initiators” section). In this case the aliases are as shown in Table 4.6.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity146

Table 4.6 iSCSI Alias Examples

Target IQN Alias Comment

iqn.1992-04.com.emc:cx.apm00064000064.b0 0064.b0 SPB Port 0

iqn.1992-04.com.emc:cx.apm00064000064.b1 0064.b1 SPB Port 1

iqn.1992-04.com.emc:cx.apm00064000064.a0 0064.a0 SPA Port 0

iqn.1992-04.com.emc:cx.apm00064000064.a1 0064.a1 SPA Port 1

Dissecting SW Initiator’s Configuration

Assuming that you have access to the ESXi host via the CLI, you may identify the SW
Initiator’s various configurations and obtain enough information to create a logical
diagram of the virtual network configuration. The following is a step-by-step process and
gradual build-up of that logical diagram.

 1. Identify the Virtual Adapter name (for example vmhbaX) assigned to the SW
Initiator.

The command output shown in Figure 4.73 shows that the iSCSI Adapter is
vmhba34 and that the initiator type is iSCSI Software Adapter.

Figure 4.73 Identifying the SW Initiator’s adapter name

 2. Identify the vmknic (also known as the vmkernel port) connected to the Virtual
Adapter identified in Step 1.

The command output shown in Figure 4.74 shows that vmhba34 connects to
two vmkernel ports (vmknics) named vmk0 and vmk1. The latter two have been
assigned a VMware MAC address each (the Organizationally Unique Identifier
(OUI) is 00:50:56).

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 147

Figure 4.74 Identifying SW Initiator’s vmkernel ports

We can depict the details from the last two steps (apart from the MAC addresses)
as shown in Figure 4.75.

vmknic

SW Initiator
Host A

Virtual

vmhba34

vmk1vmk0

Figure 4.75 SW Initiator virtual network build-up Step 1

 3. Identify the Port Group name to which the vmkernel ports are attached:

esxcfg-vmknic –-list

You may also use the shorthand version of the command:

esxcfg-vmknic –l

The output of the shorthand version of the command is shown in Figure 4.76.
It lists the vmkernel port names and associated Port Groups in addition to these
ports’ IP configurations.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity148

Figure 4.76 Listing port groups associated with vmkernel ports

The Logical Diagram now appears like Figure 4.77.

vmknic

Port Group

SW Initiator
Host A

Virtual

vmhba34

vmk1vmk0

Management
NetworkiSCSI Network

Figure 4.77 SW Initiator virtual network build-up Step 2

Figure 4.77 shows the logical relations between Adapter Name, vmkernel Ports,
and vSwitch Port Groups.

 4. Find the name of the Virtual Switch using the following command (the output is
shown in Figure 4.78):

esxcli network vswitch standard portgroup list

Figure 4.78 Identifying the vSwitch name

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 149

From the output in Figure 4.78, both Port Groups connect to vSwitch0.

Let’s add this to the Logical Network diagram as well, which results in
Figure 4.79.

vmknic

Port Group

SW Initiator
Host A

Virtual

Virtual Switch

vmhba34

vmk1vmk0

iSCSI Network
Management

 Network

vSwitch0

Figure 4.79 SW Initiator virtual network build-up Step 3

 5. Find out the uplinks:

esxcfg-vswitch --list

You may also use the shorthand version of the command:

esxcfg-vswitch -l

This command lists the Virtual Switch’s properties, as shown in Figure 4.80.

Figure 4.80 Listing vSwitch uplinks

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity150

Figure 4.80 shows that vSwitch0 has two uplinks: vmnic0 and vmnic1. It also
shows that iSCSI Network port group is connected to vmnic1 and Management
Network is connected to vmnic0.

Based on Steps 1 through 5, Figure 4.81 shows the final Logical Network diagram.

vmknic

Port Group

SW Initiator
Host A

Virtual

Virtual Switch

vmhba34

vmk1vmk0

vSwitch0

Physical

Uplinks

vmnic1 vmnic0

Management
 NetworkiSCSI Network

Figure 4.81 AW initiator logical network final diagram

To list all these parameters—excluding vmnics—using a single command, you may run:

esxcli iscsi networkportal list

The output is shown in Listing 4.7. The relevant parameters are highlighted.

Listing 4.7 iSCSI Portal Parameters to Identify the iSCSI Logical Network

vmhba34

 Adapter: vmhba34

 Vmknic: vmk0

 MAC Address: 00:1f:29:e0:4d:50

 MAC Address Valid: true

 IPv4: 10.131.4.56

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 151

 IPv4 Subnet Mask: 255.255.248.0

 IPv6:

 MTU: 1500

 Vlan Supported: true

 Vlan ID: 0

 Reserved Ports: 63488~65536

 TOE: false

 TSO: true

 TCP Checksum: false

 Link Up: true

 Current Speed: 1000

 Rx Packets: 25341947

 Tx Packets: 134

 NIC Driver: bnx2

 NIC Driver Version: 2.0.15g.v50.11-4vmw

 NIC Firmware Version: bc 1.9.6

 Compliant Status: compliant

 NonCompliant Message:

 NonCompliant Remedy:

 Vswitch: vSwitch0

 PortGroup: iSCSI Network

 VswitchUuid:

 PortGroupKey:

 PortKey:

 Duplex:

 Path Status: unused

vmhba34

 Adapter: vmhba34

 Vmknic: vmk1

 MAC Address: 00:1f:29:e0:4d:52

 MAC Address Valid: true

 IPv4: 10.131.0.56

 IPv4 Subnet Mask: 255.255.248.0

 IPv6:

 MTU: 1500

 Vlan Supported: true

 Vlan ID: 0

 Reserved Ports: 63488~65536

 TOE: false

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity152

 TSO: true

 TCP Checksum: false

 Link Up: true

 Current Speed: 1000

 Rx Packets: 8451953

 Tx Packets: 1399744

 NIC Driver: bnx2

 NIC Driver Version: 2.0.15g.v50.11-4vmw

 NIC Firmware Version: bc 1.9.6

 Compliant Status: compliant

 NonCompliant Message:

 NonCompliant Remedy:

 Vswitch: vSwitch0

 PortGroup: Management Network

 VswitchUuid:

 PortGroupKey:

 PortKey:

 Duplex:

 Path Status: last path

NOTe

The command producing the output in Listing 4.7 works for SW Initiators only. Running it
with HW Initiators just returns a blank output. In the same listing you might also check the
MTU size to verify if Jumbo Frames (discussed in the previous section) is enabled. In this
example the MTU value is 1500, which means no jumbo frames.

Dissecting HW Initiator’s Configuration

Compared to SW Initiator’s configuration, HW Initiator’s configuration, both dependent
and independent, is fairly simple.

The following command identifies the configured HW Initiators on this host:

esxcli iscsi adapter list

Figure 4.82 shows the output.

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 153

Figure 4.82 Listing configured HW Initiators

Figure 4.82 shows that this host is configured with two QLogic 4022 Family HW
Initiators. They have been assigned vmhba2 and vmhba3 Adapter Names respectively.

Listing the network portals for these HW Initiators is done by listing the Physical
Network Portals in contrast to the SW Initiators, which have Logical Network Portals
only.

The following command lists the HW Initiators’ Physical Network Portals.

esxcli iscsi physicalnetworkportal list

Figure 4.83 shows the output.

Figure 4.83 Listing HW Initiators’ physical network portals

You can conclude from Figure 4.83 that the HW Initiators named vmhba2 and vmhba3
have QLogic assigned MAC addresses (OUI 00:c0:dd). It also shows that Jumbo Frame is
not configured because the MTU size is 1500.

iSCSI Adapter Parameters

Occasionally you might need to identify the current iSCSI Adapter’s parameters for the
purpose of troubleshooting or managing your vSphere 5 storage.

You can accomplish that via the UI or the CLI.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity154

Using the UI to List and Modify iSCSI Adapter Parameters

The iSCSI Adapter Parameters are available via the advanced options of the iSCSI
Initiator Properties. Use the following steps to access these properties:

 1. Use the vSphere 5.0 client to connect to the ESXi host as a user with “root” privi-
leges or connect to the vCenter server that manages that host as a user with
Administrator privileges.

 2. If logged into vCenter, navigate to the Inventory—Hosts and Clusters view, locate
the vSphere 5.0 host in the inventory tree, and select it. Otherwise, proceed to the
next step.

 3. Navigate to the Configuration tab.

 4. Under the Hardware section, select Storage Adapters.

 5. Locate the HBAs with the model name or HBA family name matching the
Dependent HW iSCSI HBA or iSCSI Software Adapter you are configuring and
select it.

 6. Click the Properties link on the upper-right corner of the Details pane. You see a
dialog similar to Figure 4.84.

Figure 4.84 iSCSI initiator properties

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 155

 7. Click the Advanced button. You see a dialog similar to Figure 4.85.

Figure 4.85 iSCSI adapter parameter list

 8. Scroll down to locate the parameter you would like the list to modify. If the param-
eter’s value is grayed out, then it is not settable. The parameters descriptions as well
as the minimum and maximum values are listed below each parameter.

 9. Make the changes you want, and then click OK and then Close.

Using the CLI to List and Modify iSCSI Adapter Parameters

In releases prior to vSphere 5, you used to list the iSCSI Adapter Parameters via
vmkiscsi-tool. This tool is still available in vSphere 5. However, because vmkiscsi-tool
is not available remotely via vMA or vCLI, vSphere 5 provides the same capability
via an esxcli namespace that is available locally or remotely:

esxcli iscsi adapter param get --adapter=<iSCSi-Adapter-Name>

Example:

esxcli iscsi adapter param get --adapter=vmhba34

You may also use the shorthand version of this command using -A instead of --Adapter=:

esxcli iscsi adapter param get -A vmhba35

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity156

Figure 4.86 shows the output of the shorthand version of the command.

Figure 4.86 Listing iSCSI adapter parameters (software initiator)

This command applies to both software and dependent HW Initiators, though the output
values from the latter might be different (see Figure 4.87). The main difference is that
these values are not Settable while some of the SW Initiator’s parameters are.

Figure 4.87 Listing iSCSI adapter parameters (independent HW Initiator)

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 157

Options with the value of true in the Settable column can be modified using the set
option.

Example:

To set the NoopOutTimeout value to 15, use the following:

esxcli iscsi adapter param set --adapter vmhba34 --key NoopOutTimeout
--value 15

You may also use the shorthand version:

esxcli iscsi adapter param set -A vmhba34 -k NoopOutTimeout -v 15

These commands do not provide any feedback if successful. Otherwise, an error would be
returned. To verify the outcome, you may run the get command. Compare the output to
that in Figure 4.87. The value in the Current column should reflect changed value.

To reset the value back to default, which is the value listed in the Default column, run this
command:

esxcli iscsi adapter param set -adapter vmhba34 --default --key
NoopOutTimeout

You may also use the shorthand version:

esxcli iscsi adapter param set -A vmhba34 -D -k NoopOutTimeout

Should You Change iSCSI Adapter Parameters?

The default settings of the iSCSI Adapter parameters are the best practice, and you should
not change them. I take one exception to that: The LoginTimeout should be settable, but
it is currently not! However, this may change in a future release.

vSphere 5 iSCSI Architecture

iSCSI architecture is depicted in Figure 4.88, which spans vmkernel modules, user-level
daemons, and software components.

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity158

iSCSI Daemon

iSCSI Transport

VMkernel
Network

Vendor
Daemon

iSCSI Protocol

User

Kernel

Hostd/vmkctl

SW init
plugin

Qlogic
Plugin Plugin

IMA

SATP PSP

Pluggable Storage
Architecture

Dependent HW
Init Driver

Dependent HW
Init Driver

Configuration
Database
(SQL Lite)

VMkernel/Userworld IPC

Figure 4.88 vSphere 5 iSCSI architecture

vSphere 5 iSCSI architecture is comprised of the following components, which I discuss in
subsequent sections:

�� iSCSI database

�� iSCSI daemon

�� IMA (iSCSI Management API)

�� iSCSI transport module

�� iSCSI protocol module

�� Dependent iSCSI initiator modules

�� Independent iSCSI HBA modules

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 159

iSCSI Database

iSCSI configuration and iSCSI runtime environment are stored in an SQL Lite database.
Changes to the database persist between ESXi host reboots. The configuration is restored
whenever the host is rebooted or the iSCSI daemon (vmkiscsid) is restarted. You can dump
the database using the following:

vmkiscsid --dump-db=<file-name>

From the database dump, you can easily locate various iSCSI configuration properties
details. For example, the dump includes the following sections:

�� ISID: iSCSI Session ID information

�� InitiatorNodes: iSCSI Initiators information

�� Targets: iSCSI Targets information

�� discovery: Target Discovery information

�� ifaces: The iSCSI Network configuration including the vmnic and vmknic names

iSCSI Daemon

The ESXi iSCSI daemon is vmkiscsid, which runs on any vSphere host with iSCSI enabled
as a User World process. This means that it is not a vmkernel module and runs like other
applications/daemons on top of vmkernel. vmkiscsid is started at boot time; if it finds a
valid configuration or if iBFT (iSCSI Boot Firmware Table) is enabled in the NIC’s BIOS,
it continues to run. (iBFT is used for Boot-From-iSCSI configurations.) It is also run
whenever an iSCSI management command is run from the command line or via hostd. If it
finds no valid iSCSI configuration, it stops.

The iSCSI daemon does the following tasks:

�� Dynamic and static iSCSI targets discovery

�� Authentication of iSCSI targets

�� Maintains information about vmknics, ports, and so on for iSCSI use (see database
dump)

�� Establishes connections to iSCSI targets

�� Reconnects to iSCSI targets if sessions get disconnected

�� Updates the iSCSI configuration database based on sessions establishment or tear
down

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity160

�� Updates the iSCSI configuration database based on administrative input

�� Listens for connections from IMA plug-ins (more on IMA in the next section)

�� Communicates with iSCSI kernel components on connection events and session
establishment

IMA (iSCSI Management API)

IMA is used to manage and configure iSCSI on the host. It is standardized by SNIA (see
the white paper at http://www.snia.org/sites/default/files/iSCSI_Management_API_
SNIA_White_Paper.pdf).

IMA provides interfaces to

�� Configure the iSCSI adapter, including network and iSCSI parameters

�� Enter and examine iSCSI discovery information

�� Enter and examine authentication types and credentials

�� View target, LU, session, and connection information

�� Allocate and free lists for IMA consumers

The implementation on ESXi 5 includes four components: IMA common Library, ESX
IMA plug-in, third-party vendors’ IMA plug-ins, and storage vendor daemons.

IMA Common Library

The IMA common library is mostly a shim interface to the IMA plug-ins. It is also
responsible for serializing the commands to the IMA plug-ins among other programmatic
functions.

ESX IMA Plug-in

The ESX IMA plug-in is called by the IMA common library and used to configure and
manage the ESX Software iSCSI initiator and any dependent HW iSCSI initiators.

If vmkiscsid is not running when the ESX IMA plugin is called, the plug-in starts
vmkiscsid. This ensures any iSCSI configuration on the system is returned any time an
IMA call is made.

Vendor IMA Plug-ins

Third-party independent HW iSCSI Initiator vendors are required to deliver an IMA
plug-in to manage their adapters and driver. These plug-ins present the standard IMA
interfaces to the IMA common library and use vendor-specific methods to communicate

From the Library of raphael schitz

http://www.snia.org/sites/default/files/iSCSI_Management_API_SNIA_White_Paper.pdf
http://www.snia.org/sites/default/files/iSCSI_Management_API_SNIA_White_Paper.pdf

ptg7996124

iSCSI Protocol 161

with the associated driver and hardware. For example, the Qlogic plug-in communicates
with the qla4xxx driver to accomplish management functions.

Storage Vendor Daemons

Storage vendors may deliver session management daemons that make IMA library calls.
The daemons are delivered as CIM (Common Information Model) providers, running
in an unmanaged “daemon” mode, and they are used to manage sessions for a storage
vendor’s multipath software, delivered via PSA (Pluggable Storage Architecture). For
more information about PSA refer to Chapter 5. The CIM provider uses vendor-specific
communication methods to coordinate and interact with their PSA components. CIM is
an industry standard management API that is used by VMware Partners to monitor and
manage systems’ health as well as communicate with and manage software components on
ESXi.

iSCSI Transport Module

The iSCSI transport module, iscsi_trans, is a VMware-provided module that facilitates
communications between the iSCSI daemon (vmkiscsid) and any iSCSI media modules,
such as the ESX SW iSCSI initiator or HW iSCSI initiators drivers.

iscsi_trans presents a set vmkernel API that facilitates the following:

�� Gather and set configuration parameters in the ESX iSCSI module and any other
vmkernel modules that might later consume these interfaces

�� Pass network configuration information to dependent HW iSCSI initiators because
they depend on vmkernel for networking

iSCSI Protocol Module

The iSCSI protocol (or media) module, iscsi_vmk , is the VMware-provided module
that implements the iSCSI protocol for the ESX software iSCSI initiator. This module
packages SCSI commands in iSCSI PDUs and passes them to the vmkernel networking
stack through a socket interface. Iscsi_vmk accepts management calls from iscsi_trans,
SCSI commands and data from the SCSI midlayer, and network transition information via
its socket connections.

Dependent iSCSI Initiator Modules

Dependent iSCSI Initiator modules are vmklinux drivers delivered by third-party vendors.
(vmklinux is the ESXi facility that enables drivers ported from Linux to run on ESXi.)
These modules utilize vmklinux driver interfaces and several vmkernel API interfaces to

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity162

get the network configuration. Dependent iSCSI HBA drivers get their network configu-
ration from a vmknic, including IP address information, MTU, and VLAN. (I covered
these details in the “Configuring Dependent HW Initiators” section.) Configuration
management is handled by the ESX IMA plug-in.

The ESX IMA plug-in sends configuration information to the iSCSI daemon, which uses
this configuration information to discover and authenticate targets and then establish and
tear down sessions.

Independent iSCSI HBA Modules

Independent iSCSI HBA modules are vmklinux modules delivered by third-party vendors.
They utilize vmklinux driver interfaces for storage and iSCSI path information. They also
rely on communication with IMA plug-ins supplied by the vendor for configuration and
management. IMA plug-ins are used to provide discovery and authentication information
and session management.

TIP

To list the vmkernel modules mentioned in the previous sections, you may run these com-
mands from the ESXi Shell:

~# vmkload_mod --list |grep iscsi
iscsi_trans 8 52
iscsi_linux 1 16
iscsi_vmk 4 204

~ # ps |grep iscsi
2670 iscsi_trans_vmklink
2693 iscsivmk-log
5891 5891 vmkiscsid /usr/sbin/vmkiscsid
5892 5891 vmkiscsid /usr/sbin/vmkiscsid

You may also run the short-hand version of the first command using -l instead of --list.
These commands apply to both Software and HW iSCSI Initiators with slight differences in
the outputs.

The first command lists the loaded vmkernel modules, which shows iscsi_trans and
iscsi_vmk. The middle module, iscsi_linux, is a module that allows third-party vendors
to port Linux iSCSI drivers with minimal changes.

The second command shows the running processes which include two vmkiscsid processes,
iscsi_trans_vmklink (see Step 6 under Software iSCSI initiators). The process called
iscsivmk-log is the process used by the iSCSI stack to log events into the vmkernel logs.

From the Library of raphael schitz

ptg7996124

iSCSI Protocol 163

Flow of Communication Through the iSCSI Architecture

To put things in perspective, let me share with you the logical flow of communication
through the vSphere iSCSI architecture for the purpose of target discovery.

Software iSCSI Initiators

 1. Socket is open on a port or set of ports, connecting to an iSCSI target.

 2. iSCSI target returns a list of targets via a Send Target payload.

 3. iSCSI Configuration Database is populated with the returned target list.

 4. vmkiscsid (iSCSI Daemon) logs into iSCSI targets.

 5. vmkiscsid exchanges authentication parameters with the target and, if configured,
performs a Challenge-Handshake authentication.

 6. vmkiscsid, which is on the user side, communicates with iscsi_trans (iSCSI
Transport), on the kernel side, via a Userworld-VMkernel IPC socket (IPC stands
for Inter-Process Communication). This link is also known as vmklink.

 7. After the session with the target is established, an open socket descriptor is passed
on to the SW iSCSI initiator module. The latter builds iSCSI Protocol Data Units
(PDUs) to transport SCSI commands and data to the iSCSI target.

 8. vmkiscsid updates the iSCSI configuration database with:

�� Target information

�� ESX port information

�� Session parameters

Dependent HW iSCSI Initiators

Dependent HW iSCSI Initiators are driven by vmkscsid. So, a similar flow would be the
following:

 1. vmkscsid passes the connection establishment commands to the dependent HW
iSCSI Initiator via the iSCSI Transport (iscsi_trans).

 2. After the connection with the target is established, vmkscsid constructs PDUs to
discover, authenticate, and establish sessions with the iSCSI target (like Steps 2
through 6 in the previous section).

From the Library of raphael schitz

ptg7996124

Chapter 4 iSCSI Storage Connectivity164

 3. The dependent HW iSCSI Initiator builds iSCSI PDUs to transport SCSI
commands and data to the iSCSI target (hardware offloading).

 4. If the connection is lost, the dependent HW Initiator driver informs vmkscsid via
iSCSI Transport. vmkscsid directs session reestablishment.

 5. vmkiscsid updates the iSCSI configuration database similar to what is listed in Step 8
in the “Software Initiators” section.

Independent HW iSCSI Initiators

Independent HW iSCSI Initiators communicate directly with iSCSI Transport and handle
their own connections and sessions establishment as well as constructing their own iSCSI
PDUs to transport SCSI commands and data to iSCSI target.

Summary

In this chapter I provided details of the iSCSI protocol, connectivity, and its implemen-
tation on vSphere 5. I also covered iSCSI initiators (both HW and SW) as well as iSCSI
targets and how to identify them. I walked you through gradually building up the logical
iSCSI network diagram based on commands available on ESXi 5. Finally, I provided
details of iSCSI Architecture and the flow of communication between its components.

From the Library of raphael schitz

ptg7996124

Chapter 5

vSphere Pluggable Storage
Architecture (PSA)

vSphere 5.0 continues to utilize the Pluggable Storage Architecture (PSA) which was
introduced with ESX 3.5. The move to this architecture modularizes the storage stack,
which makes it easier to maintain and to open the doors for storage partners to develop
their own proprietary components that plug into this architecture.

Availability is critical, so redundant paths to storage are essential. One of the key functions
of the storage component in vSphere is to provide multipathing (if there are multiple
paths, which path should a given I/O use) and failover (when a path goes down, I/O
failovers to using another path).

VMware, by default, provides a generic Multipathing Plugin (MPP) called Native
Multipathing (NMP).

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)166

Native Multipathing
To understand how the pieces of PSA fit together, Figures 5.1, 5.2, 5.4, and 5.6 build up
the PSA gradually.

VMkernel Storage Stack
Pluggable Storage Architecture

Native Multi-Pathing (NMP)

Figure 5.1 Native MPP

NMP is the component of vSphere 5 vmkernel that handles multipathing and failover. It
exports two APIs: Storage Array Type Plugin (SATP) and Path Selection Plugin (PSP),
which are implemented as plug-ins.

NMP performs the following functions (some done with help from SATPs and PSPs):

�� Registers logical devices with the PSA framework

�� Receives input/output (I/O) requests for logical devices it registered with the PSA
framework

�� Completes the I/Os and posts completion of the SCSI command block with the PSA
framework, which includes the following operations:

�� Selects the physical path to which it sends the I/O requests

�� Handles failure conditions encountered by the I/O requests

�� Handles task management operations—for example, Aborts/Resets

PSA communicates with NMP for the following operations:

�� Open/close logical devices.

�� Start I/O to logical devices.

�� Abort an I/O to logical devices.

�� Get the name of the physical paths to logical devices.

�� Get the SCSI inquiry information for logical devices.

From the Library of raphael schitz

ptg7996124

Storage Array Type Plug-in (SATP) 167

Storage Array Type Plug-in (SATP)
Figure 5.2 depicts the relationship between SATP and NMP.

VMkernel Storage Stack
Pluggable Storage Architecture

St
or

ag
e

A
rr

ay
Ty

pe
 P

lu
gi

n
(S

AT
P)

Native Multi-Pathing (NMP)

Figure 5.2 SATP

SATPs are PSA plug-ins specific to certain storage arrays or storage array families. Some
are generic for certain array classes—for example, Active/Passive, Active/Active, or ALUA-
capable arrays.

SATPs handle the following operations:

�� Monitor the hardware state of the physical paths to the storage array

�� Determine when a hardware component of a physical path has failed

�� Switch physical paths to the array when a path has failed

NMP communicates with SATPs for the following operations:

�� Set up a new logical device—claim a physical path

�� Update the hardware states of the physical paths (for example, Active, Standby,
Dead)

�� Activate the standby physical paths of an active/passive array (when Active paths state
is dead or unavailable)

�� Notify the plug-in that an I/O is about to be issued on a given path

�� Analyze the cause of an I/O failure on a given path (based on errors returned by the
array)

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)168

Examples of SATPs are listed in Table 5.1:

Table 5.1 Examples of SATPs

SATP Description

VMW_SATP_CX Supports EMC CX that do not use the ALUA protocol

VMW_SATP_ALUA_CX Supports EMC CX that use the ALUA protocol

VMW_SATP_SYMM Supports EMC Symmetrix array family

VMW_SATP_INV Supports EMC Invista array family

VMW_SATP_EVA Supports HP EVA arrays

VMW_SATP_MSA Supports HP MSA arrays

VMW_SATP_EQL Supports Dell Equalogic arrays

VMW_SATP_SVC Supports IBM SVC arrays

VMW_SATP_LSI Supports LSI arrays and others OEMed from it (for
example, DS4000 family)

VMW_SATP_ALUA Supports non-specific arrays that support ALUA protocol

VMW_SATP_DEFAULT_AA Supports non-specific active/active arrays

VMW_SATP_DEFAULT_AP Supports non-specific active/passive arrays

VMW_SATP_LOCAL Supports direct attached devices

How to List SATPs on an ESXi 5 Host
To obtain a list of SATPs on a given ESXi 5 host, you may run the following command
directly on the host or remotely via an SSH session, a vMA appliance, or ESXCLI:

esxcli storage nmp satp list

An example of the output is shown in Figure 5.3.

Figure 5.3 Listing SATPs

From the Library of raphael schitz

ptg7996124

Path Selection Plugin (PSP) 169

Notice that each SATP is listed in association with a specific PSP. The output shows the
default configuration of a freshly installed ESXi 5 host. To modify these associations, refer
to the “Modifying PSA Plug-in Configurations Using the UI” section later in this chapter.

If you installed third-party SATPs, they are listed along with the SATPs shown in
Table 5.1.

NoTE

ESXi 5 only loads the SATPs matching detected storage arrays based on the corresponding
claim rules. See the “Claim Rules” section later in this chapter for more about claim rules.
Otherwise, you see them listed as (Plugin not loaded) similar to the output shown in
Figure 5.3.

Path Selection Plugin (PSP)
Figure 5.4 depicts the relationship between SATP, PSP, and NMP.

St
or

ag
e

A
rr

ay
Ty

pe
 P

lu
gi

n
(S

AT
P)

Pa
th

 S
el

ec
tio

n
Pl

ug
in

(P
SP

)

VMkernel Storage Stack
Pluggable Storage Architecture

Native Multi-Pathing (NMP)

Figure 5.4 PSP

PSPs are PSA plug-ins that handle path selection policies and are replacements of failover
policies used by the Legacy-MP (or Legacy Multipathing) used in releases prior to
vSphere 4.x.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)170

PSPs handle the following operations:

�� Determine on which physical path to issue I/O requests being sent to a given storage
device. Each PSP has access to a group of paths to the given storage device and
has knowledge of the paths’ states—for example, Active, Standby, Dead, as well as
Asymmetric Logical Unit Access (ALUA), Asymmetric Access States (AAS) such as
Active optimized Active non-optimized, and so on. This knowledge is obtained from
what SATPs report to NMP. Refer to Chapter 6, “ALUA,” for additional details
about ALUA.

�� Determine which path to activate next if the currently working physical path to
storage device fails.

NoTE

PSPs do not need to know the actual storage array type (this function is provided by
SATPs). However, a storage vendor developing a PSP may choose to do so (see Chapter 8,
“Third-Party Multipathing I/O Plug-ins”).

NMP communicates with PSPs for the following operations:

�� Set up a new logical storage device and claim the physical paths to that device.

�� Get the set of active physical paths currently used for path selection.

�� Select a physical path on which to issue I/O requests for a given device.

�� Select a physical path to activate when a path failure condition exists.

How to List PSPs on an ESXi 5 Host
To obtain a list of PSPs on a given ESXi 5 host, you may run the following command
directly on the host or remotely via an SSH session, a vMA appliance, or ESXCLI:

esxcli storage nmp psp list

An example of the output is shown in Figure 5.5.

From the Library of raphael schitz

ptg7996124

Third-Party Plug-ins 171

Figure 5.5 Listing PSPs

The output shows the default configuration of a freshly installed ESXi 5 host. If you
installed third-party PSPs, they are also listed.

Third-Party Plug-ins
Figure 5.6 depicts the relationship between third-party plug-ins, NMP, and PSA.

St
or

ag
e

A
rr

ay
Ty

pe
 P

lu
gi

n
(S

AT
P)

Pa
th

 S
el

ec
tio

n
Pl

ug
in

(P
SP

)

VMkernel Storage Stack
Pluggable Storage Architecture

Native Multi-Pathing (NMP)

3rd
 P

ar
ty

 S
AT

P

3rd
 P

ar
ty

 P
SP

Figure 5.6 Third-party plug-ins

Because PSA is a modular architecture, VMware provided APIs to its storage partners to
develop their own plug-ins. These plug-ins can be SATPs, PSPs, or MPPs.

Third-party SATPs and PSPs can run side by side with VMware-provided SATPs and
PSPs.

The third-party SATPs and PSPs providers can implement their own proprietary
functions relevant to each plug-in that are specific to their storage arrays. Some partners
implement only multipathing and failover algorithms, whereas others implement load
balancing and I/O optimization as well.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)172

Examples of such plug-ins in vSphere 4.x that are also planned for vSphere 5 are

�� DELL_PSP_EQL_ROUTED—Dell EqualLogic PSP that provides the following
enhancements:

�� Automatic connection management

�� Automatic load balancing across multiple active paths

�� Increased bandwidth

�� Reduced network latency

�� HTI_SATP_HDLM—Hitachi ported their HDLM MPIO (Multipathing I/O)
management software to an SATP. It is currently certified for vSphere 4.1 with most
of the USP family of arrays from Hitachi and HDS. A version is planned for vSphere
5 as well for the same set of arrays. Check with VMware HCL for the current list of
certified arrays for vSphere 5 with this plug-in.

See Chapter 8 for further details.

Multipathing Plugins (MPPs)
Figure 5.7 depicts the relationship between MPPs, NMP, and PSA.

VMkernel Storage Stack
Pluggable Storage Architecture

3rd
 P

ar
ty

 S
AT

P

3rd
 P

ar
ty

 M
PP

St
or

ag
e

A
rr

ay
Ty

pe
 P

lu
gi

n
(S

AT
P)

Pa
th

 S
el

ec
tio

n
Pl

ug
in

(P
SP

)

3rd
 P

ar
ty

 P
SP

3rd
 P

ar
ty

 S
AT

P

Native Multi-Pathing (NMP)

Figure 5.7 MPPs, including third-party plug-ins

From the Library of raphael schitz

ptg7996124

Anatomy of PSA Components 173

MPPs that are not implemented as SATPs or PSPs can be implemented as MPPs instead.
MPPs run side by side with NMP. An example of that is EMC PowerPath/VE. It is
certified with vSphere 4.x and is planned for vSphere 5.

See Chapter 8 for further details.

Anatomy of PSA Components
Figure 5.8 is a block diagram showing the components of PSA framework.

Native Multipathing (NMP)

C
on

fig
ur

at
io

n

General Device
Management

PSP_R
R

PSP_M
RUFIXED

PSP_FIXED

Policy

Array Specific Management

SATP X
SATP X

Identification

Error Codes

Fail Over

SATP X

C
on

fig
ur

at
io

n

General Device
Management

PSP_R
R

PSP_M
RUFIXED

PSP_FIXED

Policy

Array Specific Management

SATP X
SATP X

Identification

Error Codes

Fail Over

SATP X

Identification

Error Codes

Fail Over

Array Specific Management

Identification

Error Codes

Fail Over

Identification

Fail Over

C
on

fig
ur

at
io

n

General Device
Management

PSP_R
R

PSP_M
RUFIXED

PSP_FIXED

Policy

SATP X
SATP X

Identification

Error Codes

Fail Over

SATP X

Error Codes

PSA Framework

Figure 5.8 NMP components of PSA framework

Now that we covered the individual components of PSA framework, let’s put its pieces
together. Figure 5.8 shows the NMP component of the PSA framework. NMP provides
facilities for configuration, general device management, array-specific management, and
path selection policies.

The configuration of NMP-related components can be done via ESXCLI or the user
interface (UI) provided by vSphere Client. Read more on this topic in the “Modifying PSA
Plug-in Configurations Using the UI” section later in this chapter.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)174

Multipathing and failover policy is set by NMP with the aid of PSPs. For details on how
to configure the PSP for a given array, see the “Modifying PSA Plug-in Configurations
Using the UI” section later in this chapter.

Arrray-specific functions are handled by NMP via the following functions:

�� Identification—This is done by interpreting the response data to various inquiry
commands (Standard Inquiry and Vital Product Data (VPD) received from the array/
storage. This provides details of device identification which include the following:

�� Vendor

�� Model

�� LUN number

�� Device ID—for example, NAA ID, serial number

�� Supported mode pages—for example, page 80 or 83

I cover more detail and examples of inquiry strings in Chapter 7, “Multipathing
and Failover” in, the “LUN Discovery and Path Enumeration” section.

�� Error Codes—NMP interprets error codes received from the storage arrays with
help from the corresponding SATPs and acts upon these errors. For example, an
SATP can identify a path as dead.

�� Failover—After NMP interprets the error codes, it reacts in response to them.
Continuing with the example, after a path is identified as dead, NMP instructs the
relevant SATP to activate standby paths and then instructs the relevant PSP to issue
the I/O on one of the activated paths. In this example, there are no active paths
remaining, which results in activating standby paths (which is the case for Active/
Passive arrays).

I/o Flow Through PSA and NMP
In order to understand how I/O sent to storage devices flows through the ESXi storage
stack, you first need to understand some of the terminology relevant to this chapter.

From the Library of raphael schitz

ptg7996124

I/O Flow Through PSA and NMP 175

Classification of Arrays Based on How They Handle I/o
Arrays can be one of the following types:

�� Active/Active—This type of array would have more than one Storage Processor
(SP) (also known as Storage Controller) that can process I/O concurrently on all SPs
(and SP ports) with similar performance metrics. This type of array has no concept
of logical unit number (LUN) ownership because I/O can be done on any LUN via
any SP port from initiators given access to such LUNs.

�� Active/Passive—This type of array would have two SPs. LUNs are distributed
across both SPs in a fashion referred to as LUN ownership in which one of the
SPs owns some of the LUNs and the other SP owns the remaining LUNs. The
array accepts I/O to given LUN via ports on that SP that “owns” it. I/O sent to the
non-owner SPs (also known as Passive SP) is rejected with a SCSI check condition
and a sense code that translates to ILLEGAL REQUEST. Think of this like the No
Entry sign you see at the entrance of a one-way street in the direction opposite to the
traffic. For more details on sense codes, see Chapter 7 ’s “LUN Discovery and Path
Enumeration” section.

NoTE

Some older firmware versions of certain arrays, such as HP MSA, are a variety of this type
where one SP is active and the other is standby. The difference is that all LUNs are owned
by the active SP and the standby SP is only used when the active SP fails. The standby
SP still responds with a similar sense code to that returned from the passive SP described
earlier.

�� Asymmetric Active/Active or AAA (AKA Pseudo Active/Active)—LUNs on this
type of arrays are owned by either SP similarly to the Active/Passive Arrays concept
of LUN ownership. However, the array would allow concurrent I/O on a given
LUN via ports on both SPs but with different I/O performance metrics as I/O is sent
via proxy from the non-owner SP to the owner SP. In this case, the SP providing
the lower performance metric accepts I/O to that LUN without returning a check
condition. You may think of this as a hybrid between Active/Passive and Active/
Active types. This can result in poor I/O performance of all paths to the owner SP
that are dead, either due to poor design or LUN owner SP hardware failure.

�� Asymmetrical Logical Unit Access (ALUA)—This type of array is an enhanced
version of the Asymmetric Active/Active arrays and also the newer generation of
some of the Active/Passive arrays. This technology allows initiators to identify
the ports on the owner SP as one group and the ports on the non-owner SP as a

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)176

different group. This is referred to as Target Port Group Support (TPGS). The
port group on the owner SP is identified as Active Optimized port group with the
other group identified as Active Non-Optimized port group. NMP would send the
I/O to a given LUN via a port in the ALUA optimized port group only as long as
they are available. If all ports in that group are identified as dead, I/O is then sent to
a port on the ALUA non-optimized port group. When sustained I/O is sent to the
ALUA non-optimized port group, the array can transfer the LUN ownership to the
non-owner SP and then transition the ports on that SP to ALUA optimized state.
For more details on ALUA see Chapter 6.

Paths and Path States
From a storage perspective, the possible routes to a given LUN through which the I/O
may travel is referred to as paths. A path consists of multiple points that start from the
initiator port and end at the LUN.

A path can be in one of the states listed in Table 5.2.

Table 5.2 Path States

Path State Description

Active A path via an Active SP. I/O can be sent to any path in this state.

Standby A path via a Passive or Standby SP. I/O is not sent via such a path.

Disabled A path that is disabled usually by the vSphere Administrator.

Dead A path that lost connectivity to the storage network. This can be due
to an HBA (Host Bus Adapter), Fabric or Ethernet switch, or SP port
connectivity loss. It can also be due to HBA or SP hardware failure.

Unknown The state could not be determined by the relevant SATP.

Preferred Path Setting
A preferred path is a setting that NMP honors for devices claimed by VMW_PSP_FIXED
PSP only. All I/O to a given device is sent over the path configured as the Preferred Path
for that device. When the preferred path is unavailable, I/O is sent via one of the surviving
paths. When the preferred path becomes available, I/O fails back to that path. By default,
the first path discovered and claimed by the PSP is set as the preferred path. To change
the preferred path setting, refer to the “Modifying PSA Plug-in Configurations Using the
UI” section later in this chapter.

From the Library of raphael schitz

ptg7996124

I/O Flow Through PSA and NMP 177

Figure 5.9 shows an example of a path to LUN 1 from host A (interrupted line) and
Host B (interrupted line with dots and dashes). This path goes through HBA0 to target 1
on SPA.

Host A Host B

Active/Passive Storage Array

SPB

2 1 2

LUN 1

1

HBA1HBA0HBA1

FC SwitchFC Switch

SPA

HBA0

Figure 5.9 Paths to LUN1 from two hosts

Such a path is represented by the following Runtime Name naming convention. (Runtime
Name is formerly known as Canonical Name.) It is in the format of HBAx:Cn:Ty:Lz—for
example, vmhba0:C0:T0:L1—which reads as follows:

vmhba0, Channel 0, Target 0, LUN1

It represents the path to LUN 0 broken down as the following:

�� HBA0—First HBA in this host. The vmhba number may vary based on the number
of storage adapters installed in the host. For example, if the host has two RAID
controllers installed which assume vmhba0 and vmhba1 names, the first FC HBA
would be named vmhba2.

�� Channel 0—Channel number is mostly zero for Fiber Channel (FC)- and Internet
Small Computer System Interface (iSCSI)-attached devices to target 0, which is the

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)178

first target. If the HBA were a SCSI adapter with two channels (for example, internal
connections and an external port for direct attached devices), the channel numbers
would be 0 and 1.

�� Target 0—The target definition was covered in Chapters 3, “FCoE Storage
Connectivity,” and 4, “iSCSI Storage Connectivity.” The target number is based on
the order in which the SP ports are discovered by PSA. In this case, SPA-Port1 was
discovered before SPA-Port2 and the other ports on SPB. So, that port was given
“target 0” as the part of the runtime name.

NoTE

Runtime Name, as the name indicates, does not persist between host reboots. This is due
to the possibility that any of the components that make up that name may change due to
hardware or connectivity changes. For example, a host might have an additional HBA added
or another HBA removed, which would change the number assumed by the HBA.

Flow of I/o Through NMP
Figure 5.10 shows the flow of I/O through NMP.

PSA
SATP

NMP
PSP VMkernel

Storage Stack

HBA 1 HBA 2

4

3
2

5
1

Figure 5.10 I/O flow through NMP

The numbers in the figure represent the following steps:

 1. NMP calls the PSP assigned to the given logical device.

 2. The PSP selects an appropriate physical path on which to send the I/O. If the PSP is
VMW_PSP_RR, it load balances the I/O over paths whose states are Active or, for
ALUA devices, paths via a target port group whose AAS is Active/Optimized.

From the Library of raphael schitz

ptg7996124

Listing Multipath Details 179

 3. If the array returns I/O error, NMP calls the relevant SATP.

 4. The SATP interprets the error codes, activates inactive paths, and then fails over to
the new active path.

 5. PSP selects new active path to which it sends the I/O.

Listing Multipath Details
There are two ways by which you can display the list of paths to a given LUN, each of
which are discussed in this section:

�� Listing paths to a LUN using the UI

�� Listing paths to a LUN using the CLI

Listing Paths to a LUN Using the UI
To list all paths to a given LUN in the vSphere 5.0 host, you may follow this procedure,
which is similar to the procedure for listing all targets discussed earlier in Chapter 2,
“Fibre Channel Storage Connectivity” Chapter 3 and Chapter 4:

 1. Log on to the vSphere 5.0 host directly or to the vCenter server that manages the
host using the VMware vSphere 5.0 Client as a user with Administrator privileges.

 2. While in the Inventory—Hosts and Clusters view, locate the vSphere 5.0 host in the
inventory tree and select it.

 3. Navigate to the Configuration tab.

 4. Under the Hardware section, select the Storage option.

 5. Under the View field, click the Devices button.

 6. Under the Devices pane, select one of the SAN LUNs (see Figure 5.11). In this
example, the device name starts with DGC Fibre Channel Disk.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)180

Figure 5.11 Listing storage devices

 7. Select Manage Paths in the Device Details pane.

 8. Figure 5.12 shows details for an FC-attached LUN. In this example, I sorted on the
Runtime Name column in ascending order. The Paths section shows all available
paths to the LUN in the format:

�� Runtime Name—vmhbaX:C0:Ty:Lz where X is the HBA number, y is the
target number, and z is the LUN number. More on that in the “Preferred
Path Setting” section later in this chapter.

�� Target—The WWNN followed by the WWPN of the target (separated by a
space).

�� LUN—The LUN number that can be reached via the listed paths.

�� Status—This is the path state for each listed path.

From the Library of raphael schitz

ptg7996124

Listing Multipath Details 181

Figure 5.12 Listing paths to an FC-attached LUN

 9. The Name field in the lower pane is a permanent one compared to the Runtime
Name listed right below it. It is made up of three parts: HBA name, Target Name,
and the LUN’s device ID separated by dashes (for FC devices) or commas (for iSCSI
devices). The HBA and Target names differ by the protocol used to access the LUN.

Figure 5.12 shows the FC-based path Name, which is comprised of

�� Initiator Name—Made up from the letters FC followed by a period and then
the HBA’s WWNN and WWPN. The latter two are separated by a colon
(these are discussed in Chapter 3).

�� Target Name—Made up from the target’s WWNN and WWPN separated
by a colon.

�� LUN’s Device ID—In this example the NAA ID is naa.6006016055711d0
0cff95e65664ee011, which is based on the Network Address Authority nam-
ing convention and is a unique identifier of the logical device representing the
LUN.

Figure 5.13 shows the iSCSI-based path Name which is comprised of

�� Initiator Name—This is the iSCSI iqn name discussed in Chapter 4.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)182

�� Target Name—Made up from the target’s iqn name and target number sepa-
rated by colons. In this example, the target’s iqn names are identical while the
target numbers are different—such as t,1 and t,2. The second target info is not
shown here, but you can display them by selecting one path at a time in the
paths, pane to display the details in the lower pane.

�� LUN’s Device ID—In this example the NAA ID is naa.6006016047301a00
eaed23f5884ee011, which is based on the Network Address Authority nam-
ing convention and is a unique identifier of the logical device representing the
LUN.

Figure 5.13 Listing paths to an iSCSI-attached LUN

Figure 5.14 shows a Fibre Channel over Ethernet (FCoE)-based path name, which is
identical to the FC-based pathnames. The only difference is that fcoe is used in place of fc
throughout the name.

From the Library of raphael schitz

ptg7996124

Listing Multipath Details 183

Figure 5.14 Listing paths to an FCoE-attached LUN

Listing Paths to a LUN Using the Command-Line Interface (CLI)
ESXCLI provides similar details to what is covered in the preceding section. For details
about the various facilities that provide access to ESXCLI, refer to the “Locating HBA’s
WWPN and WWNN in vSphere 5 Hosts” section in Chapter 2.

The namespace of ESXCLI in vSphere 5.0 is fairly intuitive! Simply start with esxcli
followed by the area of vSphere you want to manage—for example, esxcli network, esxcli
software, esxcli storage—which enables you to manage Network, ESXi Software, and
Storage, respectively. For more available options just run esxcli –help. Now, let’s move
on to the available commands:

Figure 5.15 shows the esxcli storage nmp namespace.

Figure 5.15 esxcli storage nmp namespace

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)184

The namespace of esxcli storage nmp is for all operations pertaining to native
multipathing, which include psp, satp, device, and path.

I cover all these namespaces in detail later in the “Modifying PSA Plug-in Configurations
Using the UI” section. The relevant operations for this section are

� esxcli storage nmp path list

� esxcli storage nmp path list –d <device ID e.g. NAA ID>

The first command provides a list of paths to all devices regardless of how they are
attached to the host or which protocol is used.

The second command lists the paths to the device specified by the device ID (for example,
NAA ID) by using the -d option.

The command in this example is

esxcli storage nmp path list -d naa.6006016055711d00cff95e65664ee011

You may also use the verbose command option --device instead of -d.

You can identify the NAA ID of the device you want to list by running a command like
this:

esxcfg-mpath -b |grep -B1 “fc Adapter”| grep -v -e “--” |sed ‘s/
Adapter.*//’

You may also use the verbose command option --list-paths instead of –b.

The output of this command is shown in Figure 5.16.

Figure 5.16 Listing paths to an FC-attached LUN via the CLI

This output shows all FC-attached devices. The Device Display Name of each device is
listed followed immediately by the Runtime Name (for example, vmhba3:C0:T0:L1) of all
paths to that device. This output is somewhat similar to the lagacy multipathing outputs
you might have seen with ESX server release 3.5 and older.

From the Library of raphael schitz

ptg7996124

Listing Multipath Details 185

The Device Display Name is actually listed after the device NAA ID and a colon.

From the runtime name you can identify the LUN number and the HBA through which
they can be accessed. The HBA number is the first part of the Runtime Name, and the
LUN number is the last part of that name.

All block devices conforming to the SCSI-3 standard have an NAA device ID assigned,
which is listed at the beginning and the end of the Device Display Name line in the
preceding output.

In this example, FC-attached LUN 1 has NAA ID naa.6006016055711d00cff95e65
664ee011 and that of LUN0 is naa.6006016055711d00cef95e65664ee011. I use the
device ID for LUN 1 in the output shown in Figure 5.17.

Figure 5.17 Listing pathnames to an FC-attached device

You may use the verbose version of the command shown in Figure 5.17 by using
--device instead of -d.

From the outputs of Figure 5.16 and 5.17, LUN 1 has four paths.

Using the Runtime Name, the list of paths to LUN1 is

�� vmhba3:C0:T1:L1

�� vmhba3:C0:T0:L1

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)186

�� vmhba2:C0:T1:L1

�� vmhba2:C0:T0:L1

This translates to the list shown in Figure 5.18 based on the physical pathnames. This
output was collected using this command:

esxcli storage nmp path list -d naa.6006016055711d00cff95e65664ee011 |grep
fc

Or the verbose option using the following:

esxcli storage nmp path list --device naa.6006016055711d00cff95e65664ee011
|grep fc

Figure 5.18 Listing physical pathnames of an FC-attached LUN

This output is similar to the aggregate of all paths that would have been identified using
the corresponding UI procedure earlier in this section.

Using Table 2.1, “Identifying SP port association with each SP,” in Chapter 2, we can
translate the targets listed in the four paths as shown in Table 5.3:

Table 5.3 Identifying SP Port for LUN Paths

Runtime Name Target WWPN Sp Port Association

vmhba3:C0:T1:L1 5006016941e06522 SPB1

vmhba3:C0:T0:L1 5006016141e06522 SPA1

vmhba2:C0:T1:L1 5006016841e06522 SPB0

vmhba2:C0:T0:L1 5006016041e06522 SPA0

Identifying Path States and on Which Path the I/o Is Sent—FC
Still using the FC example (refer to Figure 5.17), two fields are relevant to the task of
identifying the path states and the I/O path: Group State and Path Selection Policy Path
Config. Table 5.4 shows the values of these fields and their meanings.

From the Library of raphael schitz

ptg7996124

Listing Multipath Details 187

Table 5.4 Path State Related Fields

Runtime Name Group State PSP Path Config Meaning

vmhba3:C0:T1:L1 Standby non-current path; rank: 0 Passive SP—no I/O

vmhba3:C0:T0:L1 Active non-current path; rank: 0 Active-SP—no I/O

vmhba2:C0:T1:L1 Standby non-current path; rank: 0 Passive SP—no I/O

vmhba2:C0:T0:L1 Active current path; rank: 0 Active SP—I/O

Combining the last two tables, we can extrapolate the following:

�� The LUN is currently owned by SPA (therefore the state is Active).

�� The I/O to the LUN is sent via the path to SPA Port 0.

NoTE

This information is provided by the PSP path configuration because its function is to
“Determine on which physical path to issue I/O requests being sent to a given storage
device” as stated under the PSP section.

The rank configuration listed here shows the value of 0. I discuss the ranked I/O in
Chapter 7.

Example of Listing Paths to an iSCSI-Attached Device
To list paths to a specific iSCSI-attached LUN, try a different approach for locating the
device ID:

esxcfg-mpath -m |grep iqn

You can also use the verbose command option:

esxcfg-mpath --list-map |grep iqn

The output for this command is shown in Figure 5.19.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)188

Figure 5.19 Listing paths to an iSCSI-attached LUN via the CLI

In the output, the lines wrapped. Each line actually begins with vmhba35 for readability.
From this ouput, we have the information listed in Table 5.5.

Table 5.5 Matching Runtime Names with Their NAA IDs

Runtime Name NAA ID

vmhba35:C0:T1:L0 naa.6006016047301a00eaed23f5884ee011

vmhba35:C0:T0:L0 naa.6006016047301a00eaed23f5884ee011

This means that these two paths are to the same LUN 0 and the NAA ID is naa.6006016
047301a00eaed23f5884ee011.

Now, get the pathnames for this LUN. The command is the same as what you used for
listing the FC device:

esxcli storage nmp path list -d naa.6006016047301a00eaed23f5884ee011

You may also use the verbose version of this command:

esxcli storage nmp path list --device naa.6006016047301a00eaed23f5884ee011

The output is shown in Figure 5.20.

From the Library of raphael schitz

ptg7996124

Listing Multipath Details 189

Figure 5.20 Listing paths to an iSCSI-attached LUN via CLI

Note that the path name was wrapped for readability.

Similar to what you observed with the FC-attached devices, the output is identical except
for the actual path name. Here, it starts with iqn instead of fc.

The Group State and Path Selection Policy Path Config shows similar content as well.
Based on that, I built Table 5.6.

Table 5.6 Matching Runtime Names with Their Target IDs and SP Ports

Runtime Name

Target IQN

Sp Port
Association

vmhba35:C0:T1:L0 iqn.1992-04.com.emc:cx.apm00071501971.b0 SPB0

vmhba35:C0:T0:L0 iqn.1992-04.com.emc:cx.apm00071501971.a0 SPA0

To list only the pathnames in the output shown in Figure 5.20, you may append |grep
iqn to the command.

The output of the command is listed in Figure 5.21 and was wrapped for readability. Each
path name starts with iqn:

esxcli storage nmp path list --device naa.6006016047301a00eaed23f5884ee011
|grep iqn

Figure 5.21 Listing pathnames of iSCSI-attached LUNs

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)190

Identifying Path States and on Which Path the I/o Is Sent—iSCSI
The process of identifying path states and I/O path for iSCSI protocol is identical to that
of the FC protocol listed in the preceding section.

Example of Listing Paths to an FCoE-Attached Device
The process of listing paths to FCoE-attached devices is identical to the process for FC
except that the string you use is fcoe Adapter instead of fc Adapter.

A sample output from an FCoE configuration is shown in Figure 5.22.

Figure 5.22 List of runtime paths of FCoE-attached LUNs via CLI

The command used is the following:

esxcfg-mpath -b |grep -B1 “fcoe Adapter” |sed ‘s/Adapter.*//’

You may also use the verbose command:

esxcfg-mpath --list-paths |grep -B1 “fcoe Adapter” |sed ‘s/Adapter.*//’

Using the NAA ID for LUN 1, the list of pathnames is shown in Figure 5.23.

From the Library of raphael schitz

ptg7996124

Listing Multipath Details 191

Figure 5.23 List of pathnames of an FCoE-attached LUN

You may also use the verbose version of the command shown in Figure 5.23 by using
--device instead of -d.

This translates to the physical pathnames shown in Figure 5.24.

Figure 5.24 List of paths names of an FCoE LUN

The command used to collect the ouput shown in Figure 5.24 is

esxcli storage nmp path list -d 6006016033201c00a4313b63995be011 |grep fcoe

Using Table 2.1, “Identifying SP Port Association with Each SP,” in Chapter 2, you can
translate the targets listed in the returned four paths as shown in Table 5.7.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)192

Table 5.7 Translation of FCoE Targets

Runtime Name Target WWPN SP Port Association

vmhba34:C0:T1:L1 5006016141e0b7ec SPA1

vmhba34:C0:T0:L1 5006016941e0b7ec SPB1

vmhba33:C0:T1:L1 5006016041e0b7ec SPA0

vmhba33:C0:T0:L1 5006016841e0b7ec SPB0

Identifying Path States and on Which Path the I/o Is Sent—FC
Still following the process as you did with the FC example (refer to Figure 5.17), two fields
are relevant to the task of identifying the path states and the I/O path: Group State and
Path Selection Policy Path Config. Table 5.8 shows the values of these fields and their
meaning.

Table 5.8 Interpreting Path States—FCoE

Runtime Name Group State PSP Path Config Meaning

vmhba34:C0:T1:L1 Standby non-current path; rank: 0 Passive SP — no I/O

vmhba34:C0:T0:L1 Active current path; rank: 0 Active-SP — I/O

vmhba33:C0:T1:L1 Standby non-current path; rank: 0 Passive SP — no I/O

vmhba33:C0:T0:L1 Active non-current path; rank: 0 Active SP — no I/O

Combining the last two tables, we can extrapolate the following:

�� The LUN is currently “owned” by SPB (hence the state is Active).

�� The I/O to the LUN is sent via the path to SPB Port 1.

Claim Rules
Each storage device is managed by one of the PSA plug-ins at any given time. In other
words, a device cannot be managed by more than one PSA plug-in.

For example, a host that has a third-party MPP installed alongside with NMP, devices
managed by the third-party MPP cannot be managed by NMP unless the configuration is
changed to assign these devices to NMP. The process of associating certain devices with

From the Library of raphael schitz

ptg7996124

MP Claim Rules 193

certain PSA plug-ins is referred to as claiming and is defined by Claim Rules. These rules
define the correlation between a device and NMP or MPP. NMP has additional associ-
ation between the claimed device and a specific SATP and PSP.

This section shows you how to list the various claim rules. The next section discusses how
to change these rules.

Claim rules can be defined based on one or a combination of the following:

�� Vendor String—In response to the standard inquiry command, the arrays return the
standard inquiry response, which includes the Vendor string. This can be used in the
definition of a claim rule based on the exact match. A partial match or a string with
padded spaces does not work.

�� Model String—Similar to the Vendor string, the Model string is returned as part
of the standard inquiry response. Similar to the Vendor string, a claim rule can
be defined using the exact match of the Model string and padded spaces are not
supported here.

�� Transport—Defining a claim rule based on the transport type, Transport facilitates
claiming of all devices that use that transport. Valid transport types are block, fc,
iscsi, iscsivendor, ide, sas, sata, usb, parallel, and unknown.

�� Driver—Specifying a driver name as one of the criteria for a claim rule definition
allows all devices accessible via such a driver to be claimed. An example of that is a
claim rule to mask all paths to devices attached to an HBA that uses mptscsi driver.

MP Claim Rules
The first set of claim rules defines which MPP claims which devices. Figure 5.25 shows the
default MP claim rules.

Figure 5.25 Listing MP Claim Rules

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)194

The command to list these rules is

esxcli storage core claimrule list

The namespace here is for the Core Storage because the MPP definition is done on the
PSA level. The output shows that this rule class is MP, which indicates that these rules
define the devices’ association to a specific multipathing plug-in.

There are two plugins specified here: NMP and MASK_PATH. I have already discussed
NMP in the previous sections. The MASK_PATH plug-in is used for masking paths
to specific devices and is a replacement for the deprecated Legacy Multipathing LUN
Masking vmkernel parameter. I provide some examples in the “Modifying PSA Plug-in
Configurations Using the UI” section.

Table 5.9 lists each column name in the ouput along with an explanation of each column.

Table 5.9 Explanation of Claim Rules Fields

Column Name Explanation

Rule Class The plugin class for which this claim rule set is defined. This can be MP,
Filter, or VAAI.

Rule The rule number. This defines the order the rules are loaded. Similar to
firewall rules, the first match is used and supersedes rules with larger
numbers.

Class The value can be runtime or file. A value of file means that the
rule definitions were stored to the configuration files (more on this later
in this section). A value of Runtime means that the rule was read from
the configuration files and loaded into memory. In other words, it means
that the rule is active. If a rule is listed as file only and no runtime,
the rule was just created but has not been loaded yet. Find out more
about loading rules in the next section.

Type The type can be vendor, model, transport, or driver. See the
explanation in the “Claim Rules” section.

Plugin The name of the plug-in for which this rule was defined.

Matches This is the most important field in the rule definition. This column shows
the “Type” specified for the rule and its value. When the specified type
is vendor, an additional parameter, model, must be used. The model
string must be an exact string match or include an * as a wild card. You
may use a ^ as “begins with” and then the string followed by an *—for
example, ^OPEN-*.

From the Library of raphael schitz

ptg7996124

MP Claim Rules 195

The highest rule number in any claim rules set is 65535. It is assigned here to a Catch-All
rule that claims devices from “any” vendor with “any” model string. It is placed as the last
rule in the set to allow for lower numbered rules to claim their specified devices. If the
attached devices have no specific rules defined, they get claimed by NMP.

Figure 5.26 is an example of third-party MP plug-in claim rules.

Figure 5.26 Listing EMC PowerPath/VE claim rules.

Here you see that rules number 250 through 320 were added by PowerPath/VE, which
allows PowerPath plug-in to claim all the devices listed in Table 5.10.

Table 5.10 Arrays Claimed by PowerPath

Storage Array Vendor Model

EMC CLARiiON Family DGC Any (* is a wild card)

EMC Symmetrix Family EMC SYMMETRIX

EMC Invista EMC Invista

HITACHI HITACHI Any

HP HP Any

HP EVA HSV111 family (Compaq Branded) HP HSV111 (C) COMPAQ

EMC Celerra EMC Celerra

IBM DS8000 family IBM 2107900

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)196

NoTE

There is currently a known limitation with claim rules that use a partial match on the model
string. So, older versions of PowerPath/VE that used to have rules stating model=OPEN
may not claim the devices whose model string is something such as OPEN-V, OPEN-10,
and so on. As evident from Figure 5.26, version 5.7 no longer uses partial matches. Instead,
partial matches have been replaced with an *.

Plug-in Registration
New to vSphere 5 is the concept of plug-in registration. Actually this existed in 4.x but was
not exposed to the end user. When a PSA plug-in is installed, it gets registered with the
PSA framework along with their dependencies, if any, similar to the output in Figure 5.27.

Figure 5.27 Listing PSA plug-in registration

This output shows the following:

�� Module Name—The name of the plug-in kernel module; this is the actual plug-in
software binary as well as required libraries, if any, that get plugged into vmkernel.

From the Library of raphael schitz

ptg7996124

SATP Claim Rules 197

�� Plugin Name—This is the name by which the plug-in is identified. This is the exact
name to use when creating or modifying claim rules.

�� Plugin class—This is the name of the class to which the plug-in belongs. For
example, the previous section covered the MP class of plug-ins. The next sections
discuss SATP and PSP plug-ins and later chapters cover VAAI and VAAI_Filter
classes.

�� Dependencies—These are the libraries and other plug-ins which the registered
plug-ins require to operate.

�� Full Path—This is the full path to the files, libraries, or binaries that are specific to
the registered plug-in. This is mostly blank in the default registration.

SATP Claim Rules
Now that you understand how NMP plugs into PSA, it’s time to examine how SATP
plugs into NMP.

Each SATP is associated with a default PSP. The defaults can be overridden using SATP
claim rules. Before I show you how to list these rules, first review the default settings.

The command used to list the default PSP assignment to each SATP is

esxcli storage nmp satp list

The output of this command is shown in Figure 5.28.

Figure 5.28 Listing SATPs and their default PSPs

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)198

The name space is Storage, NMP, and finally SATP.

NoTE

VMW_SATP_ALUA_CX plug-in is associated with VMW_PSP_FIXED. Starting
with vSphere 5.0, the functionality of VMW_PSP_FIXED_AP has been rolled into
VMW_PSP_FIXED. This facilitates the use of the Preferred Path option with ALUA
arrays while still handling failover triggering events in a similar fashion to Active/Passive
arrays. Read more on this in Chapter 6.

Knowing which PSP is the default policy for which SATP is half the story. NMP needs to
know which SATP it will use with which storage device. This is done via SATP claim rules
that associate a given SATP with a storage device based on matches to Vendor, Model,
Driver, and/or Transport.

To list the SATP rule, run the following:

esxcli storage nmp satp rule list

The output of the command is too long and too wide to capture in one screenshot. I
have divided the output to a set of images in which I list a partial output then list the text
of the full output in a subsequent table. Figures 5.29, 5.30, 5.31, and 5.32 show the four
quadrants of the output.

TIP

To format the output of the preceding command so that the text is arranged better for read-
ability, you can pipe the output to less -S. This truncates the long lines and aligns the text
under their corresponding columns.

So, the command would look like this:

esxcli storage nmp satp list | less –S

From the Library of raphael schitz

ptg7996124

SATP Claim Rules 199

Figure 5.29 Listing SATP claim rules—top-left quadrant of output.

Figure 5.30 Listing SATP claim rules—top-right quadrant of output.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)200

Figure 5.31 Listing SATP claim rules—bottom-left quadrant of output

Figure 5.32 Listing SATP claim rules—bottom-right quadrant of output

To make things a bit clearer, let’s take a couple of lines from the output and explain what
they mean.

Figure 5.33 shows the relevant rules for CLARiiON arrays both non-ALUA and ALUA
capable. I removed three blank columns (Driver, Transport, and Options) to fit the
content on the lines.

From the Library of raphael schitz

ptg7996124

Modifying PSA Plug-in Configurations Using the UI 201

Figure 5.33 CLARiiON Non-ALUA and ALUA Rules

The two lines show the claim rules for EMC CLARiiON CX family. Using this rule,
NMP identifies the array as CLARiiON CX when the Vendor string is DGC. If NMP
stopped at this, it would have used VMW_SATP_CX as the SATP for this array.
However, this family of arrays can support more than one configuration. That is the
reason the value Claim Options column comes in handy! So, if that option is
tpgs_off, NMP uses the VMW_SATP_CX plug-in, and if the option is tpgs_on,
NMP uses VMW_SATP_ALUA_CX. I explain what these options mean in Chapter 6.

Figure 5.34 shows another example that utilizes additional options. I removed the Device
column to fit the content to the display.

Figure 5.34 Claim rule that uses Claim Options

In this example, NMP uses VMW_SATP_DEFAULT_AA SATP with all arrays returning
HITACHI as a model string. However, the default PSP is selected based on the values listed
in the Claim Options column:

�� If the column is blank, the default PSP (which is VMW_PSP_FIXED and is based
on the list shown earlier in this section in Figure 5.28) is used. In that list, you see
that VMW_SATP_DEFAULT_AA is assigned the default PSP named VMW_PSP_
FIXED.

�� If the column shows inq_data[128]={0x44 0x46 0x30 0x30}, which is part of
the data reported from the array via the Inquiry String, NMP overrides the default
PSP configuration and uses VMW_PSP_RR instead.

Modifying PSA Plug-in Configurations Using the UI
You can modify PSA plug-ins’ configuration using the CLI and, to a limited extent, the
UI. Because the UI provides far fewer options for modification, let me address that first to
get it out of the way!

Figure 5.31 Listing SATP claim rules—bottom-left quadrant of output

Figure 5.32 Listing SATP claim rules—bottom-right quadrant of output

To make things a bit clearer, let’s take a couple of lines from the output and explain what
they mean.

Figure 5.33 shows the relevant rules for CLARiiON arrays both non-ALUA and ALUA
capable. I removed three blank columns (Driver, Transport, and Options) to fit the
content on the lines.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)202

Which PSA Configurations Can Be Modified Using the UI?
You can change the PSP for a given device. However, this is done on a LUN level rather
than the array.

Are you wondering why you would want to do that?

Think of the following scenario:

You have Microsoft Clustering Service (MSCS) cluster nodes in Virtual Machines (VMs)
in your environment. The cluster’s shared storage is Physical Mode Raw Device Mappings
(RDMs), which are also referred to as (Passthrough RDMs). Your storage vendor recom-
mends using Round-Robin Path Selection Policy (VMW_PSP_RR). However, VMware
does not support using that policy with the MSCS clusters in shared RDMs.

The best approach is to follow your storage vendor’s recommendations for most of the
LUNs, but follow the procedure listed here to change just the RDM LUNs’ PSP to their
default PSPs.

Procedure to Change PSP via UI

 1. Use the vSphere client to navigate to the MSCS node VM and right-click the VM in
the inventory pane. Select Edit Settings (see Figure 5.35).

Figure 5.35 Editing VM’s settings via the UI

From the Library of raphael schitz

ptg7996124

Modifying PSA Plug-in Configurations Using the UI 203

The resulting dialog is shown in Figure 5.36.

Figure 5.36 Virtual Machine Properties dialog

 2. Locate the RDM listed in the Hardware tab. You can identify this by the summary
column showing Mapped Raw LUN. On the top right-hand side you can locate the
Logical Device Name, which is prefixed with vml in the field labeled Physical LUN
and Datastore Mapping File.

 3. Double-click the text in that field. Right-click the selected text and click Copy (see
Figure 5.37).

Figure 5.37 Copying RDM’s VML ID (Logical Device Name) via the UI

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)204

 4. I use the copied text to follow Steps 4 and 5 of doing the same task via the CLI in the
next section. However, for this section, click the Manage Paths button in the dialog
shown in Figure 5.37.

The resulting Manage Paths dialog is shown in Figure 5.38.

Figure 5.38 Modifying PSP selection via the UI

 5. Click the pull-down menu next to the Path Selection field and change it from Round
Robin (VMware) to the default PSP for your array. Click the Change button. To
locate which PSP is the default, check VMware HCL. If the PSP listed there is
Round Robin, follow the examples listed in the previous section, “SATP Claim
Rules,” to identify which PSP to select.

 6. Click Close.

Modifying PSA Plug-ins Using the CLI
The CLI provides a range of options to configure, customize, and modify PSA plug-in
settings. I provide the various configurable options and their use cases as we go.

Available CLI Tools and Their options
New to vSphere 5.0 is the expansion of using esxcli as the main CLI utility for managing
ESXi 5.0. The same binary is used whether you log on to the host locally or remotely via

From the Library of raphael schitz

ptg7996124

Modifying PSA Plug-ins Using the CLI 205

SSH. It is also used by vMA or vCLI. This simplifies administrative tasks and improves
portability of scripts written to use esxcli.

TIP

The only difference between the tools used locally or via SSH compared to those used in
vMA and Remote CLI is that the latter two require providing the server name and the user’s
credentials on the command line. Refer to Chapter 3 in which I covered using the FastPass
(fp) facility of vMA and how to add the users’ credentials to the CREDSTORE environment
variable on vCLI.

Assuming that the server name and user credentials are set in the environment, the
command-line syntax in all the examples in this book is identical regardless of where you use
them.

ESXCLI Namespace

Figure 5.39 shows the command-line help for esxcli.

Figure 5.39 Listing esxcli namespace

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)206

The relevant namespace for this chapter is storage. This is what most of the examples
use. Figure 5.40 shows the command-line help for the storage namespace:

esxcli storage

Figure 5.40 Listing esxcli storage namespace

Table 5.11 lists ESXCLI namespaces and their usage.

Table 5.11 Available Namespaces in the storage Namespace

Name Space Usage

core Use this for anything on the PSA level like other MPPs, PSA claim rules,
and so on.

nmp Use this for NMP and its “children,” such as SATP and PSP.

vmfs Use this for handling VMFS volumes on snapshot LUNs, managing
extents, and upgrading VMFS manually.

filesystem Use this for listing, mounting, and unmounting supported datastores.

nfs Use this to mount, unmount, and list NFS datastores.

Adding a PSA Claim Rule
PSA claim rules can be for MP, Filter, and VAAI classes. I cover the latter two in
Chapter 6.

Following are a few examples of claim rules for the MP class.

Adding a Rule to Change Certain LUNs to Be Claimed by a Different MPP

In general, most arrays function properly using the default PSA claim rules. In certain
configurations, you might need to specify a different PSA MPP.

From the Library of raphael schitz

ptg7996124

Modifying PSA Plug-ins Using the CLI 207

A good example is the following scenario:

You installed PowerPath/VE on your ESXi 5.0 host but then later realized that you have
some MSCS cluster nodes running on that host and these nodes use Passthrough RDMs
(Physical compatibility mode RDM). Because VMware does not support third-party MPPs
with MSCS, you must exclude the LUNs from being managed by PowerPath/VE.

You need to identify the device ID (NAA ID) of each of the RDM LUNs and then identify
the paths to each LUN. You use these paths to create the claim rule.

Here is the full procedure:

 1. Power off one of the MSCS cluster nodes and locate its home directory. If you
cannot power off the VM, skip to Step 6.

Assuming that the cluster node is located on Clusters_Datastore in a directory
named node1, the command and its output would look like Listing 5.1.

Listing 5.1 Locating the RDM Filename

#cd /vmfs/volumes/Clusters_datastore/node1

#fgrep scsi1 *.vmx |grep fileName

scsi1:0.fileName = “/vmfs/volumes/4d8008a2-9940968c-04df-001e4f1fbf2a/
node1/quorum.vmdk”

scsi1:1.fileName = “/vmfs/volumes/4d8008a2-9940968c-04df-001e4f1fbf2a/
node1/data.vmdk”

The last two lines are the output of the command. They show the RDM
filenames for the node’s shared storage, which are attached to the virtual SCSI
adapter named scsi1.

 2. Using the RDM filenames, including the path to the datastore, you can identify the
logical device name to which each RDM maps as shown in Listing 5.2.

Listing 5.2 Identifying RDM’s Logical Device Name Using the RDM Filename

#vmkfstools --queryrdm /vmfs/volumes/4d8008a2-9940968c-04df-001e4f1fbf2a/
node1/quorum.vmdk

Disk /vmfs/volumes/4d8008a2-9940968c-04df-001e4f1fbf2a/node1/quorum.vmdk is
a Passthrough Raw Device Mapping

Maps to: vml.02000100006006016055711d00cff95e65664ee011524149442035

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)208

You may also use the shorthand version using -q instead of --queryrdm.

This example is for the quorum.vmdk. Repeat the same process for the
remaining RDMs. The device name is prefixed with vml and is highlighted.

 3. Identify the NAA ID using the vml ID as shown in Listing 5.3.

Listing 5.3 Identifying NAA ID Using the Device vml ID

#esxcfg-scsidevs --list --device vml.02000100006006016055711d00cff95e65664
ee011524149442035 |grep Display

Display Name: DGC Fibre Channel Disk (naa.6006016055711d00cff95e65664ee011)

You may also use the shorthand version:

#esxcfg-scsidevs -l -d vml.02000100006006016055711d00cff95e65664
ee011524149442035 |grep Display

 4. Now, use the NAA ID (highlighted in Listing 5.3) to identify the paths to the RDM
LUN.

Figure 5.41 shows the output of command:

esxcfg-mpath -m |grep naa.6006016055711d00cff95e65664ee011 | sed ‘s/
fc.*//’

Figure 5.41 Listing runtime pathnames to an RDM LUN

You may also use the verbose version of the command:

esxcfg-mpath --list-map |grep naa.6006016055711d00cff95e65664ee011 |
sed ‘s/fc.*//’

This truncates the output beginning with “fc” to the end of the line on each
line. If the protocol in use is not FC, replace that with “iqn” for iSCSI or “fcoe”
for FCoE.

The output shows that the LUN with the identified NAA ID is LUN 1 and has
four paths shown in Listing 5.4.

From the Library of raphael schitz

ptg7996124

Modifying PSA Plug-ins Using the CLI 209

Listing 5.4 RDM LUN’s Paths

vmhba3:C0:T1:L1

vmhba3:C0:T0:L1

vmhba2:C0:T1:L1

vmhba2:C0:T0:L1

If you cannot power off the VMs to run Steps 1–5, you may use the UI instead.

 5. Use the vSphere client to navigate to the MSCS node VM. Right-click the VM in
the inventory pane and then select Edit Settings (see Figure 5.42).

Figure 5.42 Editing VM’s settings via the UI

 6. In the resulting dialog (see Figure 5.43), locate the RDM listed in the Hardware tab.
You can identify this by the summary column showing Mapped Raw LUN. On the
top right-hand side you can locate the Logical Device Name, which is prefixed with
vml in the field labeled Physical LUN and Datastore Mapping File.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)210

Figure 5.43 Virtual machine properties dialog

 7. Double-click the text in that field. Right-click the selected text and click Copy as
shown in Figure 5.44.

Figure 5.44 Copying RDM’s VML ID (Logical Device Name) via the UI

From the Library of raphael schitz

ptg7996124

Modifying PSA Plug-ins Using the CLI 211

 8. You may use the copied text to follow Steps 4 and 5. Otherwise, you may instead get
the list of paths to the LUN using the Manage Paths button in the dialog shown in
Figure 5.44.

 9. In the Manage Paths dialog (see Figure 5.45), click the Runtime Name column to
sort it. Write down the list of paths shown there.

Figure 5.45 Listing the runtime pathnames via the UI

 10. The list of paths shown in Figure 5.45 are

vmhba1:C0:T0:L1

vmhba1:C0:T1:L1

vmhba2:C0:T0:L1

vmhba2:C0:T1:L1

NoTE

Notice that the list of paths in the UI is different from that obtained from the command
line. The reason can be easily explained; I used two different hosts for obtaining the list of
paths. If your servers were configured identically, the path list should be identical as well.

However, this is not critical because the LUN’s NAA ID is the same regardless of paths used
to access it. This is what makes NAA ID the most unique element of any LUN, and that is
the reason ESXi utilizes it for uniquely identifying the LUNs. I cover more on that topic
later in Chapter 7.

 11. Create the claim rule.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)212

I use the list of paths obtained in Step 5 for creating the rule from the ESXi host from
which it was obtained.

The Ground Rules for Creating the Rule

�� The rule number must be lower than any of the rules created by PowerPath/VE
installation. By default, they are assigned rules 250–320 (refer to Figure 5.26 for the
list of PowerPath claim rules).

�� The rule number must be higher than 101 because this is used by the Dell Mask Path
rule. This prevents claiming devices masked by that rule.

�� If you created other claim rules in the past on this host, use a rule number that is
different from what you created in a fashion that the new rules you are creating now
do not conflict with the earlier rules.

�� If you must place the new rules in an order earlier than an existing rule but there are
no rule numbers available, you may have to move one of the lower-numbered rules
higher by the number of rules you plan on creating.

For example, you have previously created rules numbered 102–110 and that rule
109 cannot be listed prior to the new rules you are creating. If the new rules
count is four, you need to assign them rule numbers 109–112. To do that, you
need to move rules 109 and 110 to numbers 113 and 114. To avoid having to do
this in the future, consider leaving gaps in the rule numbers among sections.

An example of moving a rule is

esxcli storage core claimrule move --rule 109 --new-rule 113

esxcli storage core claimrule move --rule 110 --new-rule 114

You may also use the shorthand version:

esxcli storage core claimrule move -r 109 -n 113

esxcli storage core claimrule move -r 110 -n 114

Now, let’s proceed with adding the new claim rules:

 1. The set of four commands shown in Figure 5.46 create rules numbered 102–105.
The rules criteria are

�� The claim rule type is “location” (-t location).

�� The location is specified using each path to the same LUN in the format:

�� –A or --adapter vmhba(x) where X is the vmhba number associated
with the path.

From the Library of raphael schitz

ptg7996124

Modifying PSA Plug-ins Using the CLI 213

�� –C or --channel (Y) where Y is the channel number associated with
the path.

�� –T or --target (Z) where Z is the target number associated with the
path.

�� –L or --lun (n) where n is the LUN number.

�� The plug-in name is NMP, which means that this claim rule is for NMP to
claim the paths listed in each rule created.

NoTE

It would have been easier to create a single rule using the LUN’s NAA ID by using the
--type device option and then using --device <NAA ID>. However, the use of device
as a rule type is not supported with MP class plug-ins.

Figure 5.46 Adding new MP claim rules

 2. Repeat Step 1 for each LUN you want to reconfigure.

 3. Verify that the rules were added successfully. To list the current set of claim rules,
run the command shown in Figure 5.47:

esxcli storage core claimrule list.

Figure 5.47 Listing added claim rules

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)214

Notice that the four new rules are now listed, but the Class column shows them
as file. This means that the configuration files were updated successfully but the
rules were not loaded into memory yet.

NoTE

I truncated the PowerPath rules in Figure 5.47 for readability. Also note that using the
Location type utilizes the current runtime names of the devices, and they may change in the
future. If your configuration changes—for example, adding new HBAs or removing existing
ones—the runtime names change, too. This results in these claim rules claiming the wrong
devices. However, in a static environment, this should not be an issue.

TIP

To reduce the number of commands used and the number of rules created, you may
omit the -T or --target option, which assumes a wildcard. You may also use the –u or
--autoassign option to auto-assign the rule number. However, the latter assigns rule
numbers starting with 5001, which may be higher than the existing claim rules for the device
hosting the LUN you are planning to claim.

Figure 5.48 shows a sample command line that implements a wildcard for the
target. Notice that this results in creating two rules instead of four and the
“target” match is *.

Figure 5.48 Adding MP claim rules using a wildcard

 4. Before loading the new rules, you must first unclaim the paths to the LUN specified
in that rule set. You use the NAA ID as the device ID:

esxcli storage core claiming unclaim --type device –-device naa.600601
6055711d00cff95e65664ee011

From the Library of raphael schitz

ptg7996124

Modifying PSA Plug-ins Using the CLI 215

You may also use the shorthand version:

esxcli storage core claiming unclaim -t device –d naa.6006016055711d00
cff95e65664ee011

 5. Load the new claim rules so that the paths to the LUN get claimed by NMP:

esxcli storage core claimrule load

 6. Use the following command to list the claim rules to verify that they were success-
fully loaded:

esxcli storage core claimrule list

Now you see that each of the new rules is listed twice—once with file class and
once with runtime class—as shown in Figure 5.49.

Figure 5.49 Listing MP claim rules

How to Delete a Claim Rule
Deleting a claim rule must be done with extreme caution. Make sure that you are deleting
the rule you intend to delete. Prior to doing so, make sure to collect a “vm-support” dump
by running vm-support from a command line at the host or via SSH. Alternatively, you
can select the menu option Collect Diagnostics Data via the vSphere client.

To delete a claim rule, follow this procedure via the CLI (locally, via SSH, vCLI, or vMA):

 1. List the current claim rules set and identify the claim rule or rules you want to
delete. The command to list the claim rules is similar to what you ran in Step 6 and
is shown in Figure 5.49.

 2. For this procedure, I am going to use the previous example and delete the four claim
rules I added earlier which are rules 102–105. The command for doing that is in
Figure 5.50.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)216

Figure 5.50 Removing claim rules via the CLI

You may also run the verbose command:

esxcli storage core claimrule remove --rule <rule-number>

 3. Running the claimrule list command now results in an output similar to
Figure 5.51. Observe that even though I just deleted the claim rules, they still show
up on the list. The reason for that is the fact that I have not loaded the modified
claim rules. That is why the deleted rules show runtime in their Class column.

Figure 5.51 Listing MP claim rules

 5. Because I know from the previous procedure the device ID (NAA ID) of the LUN
whose claim rules I deleted, I ran the unclaim command using the -t device or
--type option and then specified the -d or --device option with the NAA ID. I
then loaded the claim rules using the load option. Notice that the deleted claim rules
are no longer listed see Figure 5.52.

From the Library of raphael schitz

ptg7996124

Modifying PSA Plug-ins Using the CLI 217

Figure 5.52 Unclaiming a device using its NAA ID and then loading the claim rules

You may also use the verbose command options:

esxcli storage core claiming unclaim --type device --device <Device-ID>

You may need to claim the device after loading the claim rule by repeating the
claiming command using the “claim” instead of the “unclaim” option:

esxcli storage core claiming claim -t device -d <device-ID>

How to Mask Paths to a Certain LUN
Masking a LUN is a similar process to that of adding claim rules to claim certain paths to
a LUN. The main difference is that the plug-in name is MASK_PATH instead of NMP
as used in the previous example. The end result is that the masked LUNs are no longer
visible to the host.

 1. Assume that you want to mask LUN 1 used in the previous example and it still has
the same NAA ID. I first run a command to list the LUN visible by the ESXi host as
an example to show the before state (see Figure 5.53).

Figure 5.53 Listing LUN properties using its NAA ID via the CLI

You may also use the verbose command option --device instead of -d.

 2. Add the MASK_LUN claim rule, as shown in Figure 5.54.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)218

Figure 5.54 Adding Mask Path claim rules

As you see in Figure 5.54, I added rule numbers 110 and 111 to have MASK_
PATH plug-in claim all targets to LUN1 via vmhba2 and vmhba3. The claim
rules are not yet loaded, hence the file class listing and no runtime class listings.

 3. Load and then list the claim rules (see Figure 5.55).

Figure 5.55 Loading and listing claim rules after adding Mask Path rules

Now you see the claim rules listed with both file and runtime classes.

 4. Use the reclaim option to unclaim and then claim the LUN using its NAA ID.
Check if it is still visible (see Figure 5.56).

Figure 5.56 Reclaiming the paths after loading the Mask Path rules

You may also use the verbose command option --device instead of -d.

From the Library of raphael schitz

ptg7996124

Modifying PSA Plug-ins Using the CLI 219

Notice that after reclaiming the LUN, it is now an Unknown device.

How to Unmask a LUN
To unmask this LUN, reverse the preceding steps and then reclaim the LUN as follows:

 1. Remove the MASK_PATH claim rules (numbers 110 and 111) as shown in
Figure 5.57.

Figure 5.57 Removing the Mask Path claim rules

You may also use the verbose command options:

esxcli storage core claimrule remove --rule <rule-number>

 2. Unclaim the paths to the LUN in the same fashion you used while adding the
MASK_PATH claim rules—that is, using the –t location and omitting the –T option
so that the target is a wildcard.

 3. Rescan using both HBA names.

 4. Verify that the LUN is now visible by running the list command.

Figure 5.58 shows the outputs of Steps 2–4.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)220

Figure 5.58 Unclaiming the Masked Paths

You may also use the verbose command options:

esxcli storage core claiming unclaim --type location --adapter vmhba2
--channel 0 --lun 1 --plugin MASK_PATH

Changing PSP Assignment via the CLI
The CLI enables you to modify the PSP assignment per device. It also enables you to
change the default PSP for a specific storage array or family of arrays. I cover the former
use case first because it is similar to what you did via the UI in the previous section. I
follow with the latter use case.

Changing PSP Assignment for a Device

To change the PSP assignment for a given device, you may follow this procedure:

 1. Log on to the ESXi 5 host locally or via SSH as root or using vMA 5.0 as vi-admin.

 2. Identify the device ID for each LUN you want to reconfigure:

esxcfg-mpath -b |grep -B1 “fc Adapter”| grep -v -e “--” |sed ‘s/
Adapter.*//’

You may also use the verbose version of this command:

esxcfg-mpath --list-paths grep -B1 “fc Adapter”| grep -v -e “--“ | sed
‘s/Adapter.*//’

Listing 5.5 shows the output of this command.

From the Library of raphael schitz

ptg7996124

Modifying PSA Plug-ins Using the CLI 221

Listing 5.5 Listing Device ID and Its Paths

naa.60060e8005275100000027510000011a : HITACHI Fibre Channel Disk (naa.6006
0e8005275100000027510000011a)

 vmhba2:C0:T0:L1 LUN:1 state:active fc

 vmhba2:C0:T1:L1 LUN:1 state:active fc

 vmhba3:C0:T0:L1 LUN:1 state:active fc

 vmhba3:C0:T1:L1 LUN:1 state:active fc

From there, you can identify the device ID (in this case, it is the NAA ID). Note
that this output was collected using a Universal Storage Platform®V (USP V),
USP VM, or Virtual Storage Platform (VSP).

This output means that LUN1 has device ID naa.60060e800527510000002751
0000011a.

 3. Using the device ID you identified, run this command:

esxcli storage nmp device set -d <device-id> --psp=<psp-name>

You may also use the verbose version of this command:

esxcli storage nmp device set --device <device-id> --psp=<psp-name>

For example:

esxcli storage nmp device set -d naa.60060e8005275100000027510000011a
--psp=VMW_PSP_FIXED

This command sets the device with ID naa.60060e800527510000002751000
0011a to be claimed by the PSP named VMW_PSP_FIXED.

Changing the Default PSP for a Storage Array

There is no simple way to change the default PSP for a specific storage array unless that
array is claimed by an SATP that is specific for it. In other words, if it is claimed by an
SATP that also claims other brands of storage arrays, changing the default PSP affects all
storage arrays claimed by the SATP. However, you may add an SATP claim rule that uses
a specific PSP based on your storage array’s Vendor and Model strings:

 1. Identify the array’s Vendor and Model strings. You can identify these strings by
running

esxcli storage core device list -d <device ID> |grep ‘Vendor\|Model’

Listing 5.6 shows an example for a device on an HP P6400 Storage Array.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)222

Listing 5.6 Listing Device’s Vendor and Model Strings

esxcli storage core device list -d naa.600508b4000f02cb0001000001660000
|grep ‘Model\|Vendor’

 Vendor: HP

 Model: HSV340

In this example, the Vendor String is HP and the Model is HSV340.

 2. Use the identified values in the following command:

esxcli storage nmp satp rule add --satp <current-SATP-USED> --vendor
<Vendor string> --model <Model string> --psp <PSP-name> --description
<Description>

TIP

It is always a good practice to document changes manually made to the ESXi host configu-
ration. That is why I used the --description option to add a description of the rules I
add. This way other admins would know what I did if they forget to read the change control
record that I added using the company’s change control software.

In this example, the command would be like this:

esxcli storage nmp satp rule add --satp VMW_SATP_EVA --vendor HP
--model HSV340 --psp VMW_PSP_FIXED --description “Manually added to
use FIXED”

It runs silently and returns an error if it fails.

Example of an error:

“Error adding SATP user rule: Duplicate user rule found for SATP VMW_
SATP_EVA matching vendor HP model HSV340 claim Options PSP VMW_PSP_
FIXED and PSP Options”

This error means that a rule already exists with these options. I simulated
this rule by first adding it and then rerunning the same command. To view
the existing SATP claim rules list for all HP storage arrays, you may run the
following command:

esxcli storage nmp satp rule list |less -S |grep ‘Name\|---\|HP’|less
-S

Figure 5.59 shows the output of this command (I cropped some blank columns,
including Device, for readability):

From the Library of raphael schitz

ptg7996124

Modifying PSA Plug-ins Using the CLI 223

Figure 5.59 Listing SATP rule list for HP devices

You can easily identify non-system rules where the Rule Group column value is
user. Such rules were added by a third-party MPIO installer or manually added
by an ESXi 5 administrator. The rule in this example shows that I had already
added VMW_PSP_FIXED as the default PSP for VMW_SATP_EVA when the
matching vendor is HP and Model is HSV340.

I don’t mean to state by this example that HP EVA arrays with HSV340
firmware should be claimed by this specific PSP. I am only using it for
demonstration purposes. You must verify which PSP is supported by and certified
for your specific storage array from the array vendor.

As a matter of fact, this HP EVA model happens to be an ALUA array and the
SATP must be VMW_SATP_ALUA see Chapter 6. How did I know that? Let
me explain!

�� Look at the output in Figures 5.29–5.32. There you should notice that there
are no listings of HP EVA arrays with Claim Options value of tpgs_on. This
means that they were not claimed by any specific SATP explicitly.

�� To filter out some clutter from the output, run the following command to list
all claim rules with a match on Claim Options value of tpgs_on.

esxcli storage nmp satp rule list |grep ‘Name\|---\|tpgs_on’ |less -S

Listing 5.7 shows the output of that command:

Listing 5.7 Listing SATP Claim Rules List

Name Device Vendor Model Rule Group Claim Options

------------------- ------ ------- -------- ---------- ------------

VMW_SATP_ALUA NETAPP system tpgs_on

VMW_SATP_ALUA IBM 2810XIV system tpgs_on

VMW_SATP_ALUA system tpgs_on

VMW_SATP_ALUA_CX DGC system tpgs_on

I cropped some blank columns for readability.

From the Library of raphael schitz

ptg7996124

Chapter 5 vSphere Pluggable Storage Architecture (PSA)224

Here you see that there is a claim rule with a blank vendor and the Claim
Options is tpgs_on. This claim rule claims any device with any vendor string as
long as its Claim Options is tpgs_on.

Based on this rule, VMW_SATP_ALUA claims all ALUA-capable arrays
including HP storage arrays based on a match on the Claim Options value of
tpgs_on.

What does this mean anyway?

It means that the claim rule that I added for the HSV340 is wrong because it will force
it to be claimed by an SATP that does not handle ALUA. I must remove the rule that I
added then create another rule that does not violate the default SATP assignment:

 1. To remove the SATP claim rule, use the same command used to add, substituting
the add option with remove:

esxcli storage nmp satp rule remove --satp VMW_SATP_EVA --vendor HP
--model HSV340 --psp VMW_PSP_FIXED

 2. Add a new claim rule to have VMW_SATP_ALUA claim the HP EVA HSV340
when it reports Claim Options value as tpgs_on:

esxcli storage nmp satp rule add --satp VMW_SATP_ALUA --vendor
HP --model HSV340 --psp VMW_PSP_FIXED --claim-option tpgs_on
--description “Re-added manually for HP HSV340”

 3. Verify that the rule was created correctly. Run the same command used in Step 2 in
the last procedure:

esxcli storage nmp satp rule list |grep ‘Name\|---\|tpgs_on’ |less -S

Figure 5.60 shows the output.

Figure 5.60 SATP rule list after adding rule

Notice that the claim rule has been added in a position prior to the catch-all rule described
earlier. This means that this HP EVA HSV340 model will be claimed by VMW_SATP_
ALUA when the Claim Options value is tpgs_on.

From the Library of raphael schitz

ptg7996124

Modifying PSA Plug-ins Using the CLI 225

NoTE

If you had manually set certain LUNs to a specific PSP previously, the preceding command
will not affect that setting.

To reset such a LUN to use the current default PSP, use the following command:

esxcli storage nmp device set --device <device-ID> --default

For example:

esxcli storage nmp device set --device naa.6006016055711d00cef95e65

664ee011 –-default

NoTE

All EVAs today have the tpgs_on option enabled by default, and it CANNOT be changed
by the user. So adding an EVA claim rule would only be useful in the context of trying to
use a different PSP by default for all EVA LUNs or assigning PSP defaults to EVA different
from other ALUA-capable arrays using the default SATP_ALUA.

Summary

This chapter covered PSA (VMware Pluggable Storage Architecture) components. I
showed you how to list PSA plug-ins and how they interact with vSphere ESXi 5. I also
showed you how to list, modify, and customize PSA claim rules and how to work around
some common issues.

It also covered how ALUA-capable devices interact with SATP claim rules for the purpose
of using a specific PSP.

From the Library of raphael schitz

ptg7996124

This page intentionally left blank

From the Library of raphael schitz

ptg7996124

Chapter 6

ALUA

Storage arrays provide various configurations and features depending on their class and
design. Depending on how the arrays handle I/O to devices presented to hosts, they can be
classified as

�� Active/Active — I/O (input/output) can be sent to Logical Unit Numbers (LUNs)
via any Storage Processor (SP) and port. Most of these arrays have large cache in
place, and the I/O is done on the LUN representation in cache and then the writes
are flushed to the physical disks asynchronously from the I/O.

�� Active/Passive —I/O can be sent only to any port on the Storage Processor that
“owns” the LUN (also known as the Active SP). If the I/O is attempted on the
LUN via ports on the “non-owner” processor (also known as Passive SP), an error is
returned to the initiator that means, in simple words, “No Entry” or “No, you can’t
do that.” I provide the actual sense codes in Chapter 7, “Multipathing and Failover.”

�� Pseudo-Active/Active (also known as “Asymmetric Active-Active”)—I/O can
be sent to ports on either storage processers. However, I/O sent to the “owner”
processor is faster than that sent to the “non-owner” processor. The reason behind
that is the path the I/O takes to get to the devices from each SP. Going through the
“non-owner” SP would send the I/O via some back-end channels compared to a
direct path via the “owner” SP.

The latter two types of arrays have recently started implementing a SCSI-3 specification
referred to as ALUA, which stands for Asymmetric Logical Unit Access. It allows access
to the array devices via both SPs but clearly identifies to the initiators which targets are on
the owner SP and which are on the non-owner SP, to put it simply. ALUA support was
first introduced in vSphere 4.0.

From the Library of raphael schitz

ptg7996124

Chapter 6 ALUA228

ALUA Definition
ALUA is described in the T10 SCSI-3 specification SPC-3 section 5.8 (see
http://www.t10.org/cgi-bin/ac.pl?t=f&f=spc3r23.pdf). The official description from
the above standard is

“Asymmetric logical unit access occurs when the access characteristics of one port may differ
from those of another port.”

In simpler terms, ALUA is a type of storage device that is capable of servicing I/O to a
given LUN on two different Storage Processors but in an uneven manner.

As I mentioned briefly earlier, using ALUA, I/O to a given LUN can be sent to available
ports on any of the SPs in the storage array. This is closer to the behavior of the
Asymmetric Active/Active arrays than the Active/Passive arrays. The I/O is allowed to the
LUN but the performance of the owner SP is better than the non-owner SP. To allow the
initiators to identify which targets would provide the best I/O, the ports on each SP are
grouped together (Target Port Groups). Each Target Port Group is given a distinctive
“state” (Asymmetric Access State or AAS). The latter denotes the “optimization” of ports
on one SP compared to ports on the other SP that may be less optimized (for example,
Active-Optimized versus Active-non-optimized).

ALUA Target Port Group
According to SPC-3, a Target Port Group (TPG) is described as

“A target port group is defined as a set of target ports that are in the same target port
asymmetric access state at all times. A target port group asymmetric access state is defined
as the target port asymmetric access state common to the set of target ports in a target port
group. The grouping of target ports is vendor specific.”

This simply means that a given storage array that has, say, two SPs—SPA and SPB—ports
on SPA are grouped together and ports on SPB are grouped in a separate group. Assume
that this storage array presents two LUNs—LUN1 and LUN2—to initiators in vSphere
hosts and that LUN1 is owned by SPA whereas LUN2 is owned by SPB. For the hosts
to access LUN1, it is better to access it via SPA and to access LUN2 via SPB. Relative to
LUN1, ports on SPA are in the Active-Optimized TPGs (also referred to by the abbrevia-
tions AO) and ports on SPB are in the Active-Non-Optimized TPGs (ANO).

The reverse is true for LUN2 in this example where TPGs on SPA are ANO whereas
TPGs on SPB are AO.

Figure 6.1 shows the example on an Asymmetric Active/Active array. TPG with ID=1
(represented by left-hand rectangle on SPA) is Active Optimized (AO) (represented by the

From the Library of raphael schitz

http://www.t10.org/cgi-bin/ac.pl?t=f&f=spc3r23.pdf

ptg7996124

ALUA Definition 229

solid line connecting it to LUN1). This same TPG is Active-Non-Optimized (ANO) for
LUN2 (represented by the interrupted line connecting TPG1 to LUN2).

SPA

1 2 1 2

ALUA Storage Array

SPB

TPG ID=1 TPG ID=2

LUN 1 LUN 2

Figure 6.1 Illustration of TPGs

The reverse is true for TPG with ID=2. That is, it is AO for LUN 2 and ANO for LUN1.

On some Active/Passive ALUA-capable arrays, you may see Port Groups with “Standby”
AAS instead of “ANO” on the non-owner SP.

Asymmetric Access State
Ports in an ALUA TPG can be in the same AAS at all times with respect to a given LUN.
The TPGs AAS are reported to the initiators in response to the Report TPGs command.
The TPG descriptor is reported in byte 1 of that response.

The possible states are

 1. Active/Optimized (AO)

Ports are on the owner SP and provided the best I/O to the LUN.

 2. Active/Non-Optimized (ANO)

Ports are on the non-owner SP. I/O to the LUN is less optimal compared to
AO AAS.

 3. Transitioning

From the Library of raphael schitz

ptg7996124

Chapter 6 ALUA230

The TPG AAS is in the process of switching from one state to another. For
example, if the SP of an AO TPG is being rebooted or is taken offline, or the
SAN (storage area network) admin manually transfers LUN ownership (on EMC
CLARiiON, this is known as trespass), the AAS of the TPG on the alternate SP
changes to AO. While this process is ongoing, the TPG AAS is transitioning.

While the TPG is in this state, receiving requests from the initiators would
return BUSY or a CHECK CONDITION with sense Key NOT READY
and ASC (Additional Sense Code) LOGICAL UNIT NOT ACCESSIBLE or
ASYMMETRIC ACCESS STATE TRANSITION.

 4. Standby

This state is similar to a passive SP in the non-ALUA configuration and on
certain ALUA-capable arrays. It would return a CHECK CONDITION with
Sense Key NOT READY.

When the TPG is in this AAS, it supports a subset of commands it accepts when
it is in AO AAS. This subset of commands is

INQUIRY

LOG SELECT

LOG SENSE

MODE SELECT

MODE SENSE

REPORT LUNS (for LUN 0)

RECEIVE DIAGNOSTIC RESULTS

SEND DIAGNOSTIC

REPORT TARGET PORT GROUPS

SET TARGET PORT GROUPS

REQUEST SENSE

PERSISTENT RESERVE IN

PERSISTENT RESERVE OUT

Echo buffer modes of READ BUFFER

Echo buffer modes of WRITE BUFFER

 5. Unavailable

This AAS is usually seen when the TPG access to the LUN is restricted as a
result of hardware errors or other SCSI device limitations. The TPG in this state
is unable to transition to AO or ANO until the error subsides.

From the Library of raphael schitz

ptg7996124

ALUA Definition 231

Some ALUA storage arrays certified with vSphere 5.0 might not support some of the latter
three states.

ESXi 5.0 sends the I/O to TPGs that are in AO AAS, but if they are not available, I/O is
sent to TPGs that are in ANO AAS. If the storage array receives sustained I/O on TPGs
that are in ANO AAS, the array transitions the TPGs state to AO AAS. Who makes that
change depends on the ALUA Management Mode of the storage array. (See the next
section.)

ALUA Management Modes
The dynamic nature of multipathing and failover requires the flexibility of managing and
controlling the ALUA TPG’s AAS. This is done via a set of commands and responses to
and from the storage arrays. These commands are the following:

 1. INQUIRY —According to SPC-3 spec section 6.4.2, in response to this command,
the array returns certain pages of the VPD (Vital Product Data) or EVPD (Extended
Vital Product Data). The inquiry data returned in response to this command
includes the TPGs field. If the returned value in that field is non-zero, that device
(LUN) supports ALUA. See Table 6.3 for the correlation between the value of
TPGs field and AAS Management Modes.

 2. REPORT TARGET PORT GROUPS (REPORT TPGs) —This command
requests that the storage array sends the target port group information to the
initiator.

 3. SET TARGET PORT GROUPS (SET TPGs) —This command requests from
the Storage Array to set the AAS of all ports in specified TPGs. For example, TPGs
AAS can transition from ANO to AO using the SET TPGs command.

The control or management of the ALUA AAS can operate in one of four modes.
Table 6.1 shows a matrix of these modes.

Table 6.1 ALUA AAS Management Modes

Mode Managed By REPORTPGs SET TPGs

Not Supported N/A Invalid Invalid

Implicit Array Yes No

Explicit Host Yes Yes

Both Array/Host Yes Yes

From the Library of raphael schitz

ptg7996124

Chapter 6 ALUA232

�� Not Supported—Response to the REPORT TPGs and SET TPGs commands is
invalid. This means that the Storage Array does not support ALUA or the initiator
records (CLARiiON) are not configured in a mode that supports ALUA.

�� Implicit—The array responds to REPORT TPGs but not SET TPGs commands. In
this case, setting the TPGS AAS is done only by the Storage Array.

�� Explicit—The array responds to both REPORT TPGs and SET TPGs. In this case,
setting the TPGs AAS can be done only by the initiator.

�� Both—Same as explicit but both the array and initiator can set the TPGs AAS.

ALUA Common Implementations

The combination of ALUA AAS and Management Modes varies by vendor. Table 6.2
shows a matrix of common combinations.

Table 6.2 ALUA Common Implementations

Mode AO ANO Standby Example Array Vendor

Implicit Yes Yes No NetApp

Explicit & Implicit Yes Yes No HP EVA

EMC CLARiiON

Explicit Yes No Yes IBM DS4000

ALUA Followover
To better explain what ALUA Followover does, let me first describe what happens without
it. Storage Design that uses Active/Passive arrays must consider configurations that
prevent a condition referred to as path thrashing. It is the case when, due to poor design
or physical failure, some hosts would only have access to one SP whereas other hosts have
access to the other SP and/or the incorrect Path Selection Plugin (PSP) is selected for the
array. I have seen this to happen in two scenarios, which are shown in Figures 6.2 and 6.3.

Scenario 1

Figure 6.2 shows a Fibre Channel SAN design for a non-ALUA Active/Passive Array.
Here host A has access to SPA only while host B has access to SPB only. LUN 1 is owned
by SPA. However, because host B cannot access that SP, it requests from the array to
transfer the LUN ownership to SPB. When the array complies, the result is that host A

From the Library of raphael schitz

ptg7996124

ALUA Definition 233

loses access to the LUN because it is no longer owned by SPA. Host A attempts to recover
from this state by requesting from the array to transfer the LUN ownership back to SPA.
When the array complies, host B starts this cycle again. This tug of war continues on and
on while neither host can issue any I/O on the LUN.

SPA

2 1

Active/Passive Storage Array

SPB

LUN 1 LUN 2

Host A

HBA1

Host B

HBA0

21

HBA0 HBA1

FC Switch FC Switch

Figure 6.2 Scenario 1: Path thrashing due to wrong cabling design choice

The only solution for this problem is to correct the design where each host has access to
both SPs and utilize the VMW_PSP_MRU Pluggable Storage Architecture (PSA) plug-in.
Note that enabling ALUA without correcting the design may not prevent this problem.

Scenario 2

Figure 6.3 shows a variation on scenario 1. In this scenario, the Fibre Channel fabric was
designed according to VMware best practices. However, both hosts were configured with
VMW_PSP_FIXED instead of VMW_PSP_MRU. This by itself wouldn’t result in path thrashing.
However, to make matters worse, the designer decided to customize each host so that they
have different preferred paths to LUN 1. These preferred path settings are represented
by the interrupted lines (a path from host A and another path from host B). The expected
behavior in this configuration is that as long as the defined preferred path to LUN 1 is
available, the host insists on sending I/O via that path. As a result, host A attempts to send

From the Library of raphael schitz

ptg7996124

Chapter 6 ALUA234

its I/O to LUN 1 via SPA and host B sends it I/O via SPB. However, LUN1 is owned
by SPA and attempts to send I/O via SPB result in a check condition with a sense key
ILLEGAL_REQUEST (more on this in Chapter 7). Host B insists on sending the I/O
via its preferred path. So, it sends a START_UNIT or a TRESPASS command to the array.
As a result, the array transfers LUN 1 ownership to SPB. Now host A gets really upset
and tells the array to transfer the LUN back to SPA using the START_UNIT or TRESPASS
commands. The array complies and the “tug of war” begins!

2 1

Active/Passive Storage Array

Host A Host B

1

HBA1

FC Switch

2

HBA1 HBA0HBA0

SPA SPB

FC Switch

LUN 1 LUN 2

Figure 6.3 Scenario 2: Path thrashing due to wrong PSP design choice

These two examples are the reason why VMware created the VMW_PSP_MRU for use with
Active/Passive arrays. In older releases prior to ESX 4.0, this used to be a policy setting per
LUN. In 4.0, 4.1, and now in 5.0, MRU is a PSA plug-in. I cover the PSP design choices
later in Chapter 7. What MRU does is that the host sends the I/O to the most recently
used path. If the LUN moves to another SP, the I/O is sent on the new path to that SP
instead of insisting on sending it to the previous owner SP. Note that MRU ignores the
preferred path setting.

ALUA-capable arrays that provide AO AAS for TPGs on the owner SP and ANO AAS for
TPGs on the non-owner SP allow I/O to the given LUN with high priority via the AO
TPGs and, conversely, lower priority via the ANO TPGs. This means that the latter does

From the Library of raphael schitz

ptg7996124

ALUA Definition 235

not return a check condition with sense key ILLEGAL_REQUEST if I/O to the LUN is sent
through it. This means that using VMW_PSP_FIXED with these arrays can result in a lighter
version of path thrashing. In this case, I/O does not fail to be sent to the ANO TPGs if
that is the preferred path. However, the I/O performance is much lower compared to
using the AO TPGs. If more hosts are using the AO TPGs as the preferred path, the
LUN ownership stays on the original SP that owns it. As a result, the ANO TPGs are not
transitioned to AO for the offending host.

To accommodate this situation, VMware introduced a new feature for use with
ALUA devices, however; it is not defined in the ALUA spec. This feature is referred
to as ALUA_FOLLOWOVER.

ALUA Followover simply means that when the host detects TPG AAS change that it did
not cause by itself, it does not try to revert the change even if it only has access to TPGs
that are ANO. Effectively, this prevents the hosts from fighting for TPGs AAS and,
instead, they follow the TPGs AAS of the array. Figures 6.4 and 6.5 illustrate
ALUA_FOLLOWOVER interaction with TPGs AAS.

ALUA Storage Array

Host A Host B

SPB

TPG ID=2TPG ID=1

AO ANO

HBA1HBA0HBA0

21 21

SPA

LUN 1

HBA1

Figure 6.4 ALUA followover before failure

Figure 6.4 shows a logical storage diagram where the switch fabrics removed for diagram
simplification. Here, TPG ID 1 is the AO on SPA, and both hosts send the I/O to that
TPG. TPG ID 2 is ANO, and I/O is not sent to it. These TPGs are configured with
Explicit ALUA Mode.

From the Library of raphael schitz

ptg7996124

Chapter 6 ALUA236

Figure 6.5 shows what happens after a path to the AO TPG fails.

ALUA Storage Array

Host A Host B

SPB

TPG ID=2TPG ID=1

ANO AO

HBA0

21 21

SPA

HBA1 HBA1

LUN 1

Followover

HBA0

Figure 6.5 ALUA followover after failure

Figure 6.5 shows Host A lost its path to the AO TPG (based on Figure 6.4). As a result,
this host takes advantage of the ALUA Explicit mode on the array and sends a SET_TPGS
command to the array so that TPG ID 2 would change to AO and TPG ID 1 is changed
to ANO. Host B recognizes that this change was not done by it. Because ALUA
Followover option is enabled, Host B just accepts this change and does not attempt to
reverse it. Consequently, the I/O is sent to TPG ID 2 because it is now the AO TPG.
Notice that the array moved the LUN ownership to SPB because this is where the AO
TPG is located.

NOTE

ALUA Followover is a device setting configured on the storage array. The default setting
varies between vendors and models.

Some storage arrays implement the PREF (Preference) bit which enables the array to
specify which SP is the preferred owner of a given LUN. This allows the storage admin-
istrator to spread the LUNs over both SPs (e.g. even LUNs on one SP and odd LUNs on
the other SP). Whenever the need arises to shut down one of the SPs, the LUNs owned
by that SP (say SPA) get transferred to the surviving non-preferred SP (SPB). As a result,

From the Library of raphael schitz

ptg7996124

ALUA Definition 237

the AAS of the port group on SPB is changed to AO. ALUA Followover honors this
change and sends the next I/O intended for the transferred LUNs to port group on SPB.
When SPA is brought back online, the LUNs it used to own get transferred back to it.
This reverses the changes done earlier and the AAS of the port group on SPA is set to AO
for the transferred LUNs. Conversely, the AAS of the port group on SPB, that no longer
owns the LUNs, is changed to ANO. Again, ALUA Followover honors this change and
switches the I/O back to the port group on SPA. This is the default behavior of ALUA
capable HP EVA storage arrays.

Identifying Device ALUA Configuration
ESXi 5.0 host configuration that enables use of ALUA devices is a PSA component in the
form of a SATP (see Chapter 5, “VMware Pluggable Storage Architecture (PSA)”). PSA
claim rules decide which SATP to use based on array information returned in response
to an INQUIRY command. As mentioned earlier, part of the inquiry string is the TPGs
field. The claim rules are configured such that if that field’s value is non-zero, the device is
claimed by the defined ALUA SATP. In this section, I show how to list these claim rules
and how to identify ALUA configurations from the device properties.

Identifying ALUA Claim Rule

In Chapter 5, I showed you how to list all the SATP rules. I had to split the screenshots
to four quadrants so that I could show all content of the output. Here, I’ve tried to trim it
down to list only the lines I need to show. To do so, use the following command:

esxcli storage nmp satp rule list |grep -i ‘model\|satp_alua\|---’ |less –S

What this command does is list all SATP rules then grep for the strings model, satp_
alua, and ---. This way, I get the column headers and the separator lines, which are the
first two lines in the output. The rest of the output only shows the lines with satp_alua
in them. Notice that I used the -i argument so that grep would ignore the case.

The output would look like Figure 6.6.

Figure 6.6 ALUA claim rules

From the Library of raphael schitz

ptg7996124

Chapter 6 ALUA238

The following is the text of the output after removing blank colums for readability:

Name Vendor Model Options Rule Group Claim Options

---------------- ------- ------- -------------------------- ---------- -----------

VMW_SATP_ALUA NETAPP system tpgs_on

VMW_SATP_ALUA IBM 2810XIV system tpgs_on

VMW_SATP_ALUA system tpgs_on

VMW_SATP_ALUA IBM 2107900 reset_on_attempted_reserve system

VMW_SATP_ALUA_CX DGC system tpgs_on

In this output, notice that the EMC CLARiiON CX family is claimed by
VMW_SATP_ALUA_CX plug-in based on matches on the Model string being DGC and
the Claim Options being tpgs_on.

On the other hand, both NETAPP and IBM XIV are claimed by VMW_SATP_ALUA plug-in
based on matches on the Vendor String and the value of tpgs_on in the Claim Options
column.

IBM DS8000, which is model 2107-900 (listed in the output without the dash), is claimed
by VMW_SATP_ALUA based on the model string only, even though the claim option is not
tpgs_on.

The remaining rule allows VMW_SATP_ALUA to claim devices with any vendor or model
string value as long as the claim option value is tpgs_on. This means that any array not
listed in the above sets of rules, which returns a non-zero value for the TPGs field in the
inquiry string, gets claimed by VMW_SATP_ALUA. You may think of this as the catch-all
ALUA claim rule that claims devices on all ALUA arrays that are not explicitly listed by
vendor or model in the SATP claim rules.

Identifying Devices’ ALUA Configurations

ALUA configurations are associated with LUNs in combination with TPGs. To list these
configurations, you may run the following:

esxcli storage nmp device list

The output of this command is listed in the following figures showing examples from
various storage arrays.

Example from EMC CLARiiON CX Array

Figure 6.7 shows an example of an EMC CLARiiON CX LUN configured for ALUA.

From the Library of raphael schitz

ptg7996124

ALUA Definition 239

Figure 6.7 ALUA configuration of a CLARiiON CX FCoE device

This output shows the following configurations:

 1. Storage Array Type:

VMW_SATP_ALUA_CX—This is the same as VMW_SATP_ALUA with additional code to
handle certain commands specific to CLARiiON CX ALUA arrays.

 2. Storage Array Type Device Config—This line was wrapped for readability.

The first set of curly brackets {} includes initiator registration–specific
configuration. This is specific to EMC CLARiiON family of arrays. Within this
set, two options are listed—navireg and ipfilter:

�� navireg=on—This means that NaviAgent Registration option is enabled on
this host. It registers the initiator with the CX array if not already registered.
Note that you need to check the initiator record on the array to make sure
that the Failover Mode is set to 4, which enables ALUA for this initiator.
More details on this in Chapter 7.

�� ipfilter=on—This option filters the host’s IP address so that it is not visible
to the Storage Array. More on this in Chapter 7.

The ALUA AAS Management mode options are enclosed within a second set
of curly brackets {} within which is another nested pair of curly brackets for the
TPGs AAS configuration.

ALUA AAS management mode:

�� Implicit_support=on—This means that the array supports implicit mode of
AAS management. (See Table 6.1 earlier.)

�� Explicit_support=on—This means that the array supports explicit mode of
AAS management. (See above.)

From the Library of raphael schitz

ptg7996124

Chapter 6 ALUA240

�� Explicit_allow=on—This means that the host is configured to allow the
SATP to exercise its explicit ALUA capability if the need arises (for example,
failed controller).

�� ALUA_followover=on—This enables the alua_followover option on the host.
(See the “ALUA Followover” section earlier in this chapter.)

The next set of options are within the nested pair of curly brackets {} for the
TPG IDs and AAS:

�� TPG_id—This field shows the Target Port Group ID. If the LUN is acces-
sible via more than one target port group (typically two groups), both IDs are
listed here. This example has TPG_id 1 and 2. Each TPG is listed within its
own pair of curly brackets.

�� TPG_state—This field shows the AAS of the TPG. Notice that TPG_id 1 is
in AO AAS, whereas TPG_id 2 is in ANO AAS. Based on this configuration,
I/O is sent to TPG_id 1.

I cover the path related options in Chapter 7.

An Example from EMC VNX

The example in Figure 6.8 shows a similar output but from an EMC VNX array.

Figure 6.8 ALUA configuration of an EMC VNX FC device

In this case, the figure shows two devices on the same array. Both devices show identical
information to that reported by the CX array with the following differences:

From the Library of raphael schitz

ptg7996124

ALUA Definition 241

 1. These devices are FC LUNs, whereas the CX example was from an FCoE device.

 2. The first device in this example shows TPG_id 2 being in AO AAS, whereas on the
second device TPG_id 1 is also in the same state (AO AAS). This means that the
devices are spread evenly over the array’s SPs. For example, TPG 1 on SPA services
I/O to LUN 1 whereas TPG 2 on SPB services I/O to LUN 39. You should also
notice from the Working Paths field that for LUN 39 the target portion of the path
name is T0, whereas it is T1 for LUN 1. I explain in Chapter 7 how to identify
which target belongs to which SP.

 3. The first device is claimed by VMW_PSP_RR (Round Robin), whereas the second one
is claimed by VMW_PSP_FIXED. I explain this in Chapter 7, later in this book.

Example from IBM DS8000 Array

Figure 6.9 shows a similar output from an IBM DS8000 array-based device.

Figure 6.9 ALUA configuration of an IBM DS8000 device

The output is similar in many aspects with the following differences:

 1. The device is claimed by VMW_SATP_ALUA instead of VMW_SATP_ALUA_CX.

 2. explicit_support=off means that the array does not support explicit mode of
AAS management.

 3. There is only one TPG_id, which is 0 and is in an AO AAS.

NOTE

Even though explicit_allow is set to on, this does not take effect because the array does
not support explicit mode.

From the Library of raphael schitz

ptg7996124

Chapter 6 ALUA242

Example from IBM XIV Array

Figure 6.10 shows an output from an IBM XIV array-based device.

Figure 6.10 ALUA configuration of an IBM XIV device

The output is similar to that from IBM DS8000 array (refer to Figure 6.9) with the
following differences:

 1. The device ID uses eui format instead of naa. This is usually the result of the array
supporting an ANSI revision lower than 3. (See Chapter 1, “Storage Types,” for
details.)

 2. The PSP in use is VMW_PSP_RR (Round Robin) compared to FIXED. I discuss PSP
choices and configuration in Chapter 7.

Example from a NetApp Array

Figure 6.11 shows an example from a NetApp array.

Figure 6.11 ALUA configuration of a NetApp FC device

From the Library of raphael schitz

ptg7996124

ALUA Definition 243

This example is similar to the two TPGs EMC CX example in Figure 6.7 with the
following differences:

 1. The device is claimed by VMW_SATP_ALUA instead of VMW_SATP_ALUA_CX.

 2. explicit_support=off means that the array does not support explicit mode of
AAS management.

 3. Device is claimed by VMW_PSP_RR instead of VMW_PSP_FIXED.

Example from an HP MSA Array

Figure 6.12 shows an example from an HP MSA array.

Figure 6.12 ALUA configuration of an HP MSA FC device

This example is similar to the NetApp array output (see Figure 6.11) with the difference
that the PSP is VMW_PSP_MRU.

Troubleshooting ALUA
In this section I try to give some troubleshooting foundation that will hopefully help you
learn how to fish (also known as TIY or Troubleshoot It Yourself)!

First, let me familiarize you with the normal log entries. When a device is discovered by
vmkernel (logged to /var/log/vmkernel.log file), as I mentioned earlier, the tpgs field is
included with the inquiry string. The value of that field helps vmkernel identify the AAS
management mode (that is, explicit, implicit, or both).

Following are examples from the storage arrays I used in the previous section. Figure 6.13
shows vmkernel.log entries from a vSphere 5 host connected to an EMC VNX storage
array.

From the Library of raphael schitz

ptg7996124

Chapter 6 ALUA244

Figure 6.13 VMkernel.log entries of an EMC CLARiiON ALUA device

In this example I truncated the first part of each line, which shows the data, time stamp,
and host name. Notice that the ScsiScan lines show the TPGS field with a value of 3.
This means that the array supports both implicit and explicit ALUA modes. This is
printed in English as well at the end of each line.

Figure 6.14 shows log entries from a vSphere 5 host connected to a NetApp storage array.

Figure 6.14 VMkernel.log entries of a NetApp ALUA device

Notice that the ScsiScan lines shows the TPGS field with a value of 1. This means that the
array supports implicit ALUA mode only. This is printed in English as well at the end
of each line.

Figure 6.15 shows log entries from a vSphere 5 host connected to an IBM DS8000 storage
array.

From the Library of raphael schitz

ptg7996124

ALUA Definition 245

Figure 6.15 VMkernel.log entries of an IBM DS8000 ALUA device

This log shows the array as Model: ‘2107900. Notice that the ScsiScan lines show the
TPGS field with a value of 1. This means that the array supports implicit ALUA mode
only. This is printed in English as well at the end of each line.

Figure 6.16 shows log entries from a vSphere 5 host connected to an IBM XIV storage
array.

Figure 6.16 VMkernel.log entries of an IBM XIV ALUA device

This log shows the array as Model: ‘2810XIV’). Notice that the ScsiScan lines show
the TPGS field with a value of 1. This means that the array supports implicit ALUA
mode only. This is printed in English as well at the end of each line.

At this time, I don’t have access to an array that supports an explicit ALUA-only mode.
However, the log from such an array would have shown the value of TPGS to be 2.
Table 6.3 summarizes the different values of TPGS field and their meaning.

From the Library of raphael schitz

ptg7996124

Chapter 6 ALUA246

Table 6.3 Meaning TPGS Field Value

TPGS Value ALUA Mode

0 Not supported

1 Implicit only

2 Explicit only

3 Both Implicit and Explicit

Identifying ALUA Devices Path State

The next step of troubleshooting is to identify the state of the path or paths to the ALUA
device. I cover the details of multipathing in Chapter 7. For now, I’m showing you how to
identify the path states. The Figure 6.17 shows an output of the following command:

esxcli storage nmp path list

Figure 6.17 shows the list of four paths to LUN 20, which is on an EMC VNX array
configured for ALUA.

Figure 6.17 Listing of paths to an EMC VNX ALUA device

From the Library of raphael schitz

ptg7996124

ALUA Definition 247

The relevant fields for the topic of troubleshooting are

�� Group State —Shows the Target Port Group AAS; Active means AO whereas
Active unoptimized means ANO.

�� Storage Array Type Path Config —This field includes TPG_id, TPG_State,
RTP_id, and RTP_health.

�� TPG_id —Similar to the output of the device list. This is the Target Port Group ID.

�� TPG_state —Similar to the output of the device list. This matches the value equiv-
alent to the previous field Group State (for example, AO or ANO).

�� RTP_id —This is the Relative Target Port ID. It is the port ID from which the
inquiry response was sent to the initiator. The Vital Product Data (VPD) included
in this string includes that Relative Target Port ID. So, with two paths per HBA in
this example, two inquiry strings were received by each HBA. The first of each came
from RTP ID 13 and the second from RTP ID 1.

NOTE

Because both HBAs see the same RTP IDs, this means that both HBAs are connected to
the same fabric. This is a possible single point of failure as I indicated in the examples in
Chapter 3, “FCoE Storage Connectivity,” (refer to Figure 3.24).

RTP_Health: This is the health status of the RTP. It can be either UP or DOWN. In this
output, it is UP. If it were DOWN, the Group State field would have been Dead instead of
Active or Active Unoptimized.

I cover further details in Chapter 7.

Summary

In this chapter I covered ALUA standard—how it is implemented in vSphere 5—and
showed you how to identify various ALUA configurations and how they affect the hosts.
Detailed interactions between ALUA and multipathing and failover are covered in
Chapter 7.

From the Library of raphael schitz

ptg7996124

This page intentionally left blank

From the Library of raphael schitz

ptg7996124

Chapter 7

Multipathing and Failover

One of the most critical elements of storage availability in the enterprise is multipathing
and failover. vSphere 5, and as early as ESX 1.5, includes native multipathing (NMP) right
out of the box. Although it does not provide the complex level of input/output (I/O) load
balance that storage vendor’s proprietary Multipathing Input/Output (MPIO) software
provides, it does an excellent job with maintaining access to the shared storage that the
infrastructure uses.

In ESX versions prior to 4.0, the portion of the vmkernel responsible for multipathing
and failover was referred to as legacy multipathing. It was a monolithic code built into the
vmkernel. Any changes or updates to this code required installing a new version of the
vmkernel, which made it less practical for availability as it required rebooting the host after
updates were installed. As the expression goes, “Necessity is the mother of invention.” So,
the need for better availability and more flexibility in the virtual environment lead to the
birth of Pluggable Storage Architecture (PSA) which is covered in Chapter 5, “VMware
Pluggable Storage Architecture (PSA).” In that chapter I provide the detailed under-the-
hood architecture and configurations. In this chapter, I get into more details about how
multipathing and failover work and how to identify various conditions leading to and
resulting from failover events.

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover250

What Is a Path?
The I/O sent from vSphere 5 hosts to their assigned logical unit numbers (LUNs) travels
through a specific route that starts with an HBA and ends at a LUN. This route is referred
to as a path. Each host, in a properly designed infrastructure, should have more than one
path to each LUN.

Figure 7.1 depicts a highly available design with no single points of failure, which I discuss
in Chapter 5.

Host A Host B

Active/Passive Storage Array

SPB

2 1 2

LUN 1

1

HBA1HBA0HBA1

FC SwitchFC Switch

SPA

HBA0

Figure 7.1 Illustration of a path to a LUN

In this example, a path to LUN1 from host A is represented by an interrupted line and
Host B by an interrupted line with dots and dashes. This path goes through HBA0 to port
1 on SPA.

Such a path is represented, in the UI and CLI outputs, by the Runtime Name naming
convention. Runtime Name is formerly known as Canonical Name. It is in the format of
HBAx:Cn:Ty:Lz e.g. vmhba0:C0:T0:L1, which reads as follows:

vmhba0, Channel 0, Target 0, LUN1

From the Library of raphael schitz

ptg7996124

What Is a Path? 251

It represents the path to LUN0 broken down as the following:

�� HBA0—First HBA in this host. The vmhba number may vary based on the number
of storage adapters installed in the host. For example, if the host already has two
RAID controllers installed which assume vmhba0 and vmhba1 names, the first Fibre
Channel (FC) HBA added to this host would be named vmhba2.

�� Channel 0—Channel number is mostly zero for FC- and Internet Small Computer
System Interface (iSCSI)–attached devices. If the HBA were a SCSI adapter with two
channels (for example, internal connections and an external port for direct attached
devices), the channel numbers would be 0 and 1.

�� Target 0—The target definition was covered in Chapters 2, “Fibre Channel Storage
Connectivity,” and 4 “iSCSI Storage Connectivity.” The target number is based on
the order the SP ports are discovered by PSA. In this case, SPA-Port1 was discovered
before SPA-Port2 and the other ports on SPB. So, that port was given target 0 as
part of the runtime name.

Note

Runtime Naming, as the name indicates, does not persist between host reboots nor is it
identical across hosts sharing the same LUN. This is due to the possibility that any of the
components that make up that name may change due to hardware or connectivity changes.
For example, a host may have an additional HBA added or another HBA removed, which
would change the number assumed by the HBA.

Let’s expand on this example and enumerate the remaining paths to LUN1 from Host A,
which also applies to Host B.

Host A has two HBAs: vmhba0 and vmhba1, which are represented in Figure 7.1 by HBA0
and HBA1, respectively. HBA0 is connected to a fabric switch that in turn is connected
to port 1 on SPA and Port 1 on SPB. HBA1 is connected to a separate fabric switch (on a
separate fabric) that in turn is connected to port 2 on SPA and port 2 on SPB.

This provides two paths to the LUN from each HBA with the total of four paths. To list
these four paths via the CLI, run the following command:

esxcli storage nmp path list --device <LUN’s NAA ID>

You can also use the shorthand option -d instead of --device:

esxcli storage nmp path list –d <LUN’s NAA ID>

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover252

The output in Figure 7.2 was collected from a host equipped with two FC HBAs named
vmhba2 and vmhba3.

Figure 7.2 Listing paths to a LUN using its NAA ID

vmhba3 has two paths to LUN1, which are

vmhba3:C0:T1:L1

vmhba3:C0:T0:L1

vmhba2 has two paths to LUN1, which are

vmhba2:C0:T1:L1

vmhba2:C0:T0:L1

Paths would read as vmhba2, Channel 0, Target 1, LUN1, and so on.

Even though each HBA uses the same target numbers, these targets are actually different.
The reason behind that is the presence of two separate fabrics to which each HBA is
connected. As I illustrated in Figure 7.1, each fabric connects to different ports on SPA
and SPB.

How can I tell that these targets are actually different?

From the Library of raphael schitz

ptg7996124

What Is a Path? 253

Recall the details I provide in Chapters 2, 4, and 5 in which I explain the target IDs using
WWPN (World Wide Port Name) for FC and iqn (iSCSI Qulaified Name) for iSCSI?
This example is from an FC configuration, so let’s walk through the output to identify
these targets.

Table 7.1 shows the correlation between runtime names (see Chapter 2) and targets’
WWPNs.

table 7.1 Identifying Targets

Runtime Name target WWPN Which SP/Port

vmhba3:C0:T1:L1 5006016941e06522 SPB/Port 1

vmhba3:C0:T0:L1 5006016141e06522 SPA/Port 1

vmhba2:C0:T1:L1 5006016841e06522 SPB/Port 0

vmhba2:C0:T0:L1 5006016041e06522 SPA/Port 0

The highlighted bytes are the unique portion of the WWPNs that help identify the EMC
CLARiiON and VNX SP ports. (See Chapter 2’s “FC Targets” section for details and
identifiers of other known arrays ports.)

Figure 7.3 shows a similar example from an iSCSI configuration with two paths instead of
four.

Figure 7.3 Listing paths to an iSCSI LUN using its NAA ID

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover254

Figure 7.3 shows two paths to a LUN with NAA ID naa.6006016047301a00eaed23
f5884ee011. This configuration has a single software iSCSI initiator vmhba35 that is
connected to two iSCSI targets—namely iqn.1992-04.com.emc:cx.apm00071501971.
b0,t,2 and iqn.1992-04.com.emc:cx.apm00071501971.a0,t,1.

Based on the device display name and the Storage Array Type Plugin (SATP) that claimed
this LUN (VMW_SATP_CX), the LUN is on an EMC CLARiiON CX family array.
Based on the iSCSI aliases of these two targets, the LUN is accessible via SPA0 and SPB0,
which were assigned target numbers 2 and 1, respectively.

Figure 7.4 shows a SAS (Serial Attached SCSI)–attached LUN that is accessible on two
targets via vmhba3 and has an NAA ID naa.600c0ff000dae2e73763b04d02000000.
Based on the device display name, the LUN is on an HP storage array.

Figure 7.4 Listing paths to a SAS LUN using its NAA ID

To identify which array model it is, use this command:

esxcli storage core device list –-device naa.600c0ff000dae2e73763b0
4d02000000

You may also use the shorthand option -d instead of --device:

esxcli storage core device list –d naa.600c0ff000dae2e73763b04d02000000

The output of this command is shown in Figure 7.5.

From the Library of raphael schitz

ptg7996124

Where Is the Active Path? 255

Figure 7.5 Listing a SAS LUN’s properties

This output shows the Vendor string is HP and the Model string is P2000 G3 SAS. This
means that the LUN is on an HP MSA P2000 G3 SAS array.

Where Is the Active Path?
In ESX releases earlier than ESX/ESXi 4.0, there used to be an active path listed in the
command-line interface (CLI) outputs as well as in the user interface (UI). This was the
path through which the ESX host sends the I/O to the LUN. Starting with ESX/ESXi 4.0,
the reference to active has shifted to refer to the path to the SP that owns the LUN in the
Active/Passive array configuration. It also refers to all paths to a LUN on an Active/Active
array. This path is identified in commands outputs as working path as I show you later in
this section. This change continues to be true in ESXi 5.

In this section, I show you how to identify the path formerly known as the active path
using the CLI as well as the UI. In short, this path is listed in the CLI as current path.
In the UI, the path would be indicated by IO.

Identifying the Current Path Using the CLI
Check the examples I used in Figures 7.2, 7.3 and 7.4, for FC-, iSCSI-, and SAS-based
LUNs, respectively. The Path Selection Policy Path Config field shows one of the paths
as current path whereas the remaining paths show as non-current path. The former is the
path through which the host sends the I/O to the LUN, while the latter are not used until
the current path becomes unavailable or, when using Round Robin PSP, the I/O rotates
on each of these active paths.

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover256

Identifying the Io (Current) Path Using the UI
To identify the current path through which the I/O is sent, follow this procedure:

 1. Log on to the vSphere 5.0 host directly or to the vCenter server that manages the
host using the VMware vSphere 5.0 Client as a user with Administrator privileges.

 2. While in the Inventory—Hosts and Clusters view, locate the vSphere 5.0 host in the
inventory tree and select it.

 3. Navigate to the Configuration tab.

 4. Under the Hardware section, select the Storage option.

 5. Under the View field, click the Devices button.

 6. Under the Devices pane, select one of the SAN LUNs (see Figure 7.6). In this
example, its name starts with DGC Fibre Channel Disk.

Figure 7.6 Listing devices

 7. Select Manage Paths in the Device Details pane.

 8. Figure 7.7 shows the LUN details. In this example, I sorted on the Runtime Name
field in ascending order. The Paths section shows all available paths to the LUN in
the following format:

From the Library of raphael schitz

ptg7996124

Where Is the Active Path? 257

�� Runtime Name—vmhbaX:C0:Ty:Lz where X is the HBA number, y is the
target number, and z is the LUN number.

�� Status—Shows the path status, which is in this example is either Active or
Standby. The path where the I/O is sent is marked with (I/O).

Figure 7.7 Listing paths to the FC LUN via UI

Note

The Preferred field is blank because the Path Selection field (which is the PSP) shows that
Most Recently Used (or MRU) is in use, which ignores the preferred path option. This
option is only valid with “FIXED” PSP.

Listing the paths to an iSCSI LUN is similar to the procedure I just discussed. Instead, the
UI would look like Figure 7.8.

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover258

Figure 7.8 Listing paths of an iSCSI LUN via UI

LUN Discovery and Path enumeration
Understanding how LUNs are discovered helps in identifying problems if and when they
arise. In this section, I go over some SCSI commands and log entries that explain this
process and how paths to LUNs are enumerated.

The process of LUN discovery and path enumeration is done via a sequence of SCSI
commands and interpreting responses to such commands (SCSI Sense Codes). Table 7.2
shows a list of common SCSI commands that you may encounter on ESXi 5 hosts. (Most
of these commands apply to earlier releases as well.)

table 7.2 Common SCSI Commands

Command Name operation Code Service Action

ACCESS CONTROL IN 0x86

ACCESS CONTROL OUT 0x87

CHANGE ALIASES 0xA4 0x0B

EXTENDED COPY 0x83

INQUIRY 0x12

LOG SELECT 0x4C

From the Library of raphael schitz

ptg7996124

LUN Discovery and Path Enumeration 259

LOG SENSE 0x4D

MODE SELECT(6) 0x15

MODE SELECT(10) 0x55

MODE SENSE(6) 0x1A

MODE SENSE(10) 0x5A

PERSISTENT RESERVE IN 5 0xE

PERSISTENT RESERVE OUT 0x5F

PREVENT ALLOW MEDIUM REMOVAL 0x1E

READ ATTRIBUTE 0x8C

READ BUFFER 0x3C

READ MEDIA SERIAL NUMBER 0xAB 0x01

RECEIVE COPY RESULTS 0x84

RECEIVE DIAGNOSTIC RESULTS 0x1C

REPORT ALIASES 0xA3 0x0B

REPORT DEVICE IDENTIFIER 0xA3 0x05

REPORT LUNS 0xA0

REPORT PRIORITY 0xA3 0x0E

REPORT SUPPORTED OPERATION CODES 0xA3 0x0C

REPORT SUPPORTED TASK MANAGEMENT
FUNCTIONS

0xA3 0x0D

REPORT TARGET PORT GROUPS 0xA3 0x0A

REPORT TIMESTAMP 0xA3 0x0F

REQUEST SENSE 0x03

SEND DIAGNOSTIC 0x1D

SET DEVICE IDENTIFIER 0xA4 0x06

SET PRIORITY 0xA4 0x0E

SET TARGET PORT GROUPS 0xA4 0x0A

SET TIMESTAMP 0xA4 0x0F

Command Name operation Code Service Action

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover260

In Table 7.2, some commands require a combination of operation code and service action.
Such commands show values in both the Operation Code and Service Action columns.

SCSI Sense codes are returned in response to the SCSI commands listed in Table 7.2.
For a reference to commonly seen sense codes, see Tables 7.4, 7.5, 7.6, and 7.7 later in
this chapter in the “Failover Triggers” section.

LUN discovery is done in the following order:

 1. The host sends the REPORT LUNS command (0xA0) to the storage array.

 2. The array responds with the LUN numbers that are masked (presented) to the initi-
ators on this host.

 3. The host sends the INQUIRY command (0x12) on page 0 to each of the reported
LUNs. This should return the list of supported VPD (Vital Product Data) pages.
VPD provides specific information about the device depending on which VPD page
the device supports.

 4. If the device supports VPD page 83, an inquiry command is issued on that page.
This returns the device unique ID (NAA ID).

 5. If the device does not support page 83, the host sends an inquiry command for VPD
page 80. This provides the device Serial Number instead because NAA ID is not
supported.

The VPD page provides one or more of the following identification descriptors:

�� Logical unit names

�� SCSI target port identifiers

�� SCSI target port names

�� SCSI target device names

�� Relative target port identifiers

�� SCSI target port group number

�� Logical unit group number

From the Library of raphael schitz

ptg7996124

Sample LUN Discovery and Path Enumeration Log Entries 261

Sample LUN Discovery and Path enumeration Log
entries
The main log in ESXi 5 is /var/log/vmkernel.log file. However, there are some events that
occur during system boot and are logged to /var/log/boot.gz. This file is a compressed
boot log that you can read using the zcat boot.gz |less -S command. This is because
the file is compressed to save on visorfs space (visor FS is a memory-based file system
in which the ESXi compressed boot image is loaded). If you want to expand it using the
gunzip command, don’t do that in /var/log directory. Rather, copy the file to a VMFS
volume or transfer it to your management workstation using scp or similar tools and
expand it there.

Figure 7.9 shows a snippet from /var/log/boot.gz (after expansion). I cropped the output
for readability.

Figure 7.9 Log entries showing new paths added

Here you see LUN0 discovery via the ScsiScan function of vmkernel. The LUN
properties show the Vendor, Model, and Rev fields (the first line in the output). In this
example, the Vendor is DGC (Data General Corportation), which represents the EMC
CLARiiON CX family of arrays. The Model in this case is the RAID type backing the
LUN. Finally, the Rev field shows the storage array’s firmware revisions. In this case, it is
0326 which, for the CX family, means FLARE code 26.

Then, in the second line of the log output, the device type is identified as Type: 0x0, which
means Direct Access Block Device. Table 7.3 shows the list of common device types you
might encounter in the vSphere 5 environment.

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover262

table 7.3 Common Device Types

Device type Description

0x0 Direct access block device

0x1 Sequential access device (for example, tape drive)

0x3 Processor device

0x4 Write-once device

0x5 CD/DVD device

0x8 Tape library

The next field listed is ANSI rev, which is the SCSI standard supported by the device. In
this case the value is 4, which means a later revision of SCSI-3 (for example, SAM-2—see
Chapter 2 for more details). The last field is TPGS, which is 0 in this example and means
that the device does not support Asymmetric Logical Unit Access (ALUA—see Chapter 6,
“ALUA”).

The third line in the log shows Add path: vmhba2:C0:T0:L0, which means that the
path to LUN0 on target 0 via vmhba2 has been added.

These three lines repeat for the second path to LUN0 on target 1 via vmhba2 as well as
for LUN1 via the same HBA and two targets.

The log entry for paths to the same two LUNs via the second HBA in this host (shown in
Figure 7.10) are similar to Figure 7.9 with the difference being that the HBA is vmhba3.

Figure 7.10 Log entries showing continuation of new paths and additional events

Finally, all discovered paths are claimed by NMP as shown in Figure 7.11.

From the Library of raphael schitz

ptg7996124

Sample LUN Discovery and Path Enumeration Log Entries 263

Figure 7.11 NMP claiming discovered paths

Note

The log entries in Figure 7.11 also include paths to locally attached LUNs that were claimed
by VMW_SATP_Local, which are

vmhba0:C0:T0:L0—CD-ROM drive

vmhba1:C1:T0:L0—Local disk

After all paths to a given device have been enumerated, PSA collapses all paths to that
device so that the host identifies it as a single device with multiple paths. For this to be
done successfully, that device must meet the following criteria:

�� The device ID (for example, NAA ID, EUI, and so on) must be identical on all paths.

�� The LUN number must be identical on all paths.

There are several factors that contribute to the required uniqueness of the device ID and
the LUN number, such as Symmetrix FA Director Bits configuration and choice of host
type in several storage arrays on VMware’s HCL.

A sample log entry for enumerating a device ID is shown in Figure 7.12.

Figure 7.12 Enumerating device ID log entries

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover264

In this example, the PSP that claimed the device (here it is VMW_PSP_FIXED) activates
the first path to the device (changing active path from NONE to vmhba3:C0:T0:L59).

The four lines that follow the path activation entry are for all four paths to the device
listing the device ID Id for vmhba...). The bytes of the ID are listed in hexadecimal
values. In this example, the ID is the first 16 bytes (the first 16 hex values in Listing 7.1
that are highlighted).

This translates to NAA ID naa.60060160403029002ed94b15ac65e011. The remaining
6 bytes map into ACSII characters RAID 5. The last line in Figure 7.12 shows the device
ID as naa.60060160403029002ed94b15ac65e011, which matches the 16 bytes that I
highlighted in Listing 7.1.

Listing 7.1 Locating NAA ID in Inquiry Response

0x60 0x06 0x01 0x60 0x40 0x30 0x29 0x00 0x2e 0xd9 0x4b 0x15 0xac 0x65 0xe0
0x11 0x52 0x41 0x49 0x44 0x20 0x35

To list all paths to a given device, you may run

esxcfg-mpath --list-paths

You can also use the shorthand option -b instead of --list-paths:

esxcfg-mpath –b

An example of the output is shown in Figure 7.13.

Figure 7.13 Listing paths to a LUN

The output in Figure 7.13 shows all four paths to LUN1 that I used in Figure 7.10. Here
you see the discovered paths grouped under the LUN’s device ID, which is the NAA ID in
this case. Because that LUN has the same number (LUN1) and the same NAA ID on all
four paths, they are collapsed to a single LUN with four paths. If there were a misconfigu-
ration on the array where the device has a different LUN number, even though the device
may have the same device ID, the paths would not have been collapsed in this fashion. The
same is true if the device is assigned a different device ID on different targets, which would
result in identifying it as a different device based on the device ID. In other words, assume

From the Library of raphael schitz

ptg7996124

Factors Affecting Multipathing 265

the NAA ID on target 0 on vmhba2 and vmhba3 is different from that assigned on target
1 on vmhba2 and vmhba3; the result identifies the LUN as two different LUNs with two
paths each.

Factors Affecting Multipathing
Several factors play important roles in the functionality of multipathing. Among these
factors are the following VMkernel Advanced Settings:

�� Disk.MaxLUN—The default value is 256 and cannot be larger than that value.
When a rescan is issued, this is the maximum LUN number that is scanned on each
target. So, counting from LUN0, the maximum LUN number is LUN255. As a
result, LUNs presented with numbers higher than 255 are not discovered by vSphere
5.0 hosts.

Note

The maximum number of paths usable by any vSphere 5.0 host is 1024 (this applies to
earlier releases as well). So, if the host is equipped with two HBAs and each of them is zoned
to two targets on a storage array, the total number of paths per LUN presented from that
array is four. If the array presents 256 LUNs to this host, the total number of paths is 1024
(4 paths x 256 LUNs).

Depending on your design requirements, you must consider this fact when deciding on the
number of LUNs presented to vSphere 5.0 hosts. In other words, if you plan to use more
initiators or more targets per host, the maximum number of LUNs decreases. Also consider
the paths to local devices on the host. Even though multipathing is not supported with these
devices, paths to them reduce the number of paths available for SAN-attached devices.

�� Disk.SupportSparseLUN—This is a legacy setting carried over from releases as old
as ESX 1.5. The parameter listed next, when enabled, negates the need for using this
one regardless of its value. Sparse LUN is the case where there is a gap in the LUN
number in the sequence of discovered LUNs. For example, you have an array that
presents to your host LUN numbers 0–10 and then skips the next nine LUNs so that
the next group of LUN numbers is LUN 20–255. When this option is set to 0, the
host stops scanning for LUNs beyond LUN10 because LUN11 is missing. It does
not continue to scan for higher LUN numbers. When this option is enabled (set to
1), which is the default setting, the host continues to scan for the next LUN number
until it is done with all 256 LUN numbers. Imagine what this would do to the host’s
boot time if it has to wait until each LUN number is scanned compounded by the

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover266

number of HBAs. That is the reason why VMware introduced the next parameter
(Disk.UseReportLUN).

�� Disk.UseReportLUN—This parameter is enabled by default (set to 1). It enables
the use of the command ReportLUN, which is sent to all targets, and the storage
array should respond with the list of LUN numbers presented to the initiators in
this host. This means that the host no longer needs to scan for each LUN number
individually. This improves both the boot time as well as scan time. This is the only
command filtered when the guest SCSI commands are passed through to the mapped
LUN, which will be discussed in more detail in Chapter 13, “Virtual Disks and
RDMs.”

How to Access Advanced options
To access VMKernel advanced options, follow this procedure:

 1. To view or modify the advanced options that were covered in this section, among
others that I discuss throughout this book, use the vSphere 5.0 Client. Log on to the
vSphere host directly or via vCenter Server, and then navigate to the Configuration
tab as shown in Figure 7.14.

Figure 7.14 Accessing Advanced Settings

From the Library of raphael schitz

ptg7996124

Failover Triggers 267

 2. At the bottom of the Software section, click the Advanced Settings link. The screen
shown in Figure 7.15 displays.

Figure 7.15 Advanced Settings

 3. In the left-hand side pane, select Disk.

 4. In the right-hand side pane, scroll down until you see the field Disk.MaxLUN. The
three settings I discussed earlier are listed here. When done viewing the settings,
click Cancel to close the dialog.

Note

Changing these options does not require rebooting for the changes to take effect.

Failover triggers
Under normal conditions, I/O is sent on the current path until certain SCSI events occur
that trigger path failover. These triggers differ depending on whether the storage array is
Active/Active or Active/Passive.

SCSI Sense Codes
Before I go into the actual list of triggers, let me give you a quick primer on SCSI sense
codes. Devices communicate with nodes on the SAN by sending specific hexadecimal
strings that are either in response to a command or a hardware event.

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover268

The structure of the sense codes is as follow (as seen in vmkernel logs entries):

H:<value> D:<value> P:<value> Valid sense data <a set of 3 hexadecimal
 values>

�� H—Comes from the host (initiator) and provides the host status (see Table 7.4).

Table 7.4 provides common sense codes that you might encounter while sifting
through the vSphere host logs.

table 7.4 Host Status Codes

Code Meaning

0x0 SCSI_HOST_OK

0x1 SCSI_HOST_NO_CONNECT

0x2 SCSI_HOST_BUS_BUSY

0x3 SCSI_HOST_TIMEOUT

0x4 SCSI_HOST_BAD_TARGET

0x5 SCSI_HOST_ABORT

0x6 SCSI_HOST_PARITY

0x7 SCSI_HOST_ERROR

0x8 SCSI_HOST_RESET

0x9 SCSI_HOST_BAD_INTR

0xA SCSI_HOST_PASSTHROUGH

0xB SCSI_HOST_SOFT_ERROR

�� D—Comes from the device and provides the device status (see Table 7.5).

table 7.5 Device Status Codes

Code Meaning

0x0 No errors

0x2 Check condition

0x8 Device busy

0x18 Device reserved by another host

From the Library of raphael schitz

ptg7996124

Failover Triggers 269

�� P—Comes from the PSA plug-in and provides the plug-in status.

�� The set of three hexadecimal values are broken into the following:

�� SCSI sense key (see Table 7.6).

table 7.6 SCSI Sense Key

Code Meaning

0x0 There is no sense information.

0x1 Last command completed successfully but used error correction in the
process.

0x2 The addressed LUN is not ready to be accessed.

0x3 The target detected a data error on the medium.

0x4 The target detected a hardware error during a command or self-tests.

0x5 ILLEGAL_REQUEST. Either the command or the parameter list
contains an error.

0x6 The LUN has been reset (bus reset of medium change).

0x7 Access to the data is blocked.

0x8 Reached an unexpected written or unwritten region of the medium.

0xA COPY, COMPARE, or COPY AND VERIFY was aborted.

0xB The target aborted the command.

0xC Comparison for SEARCH DATA was unsuccessful.

0xD The medium is full.

0xE Source and data on the medium do not agree.

�� Additional Sense Code (ASC) and Additional Sense Code Qualifier (ASCQ) are
always reported in pairs. Sometimes these codes and the sense key are preceded by
“Possible sense data” instead of “Valid sense data.” (See Table 7.7.)

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover270

table 7.7 Additional Sense Code (ASC)/Additional Sense Code Qualifier (ASCQ)
Combinations

ASC ASCQ Meaning

0x4 0x2 LOGICAL Unit NOT READY—INITIALIZING COMMAND
REQUIRED

0x5 0x3 LOGICAL Unit NOT READY—MANUAL INTERVENTION
REQUIRED

0x29 0x0 POWER ON, RESET, OR BUS DEVICE RESET OCCURRED

0x29 0x2 BUS RESET OCCURRED

0x29 0x3 DEVICE RESET OCCURRED

Vendor-Specific Codes (IBM FAStt/DS4000 example)

0x8B 0x2 QUIESCENCE HAS BEEN ACHIEVED

0x94 0x1 INVALID REQ DUE TO CURRENT LU OWNERSHIP

The combination of sense key, ASC, and ASCQ along with the host, device, and/or
plug-in status would be translated to a specific SCSI event code. These codes are mostly
standard across vendors with some vendor-specific codes that you might see along the way.

An example of a sense code is

H:0x0 D:0x2 P:0x0 Valid sense data: 0x5 0x20 0x0

These codes are listed on T10.org in a document named “SCSI Primary Commands - 3
(SPC-3).” Vendor-specific codes are available from the corresponding vendor.

Note

ASC and ASCQ values 0x80–0xFF are vendor specific.

Now, let’s see the actual failover triggers!

Multipathing Failover triggers
Table 7.8 lists the SCSI sense codes of events that trigger I/O path to failover to an
alternate path. The columns A/P and A/A denote whether the code is relevant to
Active/Active arrays or Active/Passive arrays.

From the Library of raphael schitz

ptg7996124

Failover Triggers 271

table 7.8 Path Failover Triggers

Host Device Key ASC ASCQ A/P A/A Meaning

0x1 0x0 0x0 0x0 0x0 YES YES DID_NO_CONNECT

0x0 0x2 0x2 0x4 0x3 YES NO LOGICAL UNIT NOT READY
- MEDIUM ERROR

0x0 0x2 0x2 0x4 0xA YES NO LOGICAL UNIT NOT
READY—AAS TRANSITION

0x0 0x2 0x5 0x4 0x3 YES NO ILLEGAL REQUEST -
LOGICAL UNIT NOT READY

0x0 0x2 0x5 0x94 0x1 YES NO ILLEGAL REQUEST—
DUE TO CURRENT LU
OWNERSHIP

0x7 0x0 0x0 0x0 0x0 YES NO DID_ERROR (CLARiiON SP
Hung)

Table 7.8 shows all the SCSI events that would trigger a path failover. I explain each of
them separately. I did not list the plug-in status because it is 0x0 in all combinations listed.

�� DID_NO_CONNECT—When the initiator loses connectivity to the SAN (for
example, cable disconnected, Switch port disabled, bad cable, bad GBIC, and so
on), the HBA driver reports this error. It looks like the following in the /var/log/
vmkernel.log file:

vmhba2:C0:T1:L0” H:0x1 D:0x0 P:0x0 Possible sense data 0x0 0x0 0x0

This means that the Host status is 0x1, which matches the first row in Table 7.8.

�� LOGICAL UNIT NOT READY—SATP claiming the device monitors the
hardware state of the physical paths to the device. Part of that process, for
Active/Passive arrays, is that it sends SCSI command Check_Unit_Ready to the
device on all paths. Under normal conditions, the array would respond with
READY for the device on all targets on the Active SP. The passive SP would
respond with LOGICAL_UNIT_NOTREADY. The SATP interprets these responses
to mean that the LUN is accessible from the targets that responded with READY.
If, for whatever reason, the LUN used to be READY on a certain target but now
it returns NOTREADY, the I/O cannot be sent there and a path failover must be
done to a target that returns UNIT_READY in response to the Check_Unit_Ready
command (CUR for short).

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover272

There are two possible sense codes that fall under this category: MEDIUM_
ERROR or AAS TRANSITION

The MEDIUM_ERROR sense code looks like this:

vmhba2:C0:T1:L0” H:0x0 D:0x2 P:0x0 Valid Sense Data 0x2 0x4 0x3

This matches the second row in Table 7.8. This means that the LUN needs
manual intervention.

AAS TRANSITION (Asymmetric Access State Transition)—which I discuss in
Chapter 6—is when a target port group is transitioning from Active Optimized
(AO) to Active Non Optimized (ANO) or vice versa. The sense code would look
like this:

vmhba2:C0:T1:L0” H:0x0 D:0x2 P:0x0 Valid sense data 0x2 0x4 0xA

This is interpreted by the SATP to mean that I/O cannot be sent there and that
a path failover must be done.

This matches the third row in Table 7.8.

�� ILLEGAL REQUEST - LOGICAL UNIT NOT READY—The sense code for
this looks like this:

vmhba2:C0:T1:L0” H:0x0 D:0x2 P:0x0 Valid Sense Data 0x5 0x4 0x3

This looks like the MEDIUM_ERROR listed earlier with the difference that the
sense key is 0x5 instead of 0x2. It means that the LUN is not ready and that a
manual intervention is required. Until this is done, the path should be failed over
to another target that returns UNIT_READY in response to the CUR command.

This matches the fourth row in Table 7.8.

�� ILLEGAL REQUEST—DUE TO CURRENT LU OWNERSHIP—This is
different from the illegal request in the previous sense code. This one means that a
command or an I/O was sent to a LUN via a target that does not own the LUN (that
is, via the passive SP). The sense code looks like this:

vmhba2:C0:T1:L0” H:0x0 D:0x2 P:0x0 Valid Sense Data 0x5 0x94 0x1

This is specific to arrays made by LSI (acquired recently by NetApp) that are
OEMed by IBM as FAStT and DS4000 series as well as by SUN as StorageTek
series. These arrays have a feature referred to as Auto Volume Transfer (AVT).
This feature, when enabled, enables LUNs owned by one of the storage
processors to be automatically transferred to the passive SP to allow I/O
processed through it. This simulates Active/Active configuration. However,

From the Library of raphael schitz

ptg7996124

Path States 273

this is not the recommended configuration for use with vSphere as it may result
in a path thrashing condition (see Chapter 6, “ALUA,” section “Scenario 2 in
ALUA Followover”). So, with AVT disabled as recommended, I/O can only be
processed via the active SP. When I/O is sent to the passive SP, this sense code is
returned to the initiator.

tIP

An easy way to identify which arrays belong to this group (OEMed from LSI) is to check the
SATP claim rules for devices claimed by VMW_SATP_LSI. You can check for these claim
rules using the following command:

esxcli storage nmp satp rule list –-satp VMW_SATP_LSI

You may also use the shorthand option -s instead of --satp:

esxcli storage nmp satp rule list –s VMW_SATP_LSI

�� DID_ERROR—The last sense code on the list is DID_ERROR, which looks like
this in the logs:

vmhba2:C0:T1:L0” H:0x7 D:0x0 P:0x0 Possible Sense Data 0x0 0x0 0x0

This sense code was added to handle a special case where an EMC CLARiiON
array exhibits a storage processor hang. When this sense code is reported, the
SATP issues additional commands to the peer SP to check with it about the
status of the problematic SP. If the peer SP fails in getting a response from
the problematic one, the SATP marks the latter as hung/dead and proceeds
with the path failover process.

Note

It is possible to see this sense code in configurations with storage arrays other than the
CLARiiON series. However, do not interpret it to be the same as I listed earlier. You should
investigate it further.

Path States
Paths to storage devices are constantly monitored by the SATP plug-ins that claimed
them. SATP plug-ins report to NMP these changes and the latter acts accordingly.

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover274

A path can be in one of the following states:

�� Active (also known as “On”)—The path is connected to the storage network
and is functional. This is the normal state for all paths to targets on an Active SP.
For Active/Active array configuration, all paths to the array should be in this state.
Compared to Active/Passive array configuration where half the paths would be in
this state if configured according to VMware’s best practices.

�� Standby (formerly known as “On” in releases prior to 3.5)—The path is
connected to the storage network and is functional. This is the normal state for all
paths to targets on a Passive SP. These would be the remaining half of the paths to
an Active/Passive array that I mentioned in the previous bullet.

�� Dead—The HBA lost connectivity to the Storage Network, or the target to which it
is zoned is unreachable. This can be due to several factors including

�� Cable unplugged from the HBA port—This would show in the logs as a
“loop down” error and sense code DID_NO_CONNECT.

�� Cable unplugged from the SP port—In this case you would not see the
“loop down” error because the HBA still has a valid connection to the storage
network.

�� Bad connection (defective GBIC, fibre cable, or Ethernet cable)—When the
connection is lost, this is similar to “Cable unplugged from the HBA port.”

�� Defective switch port—When the connection is lost, this is similar to “Cable
unplugged from the HBA port.”

Factors Affecting Paths States
There are several factors affecting paths states, which are covered in this section.

Disk.Pathevaltime

The Fibre Channel path state is evaluated at a fixed interval or when there is an I/O error.
The path evaluation interval is defined via the advanced configuration option Disk.
PathEvalTime in seconds. The default value is 300 seconds. This means that the path
state is evaluated every 5 minutes unless an error is reported sooner on that path, in which
case the path state might change depending on the interpretation of the reported error.

Figure 7.16 shows the Advanced Settings dialog where you select Disk in the sections
listed in the left-hand side pane and the option is listed on the top right-hand side pane.

From the Library of raphael schitz

ptg7996124

Path States 275

Figure 7.16 Disk.PathEvalTime Advanced settings

Reducing this value might result in faster path state detection. However, this is not
advisable on a storage area network (SAN) that is changing frequently. You need to give
the fabric enough time to converge to avoid unnecessary path failover due to transient
events.

QLogic HBA Driver options

QLogic FC HBA driver provides two options that control how soon the driver reports a
DID_NO_CONNECT to VMkernel.

These options are visible in the QLogic proc node, which is usually at /proc/scsi/
<qlogic-driver>/<n>, where <n> is the device number listed in the proc node.

To list these options and their current values, run the following command:

fgrep down /proc/scsi/qla2xxx/*

/proc/scsi/qla2xxx/7:Link down Timeout = 030

/proc/scsi/qla2xxx/7:Port down retry = 005

/proc/scsi/qla2xxx/8:Link down Timeout = 030

/proc/scsi/qla2xxx/8:Port down retry = 005

This example is for a QLogic HBA that uses driver named qla2xxx. The output shows two
HBAs—number 7 and 8—and the options are

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover276

�� Link down timeout—Default value is 30 seconds. This setting specifies the number
of seconds vmkernel waits for a link down to come up. This does not affect the
failover time in vSphere 5.

�� Port down retry—Default value is 5 seconds. This setting specifies the number of
seconds vmkernel waits to retry a command to a port returning port-down status.

The time it takes for VMkernel to failover to an alternate path after receiving a
DID_NO_CONNECT is calculated by the following formula:

“Port down retry” value + 5

Based on the default values, the failover time is 10 seconds. In older releases of vSphere,
the formula was different and the default value was 30 with failover time of 60 seconds.

Note

The equivalent option for Emulex drivers is devloss_tmo with the default value of 10
seconds. Total failover time is 10 seconds as well.

There is no need to modify this setting or the QLogic driver’s setting as 10 seconds failover
time is sufficient in most cases.

Path Selection Plug-ins
Path Selection Plug-ins (PSPs) play a major role in failover as their main job is to select
which path is used for sending I/O to the device. Depending on the PSP, failover activities
vary.

VMW_PSP_FIXeD
This PSP honors the preferred path setting. I/O is sent to paths marked as preferred until
they become unavailable. At that time, PSP selects another path. When the preferred
path becomes available, I/O fails back to it. vSphere 4.1 provided an additional plug-in—
VMW_PSP_FIXED_AP—that allowed Active/Passive arrays to be configured with the
preferred path option without the risk of path thrashing when used with ALUA storage
arrays. The functionality of that plug-in was merged into the VMW_PSP_FIXED
plug-in on vSphere 5. This would explain why several ALUA arrays now default to
VMW_PSP_FIXED on vSphere 5.

From the Library of raphael schitz

ptg7996124

When and How to Change the Default PSP 277

VMW_PSP_MRU
This PSP ignores the preferred path setting. I/O is sent to the most recently used path that
is known to work. If that path becomes unavailable, PSP selects another path to the active
SP. The I/O continues to the newly selected path until it becomes unavailable.

VMW_PSP_RR
This Round Robin PSP rotates I/O to all paths to the Active SP or SP port groups that are
in AO (Active Optimized) state. The rotation depends on two configurations that control
the number and the size of I/O sent to the device before switching to another path.

When and How to Change the Default PSP
I discuss default PSP in Chapter 5. There I show you how to list the default PSP for each
SATP. (See Figure 5.28 in the “SATP Claim Rules” section in Chapter 5.)

To recap, each SATP is configured with a default PSP as identified by the output of

esxcli storage nmp satp list

In most cases, the default configuration is sufficient. However, some storage vendors
develop their own SATPs and PSPs, which require modifying the default rules for the
ESXi host to take advantage of what these plug-ins have to offer. The corresponding
partner provides its own documentation on how to configure the environment for its
plug-ins.

In this section I show you how to make such changes and when to do it.

When Should You Change the Default PSP?
The most common use case for changing the default PSP is when you want to utilize
Round Robin failover policy (VMW_PSP_RR). Although VMware supports this policy
with all arrays listed on its HCL, you must check with the storage vendor before making
such a change. These vendors also have documentation about specific configurations that I
highlight next.

Note

Round Robin PSP is not supported by VMware with virtual machines (VMs) configured
with MSCS (Microsoft Clustering Services, also known as Microsoft Windows Failover
Clustering).

For more information, see Chapter 5.

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover278

How to Change the Default PSP
In Chapter 5, I show you how to change the PSP for a given LUN via the UI. Here, I
show you how to change the default PSP for a family of arrays. As I explain in Chapter 5,
the default PSPs are associated with specific SATPs. The SATP claim rules decide which
array is claimed by which SATP and, in turn, which default PSP is used. So the premise of
changing the default PSP is to create a PSA claim rule that associates a specific PSP with a
SATP.

The example in the following listing changes the default PSP to VMW_PSP_RR for
storage arrays claimed by SATP VMW_SATP_CX:

esxcli storage nmp satp set --default-psp VMW_PSP_RR --satp VMW_SATP_CX

Default PSP for VMW_SATP_CX is now VMW_SATP_RR

Run the following command to list the default PSPs and verify that the previous command
has done its job:

esxcli storage nmp satp list

The output of this command is shown in Figure 7.17.

Figure 7.17 Listing default PSPs

Changing the default PSP does not apply to LUNs already discovered and claimed by
other PSPs. You need to reboot the host for this to take effect.

To verify that the change took effect for a certain device, run this command:

esxcli storage nmp device list --device <device-ID>

You may also use the shorthand option -d instead of --device:

esxcli storage nmp device list -d <device-ID>

From the Library of raphael schitz

ptg7996124

When and How to Change the Default PSP 279

An example of the command and its output is shown in Figure 7.18.

Figure 7.18 RR PSP changes took effect after reboot

Part of the output in Figure 7.18 shows the Path Selection Policy Device Config options.
Table 7.9 lists these options and their corresponding values:

table 7.9 PSP Device Config Options

option Value Comments

Policy rr Current policy is RR because VMW_PSP_RR is in use.

Iops 1000 This is the default setting. I/O stays on one of the
working paths (see the “Where Is the Active Path?”
section earlier in this chapter) until 1,000 IOPS are sent,
and then it switches the I/O to the next working path.

Bytes 10485760 This is the default setting. I/O stays on one of the
working paths until 10485760 bytes are sent and switch
the I/O to the next working path.

useANo 0 This is the default. With ALUA configuration, I/O is not
sent to target port group in an Active-Non-Optimized
state.

lastPathIndex varies The value listed here is the path number through which
the I/O was last sent. So, if there are two active paths (1
and 2) and are based on the output in Figure 7.20, the
current path in use is path 2; the next path to be used is
path 1.

NumIosPending varies This value list the number of I/Os pending at the time the
output was collected.

numBytesPending varies This value lists the number of bytes pending at the time
the output was collected.

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover280

LUN1 that I used in this example actually has four paths. However, because two of these
paths are active and the other two are standby, only the two active paths are used by the
Round Robin policy (see Figure 7.19).

Figure 7.19 Listing paths to LUN1

If this LUN were configured on an ALUA array, the two active paths would have been
to a target port group in AO state and the two standby paths would have been to a target
port group in ANO state. The end result would have been the same because the option
useANO is set to 0.

PDL and APD
Careful designs that provide storage availability components (see Chapters 2 and 4) should
prevent complete loss of connectivity to the shared storage. However, there are some
uncommon situations where this might occur (for example, accidental zoning changes that
result in loss of access to the originally available storage targets or storage array processors
being rebooted simultaneously). Upon rescanning, these situations result in a state referred
to as All Paths Down (APD). As a result, access to the affected LUNs is lost and, as a side
effect, other LUNs might become unresponsive for a limited period of time or perma-
nently. vSphere 5 and earlier releases do not support this state. However, beginning with
vSphere 4.0 Update 3 and 4.1 Update 1, VMware introduced some changes that aimed
to help handle such a state gracefully. vSphere 5 improved on these changes and future
releases are planned to improve on it even further.

In most cases, the events leading to the APD state are transient. However, if they are not,
they result in a state referred to as Permanent Device Loss (PDL). The most common
examples of such events are LUN removal by either deleting the LUN on the storage
array or unmapping it (unmasking). When this happens, the storage array would return to
the ESXi host a specific PDL error for each path to the removed LUN. Such an error is
reported as a SCSI sense code (see the “SCSI Sense Codes” section earlier in the chapter
in the “Failover Triggers” section).

From the Library of raphael schitz

ptg7996124

PDL and APD 281

Note

vSphere 5 is the first release to fully support the PDL state.

An example of a PDL sense code is 0x5 0x25 0x00 Logical Unit Not Supported.

In an ideal situation, vSphere administrators would get an advance warning from the
storage administrators that a device (LUN) is being removed permanently from the set of
LUNs presented to a given ESXi 5 host. If this is the case, you should follow these steps to
prepare for this PDL:

 1. Unmount the VMFS volume.

 2. Detach the device (LUN).

Unmounting a VMFS Volume
Assuming that you have already used Storage VMotion or have manually moved the files
on the VMFS datastore to be unmounted to their new VMFS datastore(s), you are ready
to unmount the datastore on the device that is planned to be decommissioned.

You can complete the unmount operation via the UI or the CLI.

Unmounting a VMFS Datastore via the UI

You need to first verify that the datastore you plan to unmount is on the LUN that is
planned to be removed.

 1. Log on to the vSphere 5.0 host directly as a root user or to the vCenter server that
manages the host using the VMware vSphere 5.0 Client as a user with Administrator
privileges.

 2. While in the Inventory—Hosts and Clusters view, locate the vSphere 5.0 host in the
inventory tree and select it.

 3. Navigate to the Configuration tab.

 4. Under the Hardware section, select the Storage option

 5. Under the View field, click the Datastores button.

 6. Locate the VMFS datastore under the Datastores pane. To verify that it is on the
LUN to be decommissioned, click the Properties link on the top-right corner of the
Datastore Details pane as shown in Figure 7.20.

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover282

Figure 7.20 Listing the datastore to be unmounted

 7. Click the Manage Paths button. (See Figure 7.21.)

Figure 7.21 Listing properties of a datastore to be unmounted

 8. The LUN number is listed under the Runtime Name (shown in Figure 7.22)
vmhba34:Co:T0:L0 with an L prefix. In this example, it is L0, which means LUN0.

From the Library of raphael schitz

ptg7996124

PDL and APD 283

Figure 7.22 Listing paths to an iSCSI LUN

Now that you have verified that you are dealing with the correct datastore,
proceed with unmounting it.

Click Close on each of the previous two dialogs. Right-click the datastore and
select the Unmount option. This can be done on VMFS3 and VMFS5 volumes
(see Figure 7.23).

Figure 7.23 Unmounting a datastore via UI

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover284

 9. If you get the dialog shown in Figure 7.24, it means that VM files are still on the
datastore. Move the files to another datastore or unregister the related VM and
retry the unmount operation. Acknowledge the confirmation by clicking Next and
then OK.

Figure 7.24 Datastore still has VMs files on it so you cannot proceed

A successful unmount operation results in the datastore being listed with grayed-out italic
(see Figure 7.25).

Figure 7.25 Datastore unmounted

From the Library of raphael schitz

ptg7996124

PDL and APD 285

This concludes the unmount operation. The next step is to detach the device (LUN).

tIP

To re-mount the datastore, right-click the grayed-out datastore and then select the mount
option.

Unmounting a VMFS Datastore via the CLI

To unmount a VMFS datastore with the CLI, follow this procedure:

 1. Connect to the ESXi 5 host via SSH as a root user or vMA 5.0 as vi-admin. (See
Chapter 2 for details.)

 2. Run the following command to verify the LUN number of the datastore you plan to
unmount:

~ # vmkfstools --queryfs /vmfs/volumes/ISCSI_LUN0 |grep naa |sed
‘s/:.*$//’

You may also use the shorthand version of the command:

~ # vmkfstools -P /vmfs/volumes/ISCSI_LUN0 |grep naa |sed ‘s/:.*$//’

This returns the datastore’s NAA ID and truncates the partition number from
the output.

Use that ID to find the LUN number using the following:

~ # esxcli storage nmp device list --device naa.6006016047301a00eaed23
f5884ee011 |grep Working

You may also use the shorthand version of the command:

~ # esxcli storage nmp device list -d naa.6006016047301a00eaed23f5884
ee011 |grep Working

The output of these two commands is shown in Figure 7.26.

Figure 7.26 Listing datastore’s LUN

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover286

 3. In this example, the LUN number is 0.

 4. Proceed with unmounting the datastore using

esxcli storage filesystem unmount –-volume-lable <datastore-name>

You may also use the shorthand option -l instead of --volume-lable:

esxcli storage filesystem unmount –l <datastore-name>

The output is shown in Figure 7.27. Notice that if the command is successful,
there is no status or feedback returned.

 5. To verify that the datastore has been unmounted, run:

esxcli storage filesystem list

The output of this as well as the previous command is shown in Figure 7.27.

Figure 7.27 Unmounting datastore via CLI

The output shows that the Mounted status is false and that the mount point is blank.
Notice that the Type shows VMFS-unknown because the volume is not mounted.

This concludes the unmount operation using the CLI.

tIP

To re-mount the datastore, repeat the command in Step 4 using mount instead of unmount.

Detaching the Device Whose Datastore Was Unmounted
In the previous procedure, you unmounted the datastore via the UI or the CLI. You are
now ready to detach the device in preparation for removing it from the storage array by
the storage administrator. You may accomplish this task via the vSphere 5 Client or the
CLI.

From the Library of raphael schitz

ptg7996124

PDL and APD 287

Detaching a Device Using the vSphere 5 Client

Continuing with the example used for unmounting the datastore, now detach the LUN0
on vmhba34 as follows:

 1. Using the vSphere 5 client navigate to the Configuration tab; then select the
Storage link under the Hardware section and click the Devices button in the View
section. (See Figure 7.28.)

Figure 7.28 Locating LUN to detach via UI

 2. Right-click the device (vmhba34:C0:T0:L0) and then select the Detach option, as
shown in Figure 7.29.

Figure 7.29 Detaching LUN via UI

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover288

 3. You get the dialog shown in Figure 7.30. Select OK to continue.

Figure 7.30 Confirming detach device

 4. If you had not unmounted the datastore, you would have gotten the dialog shown in
Figure 7.31 instead, and you cannot proceed until you unmount the datastore.

Figure 7.31 Device still has datastore mounted. Cannot proceed with
detach

The host continues to “have knowledge” about the detached device until it is actually
removed from the SAN and a rescan is done. In technical terms, the PSA does not

From the Library of raphael schitz

ptg7996124

PDL and APD 289

“unclaim” the device, but the device state is off. The device continues to be listed in the UI
as a grayed-out, italicized item in the devices list as shown in Figure 7.32.

Figure 7.32 Device detached

If you need to reattach the device, simply right-click the device in the list and select the
Attach option, as shown in Figure 7.33.

Figure 7.33 Reattaching a device

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover290

Note

Re-attaching a device does not automatically mount the datastore on that device. You must
mount it manually as described in the tip at the end of the “Unmounting a VMFS Datastore
via the UI” section.

Detaching a Device Using the CLI

To detach a device using the CLI, you need to know the device ID (NAA ID). Continuing
with the example in the previous section, the device ID was located in Step 2 of the
“Unmounting a Datastore Using the UI” section.

 1. Run the following command to detach the device:

~ # esxcli storage core device set --state=off --device naa.6006016047
301a00eaed23f5884ee011

The shorthand version of this command is

~ # esxcli storage core device set --state=off -d naa.6006016047301a00
eaed23f5884ee011

The output for this command is shown in Figure 7.34.

Figure 7.34 Detaching device via CLI

 2. To verify that the operation was successful, run the following command (also shown
in Figure 7.34):

~ # esxcli storage core device detached list

To reattach the device via the command line, repeat Step 1 using --state=on as
follows:

~ # esxcli storage core device set --state=on --device naa.60060160473
01a00eaed23f5884ee011

The shorthand version of this command is

~ # esxcli storage core device set --state=on -d naa.6006016047301a00e
aed23f5884ee011

From the Library of raphael schitz

ptg7996124

Path Ranking 291

Note

If the datastore was not unmounted prior to running the commands in Steps 1 and 2, you
get no warning or errors via the command line and the datastore is unmounted automati-
cally. If you reattach the device after doing so, the datastore is mounted automatically.

However, if the datastore was unmounted prior to detaching the device, reattaching it does
not mount the datastore automatically.

Path Ranking
vSphere 4.1 and 5.0 provide a feature that enables you to rank the order the I/O is sent to
the device over available paths when path failover is required. This feature is referred to
as Path ranking. It is implemented differently in 5.0 compared to 4.1. It also works with
ALUA arrays in a different fashion compared to non-ALUA arrays.

Path Ranking for ALUA and Non-ALUA Storage
In storage configurations using ALUA storage arrays (see Chapter 6), path selection is
based on the Target Port Group AAS (Asymmetric Access State) which can be in one of
the following states:

 1. AO

 2. ANO

 3. Transitioning

 4. Standby

To recap what I covered in Chapter 6, I/O can be sent to ports in AO state, and if none is
available, I/O would be sent to ports in ANO state. If neither port group AAS are available,
the last resort is to send the I/O to the ports in Standby AAS. So, as long as there are ports
in AO AAS, I/O is sent only to these ports. However, when there is more than one port
in the AO port group, there is no preference of to which port the I/O will be sent. If
VMW_PSP_FIXED policy is used and a preferred path is set, the I/O will be sent to the
preferred path. If the PREF bit is supported by and enabled on the ALUA array and a
preferred LUN owner is set in the array configuration, the I/O will be sent to a target on
the SP set as the preferred owner.

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover292

On the other hand, with non-ALUA Active/Passive storage arrays, when used by hosts
configured with the VMW_PSP_MRU policy, the ports are in one of two modes: Active
or Standby. With this policy, you cannot configure a “preferred path” and it is not recom-
mended to use the VMW_PSP_FIXED policy because the arrays do not support ALUA.
As an alternative and to facilitate ranking of these paths, VMware introduced a new
PSP in vSphere 4.1, VMW_PSP_MRU_RANKED, which later got merged into
VMW_PSP_MRU in vSphere 5.

How Does Path Ranking Work for ALUA Arrays?
Path Ranking allows vSphere Administrators to assign ranks to individual paths. The
VMW_PSP_MRU plug-in goes through the Active path group state in the order I
mentioned in the previous section (AO to ANO) and then to Standby and picks a path that
has the highest rank for I/O.

It is important to note that as long as there are paths to ports in AO state, I/O is sent
through them even when paths to ports in ANO or Standby AAS states are ranked higher.

In other words, the path selection is in this order:

 1. Paths to ports in AO AAS based on the rank of each path.

 2. If there are no ports in AO state, the paths to ports in ANO AAS state would be used
based on the rank of each path.

 3. Finally, if neither are available, the paths to ports in Standby AAS state are used
based on the rank of each path.

In the output shown in Figure 7.35, notice the field named Group State in the properties
of each path. Because the attached array is configured to support ALUA, one of the path
Group States is active whereas the other is active unoptimized.

This is in contrast with the AAS, which is listed in the field named Storage Array Type
Path Config, which are TPG_state=AO and TPG_state=ANO respectively, which also
match their corresponding group state.

From the Library of raphael schitz

ptg7996124

Path Ranking 293

Figure 7.35 Listing paths to an ALUA LUN

Path Failover to a Ranked Path in ALUA Configuration

When an AO path with the highest rank becomes unavailable, the I/O fails over to the
next highest ranked path to ports in AO state. If none is available, it fails over to the next
highest ranked path to a port in ANO state and so on for Standby ports.

If all paths are ranked the same, VMW_PSP_MRU behaves as if ranking is not configured
where it fails over to the next available path to a port in AO state, and if none is available,
it fails over to a path to a port in ANO state and then a Standby state as detailed earlier in
this chapter and in Chapters 5 and 6.

Path Failback to a Ranked Path in ALUA Configuration

VMW_PSP_MRU fails back to a better ranked path or path with a better state when such
a path becomes available.

Note

This does not result in path thrashing because VMW_PSP_MRU never fails back to a path
that requires activation (for example, AO to STANDBY or AO to ANO).

How Does Path Ranking Work for Non-ALUA Arrays?
VMW_PSP_MRU plug-in goes through the path Group States that are Active, and then
if none are available, it goes through the path group states that are Standby. By default all
paths are ranked 0, which results in I/O going through the normal MRU algorithm of path

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover294

selection. When path rank values are set higher, only paths in an Active group state are
used based on the rank order. The only time path ranks are used on Standby path group
state is when paths on the Active group state are not available. See Figure 7.36 for an
example of various paths’ group states.

Figure 7.36 Listing paths to a non-ALUA LUN

In Figure 7.36, notice the field named Group State in the properties of each path. Because
the attached array is Active/Passive and not configured to support ALUA, all path group
states are either Active or Standby.

Notice that there are no values in the field Storage Array Type Path Config because the
SATP is not an ALUA type, which is why the message SATP VMW_SATP_CX does not
support path configuration is displayed.

Path Failover to a Ranked Path in Non-ALUA Configuration

When a path in an Active path group state with the highest rank becomes unavailable,
the I/O fails over to the next highest ranked path in an Active path group state. If none is
available, it fails over to the next highest ranked path in a Standby path group state. This
triggers a trespass (on CLARiiON) or START_UNIT (on other Active/Passive arrays),
which effectively transfers the LUN ownership to the formerly Passive SP, which would
change the path Group State to Active.

From the Library of raphael schitz

ptg7996124

Path Ranking 295

Path Failback to a Ranked Path in Non-ALUA Configuration

VMW_PSP_MRU fails back to a better ranked path or path with a better state when such
a path becomes available. This means that if the failover was to a path on an Active path
group state, the failback is to the highest ranked path in an Active path group state.

Configuring Ranked Paths
Path ranking can be set via the CLI only. There is no UI available in vSphere 5 for this
configuration.

Getting Path Rank

To get the path rank, run the following command:

esxcli storage nmp psp generic pathconfig get –-path <pathname>

You may also use the shorthand version of the command using -p in place of --path:

esxcli storage nmp psp generic pathconfig get –p <pathname>

Example:

esxcli storage nmp psp generic pathconfig get -p fc.2000001b321734c9:210000
1b321734c9-fc.50060160c1e06522:5006016041e06522-naa.6006016055711d00cff95e6
5664ee011

Or using the runtime path name:

esxcli storage nmp psp generic pathconfig get -p vmhba2:C0:T0:L1

You get an output similar to Figure 7.37.

Figure 7.37 Listing path rank

Setting Path Rank

To set the rank of a given path, use the following command:

esxcli storage nmp psp generic pathconfig set --config “rank=<value>”
–-path <pathname>

From the Library of raphael schitz

ptg7996124

Chapter 7 Multipathing and Failover296

You may also use the shorthand version of the command using -c and -p in place of
--config and --path, respectively:

esxcli storage nmp psp generic pathconfig set -c “rank=<value>” –p <path-
name>

Example using the physical path name:

esxcli storage nmp psp generic pathconfig set -c “rank=1” –p fc.2000001b321
734c9:2100001b321734c9-fc.50060160c1e06522:5006016041e06522-naa.60060160557
11d00cff95e65664ee011

Example using the runtime path name:

esxcli storage nmp psp generic pathconfig set -c “rank=1” –p
vmhba2:C0:T0:L1

This sets the rank to 1 for the path listed. The higher the value, the higher the rank is.
After setting the rank, run the get command, listed earlier in this chapter in the “Getting
Path Rank” section, to verify that it has been successfully set (see Figure 7.38).

Figure 7.38 Setting path rank value

tIP

Using VMW_PSP_MRU with ALUA arrays or non-ALUA Active/Passive arrays with
ranked paths enables you to set something similar to a preferred path without having to use
the VMW_PSP_FIXED plug-in. You may think of this as having multiple preferred paths
but with different weights.

Summary

This chapter covered multipathing and failover algorithms and provided details about
failover triggers as well as factors affecting multipathing and failover. I also covered
improvements introduced in vSphere 5 to better handle the APD state. Finally, it covered
the little-known path ranking feature, including how it works and how to configure it.

From the Library of raphael schitz

ptg7996124

Chapter 8

Third-Party Multipathing I/O
Plug-ins

VMware Pluggable Storage Architecture (PSA) is designed to be modular and be a
foundation for VMware Storage partners to port their MPIO (Multipathing and I/O)
software to run on ESXi. In this chapter I cover in some detail the MPIO plug-ins
certified with vSphere 5 as of the time of this writing. In this chapter, I will provide you
with an overview of each package supported by vSphere 5 and some insights into what
goes on behind the scenes on ESXi after they are installed and configured. This is in no
way intended to replace or substitute each package’s documentation available from their
corresponding vendor.

MPIO Implementations on vSphere 5
VMware Storage partners have the choice of delivering their MPIO software in one of the
following formats:

�� MPP (Multipathing Plugin) — These plug-ins run on top of PSA framework
side-by-side with NMP (VMware’s Native Multipathing Plugin). They may include
other components that vary from partner to partner. An example of an MPP is EMC
PowerPath/VE.

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins298

�� PSP (Path Selection Plugin) —These plug-ins run on top of NMP side-by-side
with other PSP already included with vSphere 5. This type of plug-in, too, may
include other components that vary from partner to partner. An example of a PSP
MPIO is Dell Equallogic DELL_EQL_PSP_ROUTED plug-in.

�� A combination of both PSP and SATP (Storage Array Type Plugin) —
An example is the combination of Hitachi HTI_PSP_HDLM_EXLBK,
HTI_PSP_HDLM_EXLIO, HTI_PSP_HDLM_EXRR and HTI_SATP_HDLM
plug-ins.

EMC PowerPath/VE 5.7
PowerPath/VE has been updated to run on ESXi 5. The certified version as of this writing
is 5.7.0.00.00-b173.

As I mentioned previously, it is implemented on ESXi as an MPP (also referred to as
MEM or Management Extension Module). For details on PSA, NMP, and MPP and
how the pieces fit together, refer to Chapter 5, “VMware Pluggable Storage Architecture
(PSA).”

Downloading PowerPath/VE
PowerPath/VE is available for download from PowerLink (http://powerlink.emc.com).
You can follow these directions to locate the files:

 1. Log on to PowerLink as shown in Figure 8.1.

Figure 8.1 EMC Powerlink home page

From the Library of raphael schitz

http://powerlink.emc.com

ptg7996124

EMC PowerPath/VE 5.7 299

 2. Under the POWERLINK QUICK START section, if you are logged in as Customer,
locate the Support Resources tab. Click the Software Downloads & Patches link.

 3. On the left-hand side-bar, click the Downloads P-R link to expand it; then click the
PowerPath for VMware link

 4. If you logged in as partner (this also works as customer), select Support, Software
Downloads and Licensing, Downloads P-R, PowerPath for VMware (see Figure 8.2).

Figure 8.2 Accessing the PowerPath for VMware download page

 5. I strongly recommend that you download and read “PowerPath/VE Software
Download FAQ” first. It has answers to all the questions that I had, and I am sure it
has answers to yours as well.

 6. All you need to install PowerPath/VE is available on PowerLink. What I used
was PowerPath/VE 5.7.0 for VMware vSphere – Install SW Bundle under the
section conveniently labeled PowerPath/VE for VMware vSphere. The filename is
PowerPath_VE_5_7_for_VMWARE_vSphere_Install_SW_Bundle.zip. The content
of this zip file is subject to change in the future. At the time of this writing, the file
includes the following:

a. Three PowerPath/VE vSphere Installation Bundles (VIBs), which are LIB
(Library), CIM (Common Information Model), and PLUGIN bundles for
short. I list the long names later in this chapter in the “Installation Overview”
section.

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins300

b. The PowerPath/VE offline bundle. It is what you use to install PowerPath/VE
via VUM (and my not-top-secret-favorite method via SSH or vMA 5).

c. Both Windows and RedHat Enterprise Linux versions of RTOOLS. It is
rpowermt or the Remote PowerPath Management Tool, which I discuss later
in this chapter.

d. Both Windows and RedHat Enterprise Linux versions of the license server.
This may or may not be included in future revisions of downloaded zip file.

 7. While you are at this download page, it is advisable to also download the PowerPath
Configuration Checker (PPCC), which helps you identify any changes you need to
make to your ESXi hosts before installing PowerPath/VE. I do not cover this tool in
this book, though.

PPCC requires output from EMCGrab or EMCReport utilities, which are
available for download via the Related Items section. (See Figure 8.3.)

Figure 8.3 Accessing EMCGrab Utilities page

Downloading Relevant PowerPath/VE Documentations
PowerPath/VE documentation is available in the Powerlink Support section (see
Figure 8.4).

Please refer to the installation and Administration instructions available for download by
selecting the following menu options:

 1. Support

 2. Technical Documentation and Advisories

 3. Software ~ P-R ~ Documentation

 4. PowerPath Family

From the Library of raphael schitz

ptg7996124

EMC PowerPath/VE 5.7 301

Figure 8.4 Accessing the Documentation page

 5. Expand the PowerPath/VE link on the left-hand sidebar and click each document’s
link to download it (see Figure 8.5).

Figure 8.5 Downloading PowerPath/VE documentations

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins302

NOtE

PowerPath/VE requires that each host is licensed using one of two available licensing
modes: unserved and served.

You need one unserved license for each ESXi 5 host which is locked to the System UUID
of each host. This is a manual process, and it’s difficult to keep track of how many licenses
are used. Also, when a host is out of order or decommissioned, you might be able to request
rehosting the license to a new host, but this can be done for a limited number of rehosting
requests.

On the other hand, the served license mode uses a centralized Electronic License
Management (ELM) Server that makes it easier to count the licensed hosts and also reassign
the licenses to other hosts as needed (that is why it is referred to as Floating or Counted
mode). This is flexible and more practical.

PowerPath/VE Installation Overview
 1. Obtain license file(s) from EMC. If you are using unserved licenses, you need to get

the system UUID from each ESXi host that you are licensing. To do so, run:

esxcli system uuid get

 2. Install RTOOLS package. Note that the Linux version cannot be installed on vMA
5 because the latter is SuSE Linux based whereas RTOOLS was built for RedHat
Linux. If you plan to install the Linux version of RTOOLS, you need to install it on
a separate RedHat Linux system or VM.

 3. If you are using served licenses, install the License Server.

 4. Install PowerPath/VE 5.7. It can be installed via one of three facilities:

a. VUM (vSphere Update Manager) — This is the preferred method if you
have VUM in your environment. I do not cover this facility because it is
identical to installing any other offline bundle.

b. Auto-Deploy — This is the facility that allows for booting ESXi from a
shared image via PXE (Pre-boot eXecution Environment). It is available with
vSphere 5.

c. vCLI (VMware vSphere CLI) — This includes vMA 5. This can also be
done via the Local CLI or via SSH if you have them enabled.

From the Library of raphael schitz

ptg7996124

EMC PowerPath/VE 5.7 303

Note that ESXCLI works the same whether remotely via vCLI, via vMA 5.0, or
on the local CLI. I explain this further over the next few pages.

I personally prefer using vMA 5 because I can install any VIB (vSphere
Installation Bundle) or set of VIBs on multiple hosts using a few key strokes or
scripts. This is manageable if you have a few hosts (five or fewer). If you have
more than that and you have VUM installed in your environment, using VUM
would be the recommended method of installing PowerPath/VE. Using VUM
to install PowerPath/VE is similar to installing any other VIBs. Because the
command line is less obvious, I share with you the procedures for vMA and
Local CLI only.

 5. Finally, use rpowermt commands, installed by RTOOLS, to check the license regis-
tration and device status.

What Gets Installed?
Regardless of the PowerPath/VE installation facility, what get installed are the following
VIBs in this order:

 1. EMC_bootbank_powerpath.lib.esx_5.7.0.00.00-b173.vib

 2. EMC_bootbank_powerpath.cim.esx_5.7.0.00.00-b173.vib

This is the PowerPath CIM Provider which is used to manage PowerPath/VE
remotely via the rpowermt that I mentioned earlier.

 3. EMC_bootbank_powerpath.plugin.esx_5.7.0.00.00-b173.vib

This is the MPP plug-in itself that gets plugged into the PSA framework.

Before installing the VIBs, the ESXi host must be placed in Maintenance Mode, and it
requires a reboot at the end of the installation. If you have a downtime window to reboot
all hosts, you need to power off or suspend all running VMs. Otherwise, you can use a
rolling outage and install on one host at a time. This is when your brilliant design comes in
handy if you planned your HA/DRS cluster as N+1 or N+2 capacity. This means that you
have a cluster configured for one or two host failures. It also means that the surviving hosts
have enough reserve capacity to run all virtual machines (VMs) that were running on the
one or two hosts you place in maintenance mode.

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins304

NOtE

Although VMware and EMC support a rolling upgrade approach where you install
PowerPath/VE on one host at a time while the remaining hosts in the cluster still run NMP,
this mixed-mode configuration should be on a temporary basis ONLY. You should plan on
installing PowerPath/VE on ALL hosts in the cluster as soon as it is reasonably possible.

If your storage is a Symmetrix family of arrays, make sure that SPC-2 FA Director Bit
is enabled. If it was not enabled and you apply this required change, be aware of a very
important fact: ALL your VMFS volumes might have to be resignatured as a result of this
change because the Device IDs change from “mpx.<ID>” to “NAA.<ID>,” where the <ID>
value is longer and partially different. This is discussed further in Chapter 15, “Snapshot
Handling.”

Installation Using the Local CLI
 1. Copy the offline installation bundle (the filename is EMCPower.

VMWARE.5.7.b173.zip as of this writing) to the shared VMFS volume. You may
use the vSphere Client Browse Datastore feature or a tool such as WinSCP on
Windows or SCP on Linux to securely transfer the file to an ESXi host that has
access to that VMFS volume.

 2. Log on to the ESXi host locally or via an SSH client (for example, Putty on
Windows or ssh on Linux) as root or as a user with root privileges.

 3. Place the host in maintenance mode if you have not already done so. You may do
that via the vSphere Client.

 4. Verify the software acceptance level setting on the host:

esxcli software acceptance get

PartnerSupported

This output means that the software acceptance level is set to PartnerSupported.

If the returned value is VMwareCertified or VMwareAccepted, you must change
it to PartnerSupported. You may do so using:

esxcli software acceptance set --level=PartnerSupported

Host acceptance level changed to ‘PartnerSupported’.

This is required because the PowerPath/VE VIBs were digitally signed by EMC
as PartnerCertified Acceptance Level. The way acceptance level enforcement

From the Library of raphael schitz

ptg7996124

EMC PowerPath/VE 5.7 305

works is that you cannot install any VIBs that are lower than the current
acceptance level of the host. The order of these levels is

VMwareCertified — Highest level

VMwareAccepted — Next highest

PartnerSupported — Next one down

CommunitySupported —The lowest level

So, if a host is set at a given level, you can install bundles of that level or higher,
which means that with a host set to PartnerSupported acceptance level, you
can install VIBs that are signed as PartnerSupported, VMwareAccepted, or
VMwareCertified.

 5. Perform a dry run of the installation just to make sure that you don’t get any errors.
To do so, run the following:

esxcli software vib install -d /<Path-to-offline-bundle>/EMCPower.
VMWARE.5.7.b173.zip --dry-run

An example is shown in Listing 8.1.

Listing 8.1 Dry Run of Installing PowerPath/VE Offline Bundle

esxcli software vib install --depot=/vmfs/volumes/FC200/PP57/EMCPower.
VMWARE.5.7.b173.zip --dry-run

Installation Result

 Message: Dryrun only, host not changed. The following installers will be
applied: [BootBankInstaller]

 Reboot Required: true

 VIBs Installed: EMC_bootbank_powerpath.cim.esx_5.7.0.00.00-b173, EMC_
bootbank_powerpath.lib.esx_5.7.0.00.00-b173, EMC_bootbank_powerpath.plugin.
esx_5.7.0.00.00-b173

 VIBs Removed:

 VIBs Skipped:

In Listing 8.1 notice that no errors result from the installation, that three VIBs
are installed, and that a reboot is required.

 6. Repeat the command shown in Listing 8.1 without the --dry-run option. Listing
8.2 shows the output.

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins306

Listing 8.2 Installing PowerPath/VE Offline Bundle

esxcli software vib install -d /vmfs/volumes/FC200/PP57/EMCPower.
VMWARE.5.7.b173.zip

Installation Result

 Message: The update completed successfully, but the system needs to be
rebooted for the changes to be effective.

 Reboot Required: true

 VIBs Installed: EMC_bootbank_powerpath.cim.esx_5.7.0.00.00-b173, EMC_
bootbank_powerpath.lib.esx_5.7.0.00.00-b173, EMC_bootbank_powerpath.plugin.
esx_5.7.0.00.00-b173

 VIBs Removed:

 VIBs Skipped:

 7. Reboot the host. Don’t take the host out of maintenance mode yet. You do that
after verifying the installation. See the “Verifying Installation” section later in this
chapter.

Installation Using vMA 5.0
Using vMA 5, the installation steps are identical to those using the local CLI listed earlier.

The only difference is that before you run the first command affecting the ESXi host, you
must change the managed target host to be that ESXi host (see Figure 8.6).

Figure 8.6 Setting the vMA managed host

For details about changing the managed host as well as the process of logging into the
vMA appliance and adding the managed target hosts, refer to Chapter 2, “Fibre Channel
Storage Connectivity,” in the section “Procedure Using vMA (vSphere Management
Assistant) 5.0.”

One of the many benefits of using vMA is that you can place the host in and out of mainte-
nance mode using the CLI, as shown in Figures 8.7 and 8.8, using the esxcfg-hostops tool.

The syntax for this command would be

esxcfg-hostops -o enter or esxcfg-hostops -o exit (see Figures 8.7 and 8.8).

From the Library of raphael schitz

ptg7996124

EMC PowerPath/VE 5.7 307

Figure 8.7 Using vMA to enter the ESXi host into maintenance mode

Figure 8.8 Using vMA to exit the ESXi host from maintenance mode

You can also reboot the host remotely using the same command with option reboot
instead of enter or exit.

When you are done with the installation on one host, simply change the managed target
host to another ESXi host and use the up arrow key to recall the previous commands
starting with entering maintenance mode through exiting it. You can get creative and write
your own script using variables to pass the offline bundle filename (and path if needed) as
well as the host names.

tIP

Did you know that VMware provides sample scripts within the vMA appliance?

These sample scripts are in the /opt/vmware/vma/samples/perl and /opt/vmware/vma/
samples/java directories. You can use them as a starting point and build your own scripts to
your heart’s content.

Verifying Installation
The installation does the following changes:

 1. Installs the three VIBs listed earlier.

To list the installed VIBs you may run

esxcli software vib list |grep EMC

The output is shown in Figure 8.9.

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins308

Figure 8.9 Listing installed PowerPath VIBs

You can also check the software profile for the three VIBs (see Figure 8.10) using

esxcli software profile get

Figure 8.10 Listing PowerPath software profile

Note that the installed VIBs names do not include the EMC_Bootbank_ prefix
or the version and build number suffix. The latter are listed as part of the
properties of each VIB.

 2. Registers PowerPath Plugin with PSA. This is done by jumpstart script register-
emc-powerpath.json. See item 4 for details.

To list the registered plug-in (see Figure 8.11), you may run

esxcli storage core plugin registration list |grep "PowerPath \|Module
\|---"

Figure 8.11 Listing PowerPath PSA module registration

From the Library of raphael schitz

ptg7996124

EMC PowerPath/VE 5.7 309

In Figure 8.11, I cropped the blank column named Full Path for readability.

You may verify that the PowerPath vmkernel module (emcp) was successfully
loaded (see Figure 8.12) by running

esxcli system module list |grep -I ‘emcp\|enabled\|---’

Figure 8.12 Listing PowerPath vmKernel module

The output in Figure 8.12 shows that the emcp kernel module was loaded and
enabled.

You may also check that the PowerPath MPP (Multipathing Plugin) was
successfully added (see Figure 8.13) by running

esxcli storage core plugin list

Figure 8.13 Listing PowerPath MP Plugin

Here you see that there is an MP class plug-in named PowerPath alongside
with NMP.

 3. Adds PowerPath PSA claim rules. This is done by jumpstart script psa-powerpath-
pre-claim-config.json. See item 4 for details.

To list the added claim rules (see Figure 8.14), you may run

esxcli storage core claimrule list

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins310

Figure 8.14 Listing PowerPath PSA Claim Rules

The output in Figure 8.14 shows that rules 250 through 320 have been added.
See item 4 to compare this list to the list of commands that added these rules.
Each rule is listed with runtime and file classes. This means that the rules that
were written to the configuration files (file class) have also been loaded (runtime
class).

 4. Adds the following JumpStart scripts to the /usr/libexec/jumpstart/plugins directory:

a. register-emc-powerpath.json

b. psa-powerpath-claim-load-order.json

c. psa-powerpath-pre-claim-config.json

The first script (a) runs a command equivalent to

esxcli storage core plugin registration add -m emcp -N MP -P PowerPath

The verbose version of this command is

esxcli storage core plugin registration add --module-name=emcp
--plugin-class=MP --plugin-name=PowerPath

This command registers with PSA a vmkernel module named emcp as an MP
class plug-in named PowerPath.

From the Library of raphael schitz

ptg7996124

EMC PowerPath/VE 5.7 311

�� The second script (b) is carried over from older PowerPath/VE versions. It is
practically empty.

�� The third script (c) loads the emcp vmkernel module and then adds the PSA
claim rules for storage array families supported by PowerPath/VE. It runs
commands equivalent to that shown in Listing 8.3.

Listing 8.3 Commands Run by “psa-powerpath-pre-claim-config.json” Script

esxcli system module load --module emcp

esxcli storage core claimrule add --claimrule-class MP --rule 250 --plugin
PowerPath --type vendor --vendor DGC --model *

esxcli storage core claimrule add --claimrule-class MP --rule 260 --plugin
PowerPath --type vendor --vendor EMC --model SYMMETRIX

esxcli storage core claimrule add --claimrule-class MP --rule 270 --plugin
PowerPath --type vendor --vendor EMC --model Invista

esxcli storage core claimrule add --claimrule-class MP --rule 280 --plugin
PowerPath --type vendor --vendor HITACHI --model *

esxcli storage core claimrule add --claimrule-class MP --rule 290 --plugin
PowerPath --type vendor --vendor HP --model *

esxcli storage core claimrule add --claimrule-class MP --rule 300 --plugin
PowerPath --type vendor --vendor COMPAQ --model \"HSV111 (C)COMPAQ\"

esxcli storage core claimrule add --claimrule-class MP --rule 310 --plugin
PowerPath --type vendor --vendor EMC --model Celerra

esxcli storage core claimrule add --claimrule-class MP --rule 320 --plugin
PowerPath --type vendor --vendor IBM --model 2107900

Listing Devices Claimed by PowerPath/VE
To verify that supported devices have been claimed by PowerPath MPP (see Figure 8.15)
you may run

esxcli storage core device list |less -S

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins312

Figure 8.15 Listing PowerPath managed FC device properties

The output shown in Figure 8.15 is an example from a Fibre Channel LUN on a
CLARiiON Storage Array. Notice that the Multipath Plugin is PowerPath.

Figure 8.16 shows another example of a device claimed by PowerPath, which is an iSCSI
device on a CLARiiON Storage Array.

Figure 8.16 Listing PowerPath managed iSCSI device properties

Managing PowerPath/VE
You can manage PowerPath/VE remotely using rpowermt on Windows or Red Hat
Linux where you installed the RTOOLS package. For details on using rpowermt, refer

From the Library of raphael schitz

ptg7996124

EMC PowerPath/VE 5.7 313

to the Maintenance/Configuration document available on PowerLink as I outlined in the
“Downloading Relevant PowerPath/VE Documentations” section.

There is also the local powermt utility that gets installed on each ESXi server when you
install PowerPath/VE. This tool is located in

/opt/emc/powerpath/bin

It enables you to run a subset of commands that are available with rpowermt.

How to Uninstall PowerPath/VE
If you are going to experiment with PowerPath/VE, you might need to uninstall it when
you are done playing. You may do so following the same steps for the installation, substi-
tuting the installation step with this command:

esxcli software vib remove -n <bundle1> -n <bundle2> -n <bundle3>

The verbose version of this command is

esxcli software vib remove --vibname=<bundle1> --vibname=<bundle2>
--vibname=<bundle3>

Listings 8.4, 8.5, 8.6, and 8.7 show the set of commands from beginning to rebooting the
host. This is all done within vMA 5.0.

Listing 8.4 Entering Maintenance Mode

vi-admin@station-1:~[wdc-tse-h56]> esxcfg-hostops --operation enter

Host wdc-tse-h56.wsl.vmware.com entered into maintenance mode successfully.

Listing 8.5 Listing PowerPath VIB Profile

vi-admin@station-1:~[wdc-tse-h56]> esxcli software vib list |grep powerpath

powerpath.cim.esx 5.7.0.00.00-b173 EMC PartnerSupported 2011-11-16

powerpath.lib.esx 5.7.0.00.00-b173 EMC PartnerSupported 2011-11-16

powerpath.plugin.esx 5.7.0.00.00-b173 EMC PartnerSupported 2011-11-16

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins314

Listing 8.6 Uninstalling PowerPath

vi-admin@station-1:~[wdc-tse-h56]> esxcli software vib remove --vibname
powerpath.cim.esx --vibname powerpath.lib.esx --vibname powerpath.plugin.
esx

Removal Result

 Message: The update completed successfully, but the system needs to be
rebooted for the changes to be effective.

 Reboot Required: true

 VIBs Installed:

 VIBs Removed: EMC_bootbank_powerpath.cim.esx_5.7.0.00.00-b173, EMC_
bootbank_powerpath.lib.esx_5.7.0.00.00-b173, EMC_bootbank_powerpath.plugin.
esx_5.7.0.00.00-b173

 VIBs Skipped:

Listing 8.7 Rebooting Host

vi-admin@station-1:~[wdc-tse-h56]> esxcfg-hostops --operation reboot

Host wdc-tse-h56.wsl.vmware.com rebooted successfully.

After the host is rebooted, while still in vMA 5.0, run the following command to verify
that the VIBs were removed successfully. (The beauty of vMA is that you don’t have to log
on to the host after it boots back up. Because it was the last managed target, vMA uses the
cached credentials in the FastPass configuration files to reconnect at the first command
you run after the host is booted.)

esxcli software vib list |grep powerpath

You should not get any VIBs returned, which confirms that they are no longer installed.

Follow with a command to list the claim rules and verify that all claim rules that were
added by the installer have been removed. These are claim rules numbers 250 through
320, as shown previously in Figure 8.14.

esxcli storage core claimrule list

Outputs of the two commands are listed in Figure 8.17.

From the Library of raphael schitz

ptg7996124

Hitachi Dynamic Link Manager (HDLM) 315

Figure 8.17 Uninstalling PowerPath

Now that you confirmed PowerPath/VE has been uninstalled, you may take the host out
of maintenance mode using the following:

vi-admin@station-1:~[wdc-tse-h56]> esxcfg-hostops --operation exit

Host wdc-tse-h56.wsl.vmware.com exited from maintenance mode successfully.

Hitachi Dynamic Link Manager (HDLM)
Hitachi Dynamic Link Manager (HDLM) MPIO solution is available on several
operating systems. It has been recently ported to vSphere 5 in the form of one SATP,
three PSPs, and one ESXCLI extension module as follows:

�� hti_satp_hdlm

�� hti_psp_hdlm_exlio (Extended Least I/Os)

�� hti_psp_hdlm_ex rr (Extended Round Robin)

�� hti_psp_hdlm_exlbk (Extended Least Blocks)

�� hex-hdlm-dlnkmgr

NOtE

The product information in this section is based on the latest information as of the time of
this writing.

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins316

Obtaining Installation Files
To obtain HDLM for VMware installation files, contact Hitachi Data Systems or Hitachi.
You will receive a set of CDs/DVDs with the software and related files and documen-
tation. The installation files are on the DVD labeled Hitachi Dynamic Link Manager
Software v7.2 Advanced (with Hitachi Global Link Manager Software).

Follow these steps on a system or a VM (running Windows version supported by HDLM)
that will assist you in extracting the required installation files:

 1. Install vCLI. You may download the installation file from http://communities.
vmware.com/community/vmtn/server/vsphere/automationtools/vsphere_cli and then
click the Download button under VMware vSphere CLI. Run the downloaded file
and follow the prompts to install it.

 2. Insert the HDLM Installation DVD into your DVD drive. (If you are installing to a
VM, connect the DVD drive to the VM.)

 3. If autorun is disabled on your system/VM, browse the DVD drive for the
index.html file and run it.

 4. Your browser should show a screen similar to Figure 8.18. Click the Install button
for VMware under the Hitachi Dynamic Link Manager Software section.

Figure 8.18 Accessing HDLM installation files

 5. Follow the installation prompts. See Hitachi Command Suite Dynamic Link
Manager User Guide (for VMware(R)) on the documentation list in the index.html
file of the Hitachi Command Suite v7.2 Software Documentation Library DVD that
you received from Hitachi.

From the Library of raphael schitz

http://communities.vmware.com/community/vmtn/server/vsphere/automationtools/vsphere_cli
http://communities.vmware.com/community/vmtn/server/vsphere/automationtools/vsphere_cli

ptg7996124

Hitachi Dynamic Link Manager (HDLM) 317

 6. This process installs the HDLM Remote Management Client and places the HDLM
for VMware Offline Bundle file in

<HDLM-Installation-Folder>\plugin

For example:

c:\Program files(x86)\HITACHI\DynamicLinkManagerForVMware\plugin

The filename as of the time of this writing is hdlm-0720000002.zip.

Installing HDLM
Installation is done via the single Offline Bundle file identified in the “Obtaining Instal-
lation Files” section: hdlm-0720000002.zip. That file includes the five plug-ins listed
earlier; four PSA plug-ins and an ESXCLI extension for HDLM.

The installation process is outlined here:

 1. Transfer the offline bundle zip file to a VMFS volume shared by all hosts on which
you plan to install HDLM.

You may transfer the files using one of the following tools:

a. vSphere Client:

Locate the datastore to which you want to transfer the files; right-click
it; select Browse Datastore; and then click the Upload Files to This
Datastore icon, which looks like a cylinder with a green up arrow (see
Figure 8.19).

Figure 8.19 Uploading files to datastore via vSphere client

Finally, click the Upload File menu and follow the prompts.

b. A file transfer tool like WinSCP.

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins318

 2. Log on to the host locally via SSH as root or use vMA 5.0. You may also use vCLI
on the system on which you installed HDLM Remote Management Client because
you already installed vCLI on it earlier. Using the latter, the commands are identical
to what is listed, but you need to add vCLI connection options such as --server,
--username, and --password with each command you run.

 3. You can first go through an installation dry run to verify if there are any problems
that would result in failure to install the output, which is shown in Figure 8.20.

esxcli software vib install -d /vmfs/volumes/FC200/mpio/hdlm/
hdlm-0720000002.zip --dry-run

The verbose version of this command is

esxcli software vib install --depot /vmfs/volumes/FC200/mpio/hdlm/
hdlm-0720000002.zip --dry-run

Figure 8.20 HDLM installation dry run on ESXi 5

Notice that the Installation Result shows that Live Image Installer and Boot Bank Installer
will be applied.

NOtE

Even though the Dry Run output shows Reboot Required: false, which means that
rebooting the ESXi host after the installation is not required, you might actually need
to reboot the host for certain services to be restarted. Otherwise, you can run /sbin/
services.sh restart, which restarts these services. This can only run from the ESXi
Shell via SSH or locally on the ESXi host.

 4. Install the offline bundle using esxcli as follows:

esxcli software vib install -d /vmfs/volumes/FC200/mpio/hdlm/
hdlm-0720000002.zip

From the Library of raphael schitz

ptg7996124

Hitachi Dynamic Link Manager (HDLM) 319

The verbose version of this command is

esxcli software vib install --depot /vmfs/volumes/FC200/mpio/hdlm/
hdlm-0720000002.zip

The installation command and its output are shown in Figure 8.21.

Figure 8.21 HDLM installation on ESXi 5

 5. Reboot the host.

The installation configures the default PSP for HTI_SATP_HDLM as
HTI_PSP_HDLM_EXLIO. However, the other two PSPs are available by
changing the default PSP or changing it per device.

Changes Done to the ESXi Host Configuration by the HDLM Installation

The installation does the following changes:

 1. Adds the following JumpStart scripts to /usr/libexec/jumpstart/plugins directory:

a. nmp-hti_psp_hdlm_exlbk-rules.json

b. nmp-hti_psp_hdlm_exlbk.json

c. nmp-hti_psp_hdlm_exlio-rules.json

d. nmp-hti_psp_hdlm_exlio.json

e. nmp-hti_psp_hdlm_exrr-rules.json

f. nmp-hti_psp_hdlm_exrr.json

g. nmp-hti_satp_hdlm-rules.json

h. nmp-hti_satp_hdlm.json

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins320

These jumpstart plug-ins do the following:

�� Scripts with the -rules suffix load the kernel module of the PSP/SATP at boot
time.

�� Scripts without the -rules suffix register the plug-in with the PSA framework.

 2. Registers the following modules as plug-ins as listed in Table 8.1.

table 8.1 HDLM Plug-ins List

Module Plug-in Plug-in Class

hti_satp_hdlm HTI_SATP_HDLM SATP

hti_psp_hdlm_exlbk HTI_PSP_HDLM_EXLBK PSP

hti_psp_hdlm_exlio HTI_PSP_HDLM_EXLIO PSP

hti_psp_hdlm_exrr HTI_PSP_HDLM_EXRR PSP

Figure 8.22 shows the command to list the registered plug-ins.

Figure 8.22 Listing HDLM PSA plug-ins registration

These are also done upon reboot by jumpstart scripts without the -rules suffix,
which runs the equivalent to the commands shown in Listing 8.8.

Listing 8.8 Commands Run by PowerPath Jumpstart Scripts

esxcli storage core plugin registration add --module-name=hti_satp_hdlm
--plugin-class=SATP - --plugin-name=HTI_SATP_HDLM

esxcli storage core plugin registration add --module-name=hti_psp_hdlm_
exlbk --plugin-class=PSP --plugin-name=HTI_PSP_HDLM_EXLBK

From the Library of raphael schitz

ptg7996124

Hitachi Dynamic Link Manager (HDLM) 321

esxcli storage core plugin registration add --module-name=hti_psp_hdlm_
exlio --plugin-class=PSP --plugin-name=HTI_PSP_HDLM_EXLIO

esxcli storage core plugin registration add --module-name=hti_psp_hdlm_exrr
--plugin-class=PSP --plugin-name=HTI_PSP_HDLM_EXRR

 3. Configures HTI_PSP_HDLM_EXLIO as the default PSP for SATP HTI_SATP_
HDLM.

Figure 8.23 shows how to verify the default PSP.

Figure 8.23 HDLM SATP default configuration

This is also done upon reboot by jumpstart script nmp-hti_satp_hdlm-rules.json,
which runs the equivalent to the following command:

esxcli storage nmp satp set --satp HTI_SATP_HDLM --default-psp
HTI_PSP_HDLM_EXLIO

 4. Adds three SATP rules, which associates the HTI_SATP_HDLM with the vendors
and model strings listed in Table 8.2 and verified in Figure 8.24.

table 8.2 Vendor and Model Strings Used by HDLM Claim Rules

Vendor String Model String

HITACHI DF600F

HITACHI ^OPEN-*

HP ^OPEN-*

The model strings in the table represent Hitachi AMS, VSP, and HP P9000 families,
respectively. For the list of the supported array makes and models, check VMware HCL.

Figure 8.24 shows list of SATP Claim Rules for HTI_SATP_HDLM.

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins322

Figure 8.24 HDLM SATP rules

This means that Storage arrays that return a vendor string of HITACHI and model strings
of DF600F or ^OPEN-* are claimed by HTI_SATP_HDLM Storage Array Type Plugin
(SATP).

The third row in the table and output means that storage arrays that return a vendor string
of HP and return a model string of ^OPEN-* are also claimed by the same SATP.

The wildcards used in the model string ^OPEN-* cover all model strings that end with
OPEN and a hyphen followed by any value (for example, OPEN-V).

This is also done upon reboot by jumpstart script nmp-hti_satp_hdlm-rules.json, which
runs the equivalent to the commands in Listing 8.9.

Listing 8.9 Commands Run by “nmp_hti_satp_hdlm-rules.json” Jumpstart Script

esxcli storage nmp satp rule add --satp HTI_SATP_HDLM --vendor HITACHI
--model DF600F

esxcli storage nmp satp rule add --satp HTI_SATP_HDLM --vendor HITACHI
--model ^OPEN-*

esxcli storage nmp satp rule add --satp HTI_SATP_HDLM --vendor HP --model
^OPEN-*

Modifying HDLM PSP Assignments
Because you can have only one default PSP per SATP, you can assign a different PSP on
a per-device basis. For example, you have three different LUNs on a Hitachi Adaptable
Modular Storage (AMS) array that are presented to a set of ESXi 5 hosts. These hosts
have been configured with the HDLM plug-ins. Each of the three LUNs has different
I/O requirements that match one of the three installed HDLM PSPs. You can configure
each LUN to be claimed by the PSP that matches the desired I/O criteria. This can be
done via the vSphere Client, the CLI, or HDLM Remote Management Client (see section
“Obtaining Installation Files” earlier in this chapter). HDLM Remote Management Client

From the Library of raphael schitz

ptg7996124

Hitachi Dynamic Link Manager (HDLM) 323

has its own CLI and is used to manage HDLM for VMware remotely. Think of it like
using vMA or vCLI to manage ESXi 5 remotely.

Changing PSP Assignment Via the UI

To change the PSP Assignment via the UI, you may follow this procedure:

 1. Follow Steps 1 through 7 of the “Listing Paths to a LUN Using the UI” procedure
under the “Listing Multipath Details” section in Chapter 5.

 2. From the Path Selection pull-down menu, select the desired PSP from the list (see
Figure 8.25).

Figure 8.25 Using vSphere Client to modify HDLM PSP assignment

 3. Click the Change button and then click the Close button.

 4. At the device properties dialog, click the Close button to return to the vSphere
Client Storage Management UI.

 5. Repeat this process for each LUN using the PSP matching its I/O characteristics.

 6. Repeat this process for the same set of LUNs on all ESXi 5 hosts sharing them.
Make sure to use the same PSP for a given LUN on all hosts.

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins324

Changing PSP Assignment Via the CLI

To change the PSP Assignment via the CLI, you may follow this procedure:

 1. Log on to the ESXi 5 host locally or via SSH as root or using vMA 5.0 as vi-admin.

 2. Identify the device ID for each LUN you want to reconfigure:

esxcfg-mpath -b |grep -B1 "fc Adapter"| grep -v -e "--" |sed ‘s/
Adapter.*//’

You may also use the verbose version of the command:

esxcfg-mpath --list-paths |grep -B1 "fc Adapter"| grep -v -e "--" |sed
‘s/Adapter.*//’

The output of this command is listed in Figure 8.26.

Figure 8.26 Listing a device ID on an AMS array

From there, you can identify the device ID (in this case, it is the t10 ID). Note
that this output was collected using an AMS array. Universal Storage Platform®
V (USP V), USP VM, or Virtual Storage Platform (VSP) would show NAA ID
instead. (See Figure 8.27.)

Figure 8.27 Listing a device ID on a USP array

From the Library of raphael schitz

ptg7996124

Hitachi Dynamic Link Manager (HDLM) 325

 3. Using the device ID you identified in Step 2, run this command:

esxcli storage nmp device set --device=<device-id> --psp=<psp-name>

Example for AMS LUN:

esxcli storage nmp device set --device=t10.HITACHI_750100060070
--psp=HTI_PSP_HDLM_EXLIO

Example for VSP LUN:

esxcli storage nmp device set --device=naa.60060e800527510000002751000
0011a --psp=HTI_PSP_HDLM_EXLIO

 4. Repeat Steps 2 and 3 for each device.

NOtE

HTI_SATP_HDLM was also tested, certified, and is supported for use with
VMW_PSP_MRU.

See the next section, “Locating Certified Storage on VMware HCL.”

Changing the Default PSP

If most of your HDLM-managed LUNs’ I/O is characterized such that they benefit
from using one of the HDLM PSPs other than the default one, it would be advisable to
change the default PSP and then modify the exception LUNs to use a suitable one.

For example, if you have 100 LUNs whose I/O would benefit from using
HTI_PSP_HDLM_EXLBK and five LUNs that would be more suited to use
HTI_PSP_HDLM_EXLIO (which is the current default), you might opt to change
the default PSP to the former and then change the five LUNs to use the latter.

To change the default PSP, you may use the following command:

esxcli storage nmp satp set --satp HTI_SATP_HDLM --default-psp HTI_PSP_
HDLM_EXLBK

If you want to set the default PSP to be HTI_PSP_HDLM_EXRR instead, simply replace
the last parameter in the command with that PSP name.

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins326

NOtE

If you had manually set certain LUNs to a specific PSP previously, the command does not
affect that setting.

To reset such a LUN to use the current default PSP, use the following command

esxcli storage nmp device set --device=<device-ID> --default

For example:

esxcli storage nmp device set --device=naa.6006016055711d00cef95e65664
ee011 --default

Locating Certified Storage on VMware HCL
To locate arrays certified with HDLM on VMware HCL, follow this procedure:

 1. Go to http://www.vmware.com/go/hcl.

 2. In the What Are You Looking For field, select Storage/SAN from the pull-down
menu.

 3. In the Product Release Version field, select ESXi 5.0.

 4. In the Partner Name field, select the Storage Vendor’s name, for example Hitachi,
Hitachi Data Systems (HDS), and so on.

 5. In the SATP Plugin field, select HTI_SATP_HDLM v07.2.0-00.

Steps 1 through 5 are shown in Figure 8.28.

Figure 8.28 HCL search criteria for HDLM

From the Library of raphael schitz

http://www.vmware.com/go/hcl

ptg7996124

Dell EqualLogic PSP Routed 327

 6. Click the Update and View Results button.

 7. Scroll down to see the list of certified arrays as shown in Figure 8.29.

Figure 8.29 HCL search results for HDLM

 8. Click the hyperlink of the Storage Array Model listed under the Model column to see
the details, for example Hitachi Virtual Storage Platform.

 9. Locate the row with the SATP Plugin column listing HTI_SATP_HDLM v07.2.0-00.

 10. See the PSP Plugin column for the certified PSP Plugins. In this example (see
Figure 8.30), all three HDLM PSP plug-ins are listed along with VMW_PSP_MRU.
This means that you are free to use any combination of HTI_SATP_HDLM and any
of the listed PSPs.

Figure 8.30 HCL product details of HDLM listing

Dell EqualLogic PSP Routed
Dell’s EqualLogic MPIO is implemented as a PSP. It also includes an additional component
that runs in the user world, which is EqualLogic Host Connection Manager (EHCM). It is

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins328

actually designed as a CIM Provider. Its main function is to manage iSCSI (Internet Small
Computer System Interface) sessions to the EqualLogic array.

Downloading Documentation
You can download a reference document “Configuring and Installing the EqualLogic
Multipathing Extension Module for VMware vSphere 5 and PS Series SANs” from
http://www.equallogic.com/WorkArea/DownloadAsset.aspx?id=10798.

On that page, click the Download button to obtain the file named TR1074-Configuring-
MEM-1.1-with-vSphere-5.pdf.

Most of the content I am sharing with you here is based on the linked Dell document and
my own hands-on experience.

Downloading the Installation File and the Setup Script
To download the installation file and the setup script in one zip file, you need to
have a valid login account at EQL support site. The download area is at https://
support.equallogic.com/support/download.aspx?id=1484.

How Does It Work?
The PSP has knowledge of how the PS series volumes are distributed over the PS Group
Members. It has a map of the physical location of data on the volumes and utilizes that to
provide I/O load balancing.

The EHCM creates sessions to the EqualLogic volumes based on the SAN topology and
the PSP settings (done on each ESXi host). It creates two sessions per volume slice (the
portion of the volume residing on a single member of the PS series group). The maximum
number of sessions per volume (the combination of sessions for all volume slices) is six.
This is configurable via the Equallogic Host Connection Manager (EHCM) configuration
file.

Figure 8.31 shows the Dell EqualLogic PSP Architecture.

From the Library of raphael schitz

http://www.equallogic.com/WorkArea/DownloadAsset.aspx?id=10798
https://support.equallogic.com/support/download.aspx?id=1484
https://support.equallogic.com/support/download.aspx?id=1484

ptg7996124

Dell EqualLogic PSP Routed 329

1GB/10Gb
NIC/HBA

1GB/10Gb
Connections

PSP

Map

Data

Data

ehcmd
daemon

Ethernet
Network Datastore Datastore

Figure 8.31 Dell EqualLogic PSP architecture

Installing EQL MEM on vSphere 5
The zip file you downloaded from EqualLogic support’s download site includes the
following:

�� setup.pl — A PERL script that you use to configure the iSCSI network on the
ESXi 5 host including configuring Jumbo Frame

�� dell-eql-mem-version-offline_bundle-<build_number>.zip — Use for installing
via local CLI or vMA 5.0

�� dell-eql-mem-<version>.zip —Use for installing via VUM

I cover the installation process via Local CLI, which is identical to using vMA 5.0 after
switching the managed target host to the ESXi 5 host on which you will install the VIB:

 1. Copy the downloaded zip file to a VMFS volume shared by all hosts on which you
plan to install this VIB. You may use a tool like WinSCP to transfer the file.

 2. Log on to the ESXi 5 host directly or via SSH as root.

 3. Expand the zip file to obtain the setup.pl script as well as the offline bundle

cd /vmfs/volume/<datastore-name>

unzip <downloaded-file>.zip

 4. Run the installation command (see Figure 8.32):

~ # esxcli software vib install --depot=/vmfs/volumes/FC200/EQL/
DELL-eql-mem-1.0.9.201133-offline_bundle-515614.zip

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins330

Figure 8.32 Installing Dell EQL PSP

The sample file I used in this example is based on what was used for certifying the PS
series with this MEM. The filename available for download from EQL might be different
(version and build number).

Notice that the output states that Reboot Required is false.

Changes Done to the ESXi Host Configuration by the MEM Installation

The installation does the following changes:

�� Adds JumpStart scripts psp-eql-load.json and psp-eql.json to the /usr/libexec/
jumpstart/plugins directory. (See Figure 8.33.)

Figure 8.33 Jumpstart scripts added by Dell EQL PSP installation

�� Registers module dell-psp-eql-routed as plug-in DELL_PSP_EQL_ROUTED as a
PSP plug-in class. (See Figure 8.34.)

Figure 8.34 Dell EQL PSP registration

From the Library of raphael schitz

ptg7996124

Dell EqualLogic PSP Routed 331

This is also done upon host reboot by jumpstart script psp-eql.json, which runs
the equivalent to this command:

esxcli storage core plugin registration add --module-name= dell-psp-
eql-routed --plugin-class=PSP --plugin-name=DELL_PSP_EQL_ROUTED

�� Configures DELL_PSP_EQL_ROUTED as the default PSP for
SATP VMW_SATP_EQL. (See Figure 8.35.)

Figure 8.35 Default Dell EQL PSP for EQL SATP

The is also done upon reboot by jumpstart script psp-eql-load.json, which runs
the equivalent to this command:

esxcli storage nmp satp set --satp=VMW_SATP_EQL --default-psp=DELL_
PSP_EQL_ROUTED

Uninstalling Dell PSP EQL ROUtED MEM
To uninstall the VIB, follow these steps:

 1. First get the VIB name from the installed VIBs list (see Figure 8.36):

esxcli software vib list |grep eql

From the Library of raphael schitz

ptg7996124

Chapter 8 Third-Party Multipathing I/O Plug-ins332

Figure 8.36 Listing installed Dell EQL PSP VIB

 2. Remove the VIB (see Figure 8.37) using

esxcli software vib remove –-vibname=dell-eql-routed-psp

Figure 8.37 Removing Dell EQL PSP VIB

 3. Verify that it was removed (see Figure 8.38) using

esxcli software vib list |grep eql

Figure 8.38 Verifying removal of Dell EQL PSP VIB

Summary

VMware Partners developed MPIO software for use on ESXi 5. There are three products
available as of the time of this writing from EMC, Hitachi Data Systems, and Dell. In
this chapter I provided details about installing these MPIO software packages and what
changes they make to the ESXi host.

From the Library of raphael schitz

ptg7996124

Chapter 9

Using Heterogeneous Storage
Configurations

One of the most asked questions I have had is, “Can I mix different storage arrays in my
vSphere environment?”

The short answer is “yes!” This chapter explains why and how.

vSphere 5 as well as earlier releases support a maximum of 1024 paths to storage (see the
“Factors Affecting Multipathing” section in Chapter 7, “Multipathing and Failover”). This
number of paths is the combined paths to all devices presented to the ESXi 5 host from all
storage arrays, including local storage and direct attached storage.

What Is a “Heterogeneous” Storage Environment?
As the word indicates, it is the use of different arrays in the environment. The word
different applies to vendors, models, and protocols. You can use a mix of storage array
models from the same vendor as well as from multiple vendors. You can also mix Internet
Small Computer System Interface (iSCSI) and Fibre Channel (FC) but not for the same
device from the same array via the same host. In other words, you cannot access a given
device (logical unit number or LUN) via different protocols on the same array from the
same host.

NotE

Network Attach Storage (NAS) is also one of the classes of storage you may use in a hetero-
geneous storage environment. However, its effect on resources needed by existing block
devices is minimal. This chapter deals with block devices only.

From the Library of raphael schitz

ptg7996124

Chapter 9 Using Heterogeneous Storage Configurations334

Scenarios of Heterogeneous Storage
The most common scenario of using heterogeneous storage is simply storage sprawl. You
start with a storage array from a given vendor and later outgrow it. You then add more
storage from whatever is available at the time. You might get a deal you cannot refuse
from another storage vendor that would provide you faster, larger, and more modern
storage. You have four choices:

�� Install the new storage array and migrate your data from the old array. This is a
waste of resources if your old array still has enough juice in it and you still have a
valid maintenance agreement with the old array’s vendor.

�� Keep your old data in place and just add the new array. This sounds like getting the
best of both worlds! Well, maybe. That depends on the class of storage of your old
array, its age, and the type and speed of storage connectivity compared to the new
array. Does your old array still perform and meet your current applications’ SLAs
(Service Level Agreements)?

�� If the array provides a storage virtualization feature, present your old array’s LUNs to
the ESXi hosts as virtual LUNs on the new array and add new physical LUNs on the
new array for the additional storage your host’s need. I cover this topic in Chapter
11, “Storage Virtualization Devices (SVDs).” Just to summarize, this feature allows
the new array to act as an initiator to the old arrays to which you present the LUNs
from the old arrays. The SVD then presents the physical LUNs from the old array
as virtual LUNs to your ESXi hosts. This configuration takes advantage of all other
features available from the new array as if the virtual LUNs were actually located
physically on the SVD.

�� Some storage vendors might not provide the ability to directly import the data from
the virtualized LUNs — for example, SVDs presenting back-end block devices as
network file systems (NFSs). This requires creating NFSs on the virtualized LUNs.
The hosts do not see these LUN and only see the NFS datastores created on them
by the SVD.

Another scenario is designing a storage environment to serve as tiered storage, especially
now that vSphere 5 introduces Storage DRS which automates migration of the virtual
machine files from one datastore to another within a group of datastores that share similar
capabilities.

In this scenario, you either integrate a mix of storage arrays of varying storage classes or
storage arrays of the same model with varying storage classes. vSphere 5 introduced a new
storage API referred to as VASA, which stands for vSphere APIs for Storage Awareness.

From the Library of raphael schitz

ptg7996124

ESXi 5 View of Heterogeneous Storage 335

This API enables storage array vendors to report certain physical device capabilities—
including RAID type and types of disks backing LUNs presented to vSphere hosts—to
vCenter. The scenario may include storage arrays from the same vendor or multiple
vendors of varying classes and storage capabilities. For example, you mix EMC
VMAX/Symmetrix arrays with EMC CLARiiON/VNX arrays and IBM DS4000
arrays. These arrays may utilize physical disks of the following types:

�� SSD

�� FC SCSI

�� FC SAS

�� Copper SCSI

�� Copper SAS

�� Copper SATA

Each type is categorized in a storage tier, and you present LUNs backed by each tier to
ESXi hosts within their relevant applications SLAs.

ESXi 5 View of Heterogeneous Storage
In Chapter 7 I explained multipathing, and in earlier chapters (2– 4) I explained initiators
and targets. Let’s apply these concepts to help identify how ESXi 5 hosts see the various
storage arrays in a heterogeneous environment.

Basic Rules of Using Heterogeneous Storage
There is a set of basic rules to observe when designing a heterogeneous storage
environment. These rules can be organized in three groups: common rules, FC/FCoE
rules, and iSCSI rules.

The common rules are

�� Each storage array may have more than one storage processor.

�� Each storage processor may have more than one port.

�� Each LUN has a unique device ID.

�� The total number of paths is limited to 1024 per host, which includes paths to locally
attached devices.

From the Library of raphael schitz

ptg7996124

Chapter 9 Using Heterogeneous Storage Configurations336

The FC/FCoE basic rules are

�� Each initiator (HBA port on the ESXi host) is zoned to certain SP ports on all
relevant storage arrays in the environment.

�� VMkernel assigns a target number to each SP port seen by each initiator as a unique
target number.

The iSCSI basic rules are

�� Some iSCSI storage arrays present each LUN on a unique target, which means that
the number of targets on the array is equal to the number of LUNs presented from
that array. An example of that is the Dell EqualLogic PS series.

�� iSCSI software initiators can be bound to physical uplink ports (vmnics) on vSphere
5 virtual switches. This was possible on vSphere 4.x but was done manually. Now
there is a UI to configure port binding on vSphere 5. A given ESXi 5 host may have
multiple Hardware iSCSI initiators or a single Software iSCSI initiator. The latter
can be bound to certain uplink ports.

Naming Convention
As I mentioned in Chapter 7, each path to a given LUN is identified by its Runtime Name
or by its full pathname. The Runtime Name is the combination of vmhba number, channel
number, target number, and the LUN number—for example, vmhba0:C0:T1:L5. The full
pathname is the combination of the same elements using their physical IDs (it does not
include the channel number) fc.20000000c971bc62:10000000c971bc62-fc.50060160c6e00
304:5006016046e00304-naa.60060160403029005a59381bc161e011 translates to

�� fc.20000000c971bc62:10000000c971bc62 → HBA’s WWNN:WWPN

This is represented in the Runtime Name by vmhba0.

�� fc.50060160c6e00304:5006016046e00304 → Target WWNN:WWPN

This is the SP port that was represented in the Runtime Name by target
number T1.

�� naa.60060160403029005a59381bc161e011 → LUN’s device ID

This is represented in the Runtime Name by LUN5.

From the Library of raphael schitz

ptg7996124

ESXi 5 View of Heterogeneous Storage 337

iSCSI devices are addressed in a similar manner but using the iSCSI Qualified Names
(iqns) instead of FC WWNNs (World Wide Node Names) and WWPNs (World Wide
Port Names). LUN (Device) IDs of iSCSI LUNs are similar to FC LUNs.

So, How Does this All Fit together?
All physical identifiers in the same storage area network (SAN) are unique. When two
different storage arrays present one LUN to an ESXi host using the same LUN number,
each LUN has a unique device ID. As a result, ESXi 5 does not confuse both LUNs as
being the same LUN. The same is true for target port IDs.

So, let’s make the trip from a given initiator to LUN5 on each array using the Runtime
Name elements first and then the physical pathname elements.

An example of FC LUN is

Runtime Name: vmhba2:C0:T1:L5

In this example the first hop is the HBA on the host, which is named vmhba2.

The next hop is the switch and finally the target (the channel can be ignored for now
because it is always zero for HBAs other than internal RAID controllers). In this case,
the target is assigned number 1. This value does not persist between reboots because it is
assigned based on the order the targets are enumerated by the host. That order is based on
the order of discovering these targets at boot time and during rescanning. The switch port
ID to which the target is connected into the FC fabric affects that order of discovery.

To better illustrate that concept, let me take you through a set of FC cabling diagrams
starting with a simple one (see Figure 9.1) and then gradually building up to a more
complex environment.

From the Library of raphael schitz

ptg7996124

Chapter 9 Using Heterogeneous Storage Configurations338

Host A

Active/Passive Storage Array

2 1 2

FC Switch 2

HBA3

LUN 5

Active/Passive Storage Array

2 1 2

Array 1 Array 2

2 31 2 3 41

Target 0 Target 1

LUN 5

SPBSPA SPBSPA

11

4

HBA2

FC Switch 1

Figure 9.1 Target numbers in a simple configuration

Figure 9.1 shows the connections between hba2 on host A to LUN5 on Array 1 and
LUN5 on Array 2 via FC Switch 1. Array 1 connects to port 1 on Switch 1, and Array 2
connects to Switch 1 on port 4. As a result, because these are the only targets discovered
by Host A, the port on Array 1 was assigned target 0 whereas the port on array 2 was
assigned target 1.

NotE

Figure 9.1 is oversimplified to illustrate the point. In this case, Switch 2 is not connected to
either storage array.

When you realize that the SAN connectivity is vulnerable to storage processors port
failure, you request from the SAN administrator to add redundant connections to the
second SP on each storage array. The end result is shown in Figure 9.2.

From the Library of raphael schitz

ptg7996124

ESXi 5 View of Heterogeneous Storage 339

T0 T1
T3

T2

Host A

Active/Passive Storage Array

2 1 2

FC Switch 2

HBA3

LUN 5

Active/Passive Storage Array

2 1 2

Array 1 Array 2

2 31 2 3 41

LUN 5

SPBSPA SPBSPA

11

4

HBA2

FC Switch 1
Target

#s

Figure 9.2 Target numbers with added paths from one switch

What the SAN administrator actually did was connect ports 2 and 3 on Switch 1 to Array
1 SPB port 1 and Array 2 SPB port 1.

Now the order of target discovery upon booting Host A makes what was previously known
as Target 1 to be Target 3 because the targets connected to switch 1, ports 2 and 3, are
assigned target numbers 1 and 2, respectively. (Target numbers are listed in dotted black
rectangles in Figure 9.2.)

While checking Host A configurations, you notice that HBA3 is connected to the fabric
but does not see any targets. You check with the SAN administrator who tells you that this
switch was added recently and connected to the hosts, but no connections to the storage
array have been done yet. You request that FC Switch 2 be connected to both storage
arrays with redundant connections to both SP on each array. The end result is shown in
Figure 9.3.

From the Library of raphael schitz

ptg7996124

Chapter 9 Using Heterogeneous Storage Configurations340

T0 T1T0 T1
T3

T2

Host A

Active/Passive Storage Array

2 1 2

FC Switch 2

HBA3

LUN 5

Active/Passive Storage Array

2 1 2

Array 1 Array 2

2 31

LUN 5

SPBSPA SPBSPA

11

4

HBA2

FC Switch 1
Target

#s
2 3 41

T2 T3

Figure 9.3 Target numbers with added paths from the second switch

How would the host see the newly added targets?

From the perspective of HBA3, they are actually numbered in a similar order starting with
target 0 through target 3 (To differentiate from HBA2’s targets, the target numbers are
shown in solid ovals in Figure 9.3.)

Table 9.1 summarizes the target enumeration order.

table 9.1 Order of Target Enumeration

HBA
Number

Switch
Number

Switch
Port

Storage
Array

target Port

Active SP?

target
Number

2 1 1 1 SPA-1 Yes 0

2 1 SPB-1 No 1

3 2 SPB-1 No 2

4 2 SPA-1 Yes 3

From the Library of raphael schitz

ptg7996124

ESXi 5 View of Heterogeneous Storage 341

HBA
Number

Switch
Number

Switch
Port

Storage
Array

target Port Active SP? target
Number

3 2 1 1 SPA-2 Yes 0

2 1 SPB-2 No 1

3 2 SPA-2 Yes 2

4 2 SPB-2 No 3

I color-coded the connections to each SP to give you a visual representation of the
targets’ order. The best practice is symbolized as A-B/A-B. This means that the order of
connection is to a port on SPA and then a port on SPB on each storage array.

With that in mind, it should be obvious from the table that connections from FC Switch 1
ports 3 and 4 to Storage Array 2 are reversed compared to the rest of the connections.

How would the target order affect the runtime names of LUN5 on each storage array?
Note that I did not include the LUN numbers in the table because this applies to all
LUNs presented from each array. You just add the LUN number at the end of the paths,
as I show you next.

Let’s use Table 9.1 to walk the first path discovered to LUN5 on Array 1 Active SP:

HBA2 → Target 0 → LUN5

Doing the same for LUN 5 on array 2 Active SP would be

HBA2 → Target 3 → LUN5

Based on this, the runtime names for LUN5 on each array (after rebooting Host A)
would be

vmhba2:C0:T0:L5 ← LUN 5 on array 1

vmhba2:C0:T3:L5 ← LUN 5 on array 2

NotE

The Runtime Name is based on the first target on which the LUN returns a READY state,
which is the first path available from the initiators to the Active SP.

Why doesn’t the runtime name use paths on HBA3 in this example?

The reason is that at boot time, the LUNs are discovered on HBA2 first because it was the
first HBA to be initialized by the HBA’s driver.

From the Library of raphael schitz

ptg7996124

Chapter 9 Using Heterogeneous Storage Configurations342

The full list paths to LUN5 on Array 1would be

vmhba2:C0:T0:L5 Active ← Current path

vmhba2:C0:T1:L5 Standby

vmhba3:C0:T0:L5 Active

vmhba3:C0:T1:L5 Standby

The paths to LUN5 on Array 2 would be

vmhba2:C0:T2:L5 Standby

vmhba2:C0:T3:L5 Active ← Current path

vmhba3:C0:T2:L5 Active

vmhba3:C0:T3:L5 Standby

Observe that the path to the Active SP for the current path is the second path in the
ordered list for LUN5 on Array 2. This matches our observations from Table 9.1.

Based on your observations, you request from the SAN administrator to swap ports 3
and 4 on FC switch 1 to meet the best practices. The next time you reboot this host, the
targets are renumbered as shown in Figure 9.4.

T0 T1T0 T1
T2

T3

Host A

Active/Passive Storage Array

2 1 2

FC Switch 2

HBA3

LUN 5

Active/Passive Storage Array

2 1 2

Array 1 Array 2

2 31

LUN 5

SPBSPA SPBSPA

11

4

HBA2

FC Switch 1

2 3 41

T2 T3

Figure 9.4 Best practices connectivity

From the Library of raphael schitz

ptg7996124

ESXi 5 View of Heterogeneous Storage 343

Why Do We Care? Should We Care at All?

In releases earlier than vSphere 4.x target numbers were critical to certain functions
because the only canonical (currently known as runtime) naming of LUNs and paths to
them were done via the combination of HBA, Target, and LUN numbers. vSphere 4.x
introduced a new naming convention that utilizes physical IDs of the same three compo-
nents (HBA, Target, and LUN). This continues to be the case in vSphere 5.

So, to illustrate the new naming, let’s take a look at LUN5 from Array 1 (on an EMC
CLARiiON):

fc.20000000c971bc62:10000000c971bc62-

fc.50060160c6e00304:5006016046e00304-

naa.60060160403029005959381bc161e011

The preceding example was wrapped at the hyphens.

The substitution of the elements names is listed in Table 9.2.

table 9.2 Naming Convention Comparison

Element old Name New Name

HBA number vmhba2 fc.20000000c971bc62:10000000c971bc62

Target number T0 fc.50060160c6e00304:5006016046e00304

LUN number L5 naa.60060160403029005959381bc161e011

See the “Naming Convention” section earlier in this chapter for explanations.

Now that you understand the new naming convention, it should be clear that the order of
target discovery does not affect the target numbers and in turn the pathnames. This is not
true for the display names.

Summary
The heterogeneous storage environment is supported by VMware and aids in expanding
your storage environment while preserving your existing investment. You can also use it
for establishing tiered storage for various applications SLAs.

Using runtime names, targets are numbered in the order they are discovered. Adding
targets live results in them being enumerated in the order the new targets are added as well
as by their connections to the switches. At boot time they are re-enumerated in the order
they are connected to the switches.

LUNs with the same LUN number on different storage arrays are identified by their
device IDs and association with the target port IDs.

From the Library of raphael schitz

ptg7996124

This page intentionally left blank

From the Library of raphael schitz

ptg7996124

Chapter 10

Using VMDirectPath I/O

One of the least-known features introduced in vSphere 4.x that continues to be in
vSphere 5 is VMDirectPath I/O. In this chapter, I explain what it is, how it works, and
some practical design implementations.

What Is VMDirectPath?
Have you ever wanted to access a certain storage device directly from within a Virtual
Machine (VM) but the devices is not Raw Device Mapping (RDM) capable?

Do you have a fibre-attached tape library that you want to use within a VM and provide
multipathing to it?

Do you have an application that requires a specific Peripheral Component Interconnect
(PCI) device accessed directly from within the VM?

The answer to these questions is a definite yes! (With caveats.)

VMDirectPath on vSphere 4.x and 5.0 uses a hardware implementation of IOMMU
(I/O Memory Management Unit). This implementation is referred to as VT-d (Virtual
Technology for Directed I/O) on Intel Platform and AMD IOMMU on AMD platform.
The latter was experimental on vSphere 4.x, and it continues to be experimental on
vSphere 5. This technology allows for passing through input/output (I/O) directly to a
VM to which you dedicate a supported PCI I/O device — for example, 10Gb/s Ethernet
NIC or an 8Gb FC HBA.

From the Library of raphael schitz

ptg7996124

Chapter 10 Using VMDirectPath I/O346

Which I/O Devices Are Supported?
Currently the list of supported devices is limited and there is no official HCL (Hardware
Compatibility List) listing them. The current support model for these devices is the PVSP
(Partner Verified and Supported Products) program. This support model means that
VMware partners test and verify the implementation and interoperability of a specific I/O
device within a specific configuration. Such configuration is documented in a VMware
Knowledgebase (KB) article. The partner qualifying the configuration is the first line of
support of such a configuration. By the time this book is in print, this might have been
changed to be covered under the RPQ (Request for Product Qualification) Program.
Check the VMware support website for the current support status.

TIP

The I/O device assigned to a VM is dedicated to that VM and cannot be shared with the
ESXi host. Certain devices with multiple PCI physical functions may be shared with other
VMs on the same host (one function per VM).

To identify which devices are known to be shareable or not, check the /etc/vmware/
passthru.map file. See Table 10.1 for a tabulation of the current version content on
vSphere 5.

Table 10.1 Passthru.map File Listing

Vendor ID Device ID Reset Method fptShareable

Intel 82598 (Oplin) 10Gig cards can be reset with d3d0

8086 10b6 D3d0 Default

8086 10c6 D3d0 Default

8086 10c7 D3d0 default

8086 10c8 D3d0 default

8086 10dd D3d0 default

Broadcom 57710/57711/57712 10Gig cards are not shareable

14e4 164e default false

14e4 164f default false

14e4 1650 default false

14e4 1662 link False

Qlogic 8Gb FC card cannot be shared

1077 2532 default false

From the Library of raphael schitz

ptg7996124

Which I/O Devices Are Supported? 347

Vendor ID Device ID Reset Method fptShareable

LSILogic 1068–based SAS controllers

1000 0056 D3d0 default

1000 0058 D3d0 default

The basic rule is that if the device can be reset via the d3d0 reset method, it can be
shareable between VMs on the same ESXi host. The possible values for the Reset Method
column are flr, d3d0, link, bridge, and default.

The default method is Function Level Reset (FLR) if the device supports it. Otherwise,
ESXi defaults next to link reset and then bus reset. The latter two methods can prevent the
device from being shareable. These are summarized in Table 10.2.

Table 10.2 Reset Methods Comparison

Reset Method Explanation Device Shareable?

Function Level Reset When the VM using the pass-
through device requests a
PCI reset, only the PCI func-
tion on the device is reset.
For example, if there are two
Ethernet ports on the NIC,
only the port used by the VM
is reset.

Yes

Link Reset When a reset is required, the
Physical Function (PF) link is
reset instead of resetting the
PCI function itself.

No

Bus Reset When a reset is required, the
PCI bus is reset instead of
the PCI function itself. This
affects all functions on the
PCI device.

No

From the Library of raphael schitz

ptg7996124

Chapter 10 Using VMDirectPath I/O348

The last column in Table 10.1, fptShareable, means Full Pass Through Shareable. The
possible values are Default, True, and False. The default value is True.

Locating Hosts Supporting VMDirectPath IO on the HCL
The list of devices verified with vSphere 4.x should still be usable on vSphere 5.

Although there is no dedicated HCL for the I/O devices, systems supporting IOMMU
and certified with vSphere 5 are listed on the VMware HCL. You can search for certified
systems following this procedure:

 1. Go to http://www.vmware.com/go/hcl.

 2. Select Systems / Servers from the What Are You Looking For pick list (see
Figure 10.1).

Figure 10.1 VMDirectPath IO HCL search criteria

 3. Select ESXi 5.0 as the Product Release Version.

 4. Select VM Direct Path IO in the Features field.

 5. Click the Update and View Results button (see Figure 10.2).

From the Library of raphael schitz

http://www.vmware.com/go/hcl

ptg7996124

VMDirectPath I/O Configuration 349

Figure 10.2 Preparing to view HCL search results

 6. Scroll down to view the search results (see Figure 10.3).

Figure 10.3 Viewing HCL search results

Although the current list shows a few systems from Dell and Unisys, other systems not on
the list may work, but if issues with VMDirectPath are reported on such systems, you will
most probably not get support from VMware or the I/O device partner.

VMDirectPath I/O Configuration
After you have verified that your system is on the HCL supporting the VM Direct Path
IO feature or if you are adventurous and use a system based on Intel XEON 55xx family of
central processing units (CPUs) in a non-production environment, you are now ready to
configure VMDirectPath I/O.

From the Library of raphael schitz

ptg7996124

Chapter 10 Using VMDirectPath I/O350

 1. Log on to vCenter that manages the ESXi host or directly to the host using vSphere
5 Client as an Administrator/Root user.

 2. Locate the host in the inventory tree and select it.

 3. Select the Configuration tab (see Figure 10.4).

 4. Select the Advanced Settings link under the Hardware section (see Figure 10.4).

Figure 10.4 Accessing the Configure Passthrough menu

If the system is not capable of this feature, you see a Host does not support
passthrough configuration message instead, as shown in Figure 10.5. Notice
that the Configure Passthrough link is not enabled because the feature is not
supported.

Figure 10.5 Host does not support Passthrough configuration

From the Library of raphael schitz

ptg7996124

VMDirectPath I/O Configuration 351

If your system is capable of Passthrough configuration, you see a message No
devices currently enabled for Passthrough similar to what is shown in
Figure 10.4.

To start the configuration process, you may follow this procedure starting from
the view in Figure 10.4:

 1. Click the Configure Passthrough link.

You see the dialog shown in Figure 10.6. Highlighting a device displays its PCI
info in the lower part of the dialog.

Figure 10.6 Passthrough device list

 2. To enable a device, select the checkbox next to it.

 3. If the device you selected has a dependent device, you see the message shown in
Figure 10.7. An example of that is a dual-port network interface card (NIC) where
each port shows as a separate PCI function of the device. This is due to the lack of
PCI-to-PCI Bridge on the dual port card. In this example, you see the PCI ID 2.00.0
and 2.00.1. If NIC had a PCI-to-PCI bridge, it would have had a separate device or
slot number for each port — for example, 2.00.0 and 2.01.0. Selecting OK enables

From the Library of raphael schitz

ptg7996124

Chapter 10 Using VMDirectPath I/O352

both ports. See also the tip in the “Which I/O Devices Are Supported” section
earlier in this chapter.

Figure 10.7 Dependent device message

 4. To complete the configuration, click the OK button as shown in Figure 10.8.

Figure 10.8 Dependent devices selection

 5. You must click the Refresh link for the selected devices to show up in the list (see
Figure 10.9). In the future, if you need to select more devices, you can select the Edit
link, which takes you to a device selection dialog similar to Figure 10.6.

From the Library of raphael schitz

ptg7996124

VMDirectPath I/O Configuration 353

Figure 10.9 Configured devices require reboot

 6. Notice that selecting one of the configured devices in Figure 10.9 shows a This
device needs host reboot to start running in passthrough mode
message in the Device Details section. This is due to the fact that the device was
controlled by vmkernel and now you need to reboot so that it can be passed through
directly to the virtual machine that you configure in the next steps.

 7. After the host is rebooted, the devices should show up on the list with a green icon
(see Figure 10.10).

Figure 10.10 Passthrough devices ready

 8. Locate the VM to which you plan to add the Passthrough PCI device, right-click it,
and then select the Edit Settings option (see Figure 10.11).

From the Library of raphael schitz

ptg7996124

Chapter 10 Using VMDirectPath I/O354

Figure 10.11 Editing a VM

 9. Under the Hardware tab, click the Add button (see Figure 10.12).

Figure 10.12 Virtual machine properties

From the Library of raphael schitz

ptg7996124

VMDirectPath I/O Configuration 355

 10. Select the PCI Devices type and then click Next (see Figure 10.13).

Figure 10.13 The Add Hardware dialog

 11. Select the device from the pull-down list under the Connection section and then
click Next as shown in Figure 10.14.

Figure 10.14 Adding a PCI device

From the Library of raphael schitz

ptg7996124

Chapter 10 Using VMDirectPath I/O356

NOTE

As the dialog in Figure 10.14 indicates, there are limitations imposed on the Virtual
Machine design:

 VM cannot be suspended.

 VM cannot have a snapshot taken or restored.

 VM cannot be vMotioned, which means limited availability when it is part of a DRS
cluster.

 VM cannot be protected by HA (High Availability).

 VM cannot be protected by FT (Fault Tolerance).

 The VM’s minimum memory reservation is automatically set to its memory size.

 12. In the Ready to Complete dialog, click the Finish button.

 13. In the Virtual Machine Properties dialog, click OK to save the changes (see
Figure 10.15).

Figure 10.15 Saving VM configuration changes

From the Library of raphael schitz

ptg7996124

VMDirectPath I/O Configuration 357

 14. Power on the VM. The guest OS detects the newly added device and prompts you
to install its driver (see Figure 10.16). Select the relevant option to proceed with the
driver installation.

Figure 10.16 Guest detects new device

 15. Figure 10.17 shows the device manager in the guest OS after installing the NIC driver.
Notice that it is listed under Network Adapters as well as System Devices. If the device
is a SCSI, SAS, or FC HBA, it displays under the Storage Controllers node.

Figure 10.17 Guest OS showing configured device

From the Library of raphael schitz

ptg7996124

Chapter 10 Using VMDirectPath I/O358

What Gets Added to the VM’s Configuration File?
The procedure in the previous section results in a Virtual Machine Configuration File
(vmx) with the entries shown in Listing 10.1.

Listing 10.1 PCI Passthru Entries in vmx File

pciPassthru0.present = "TRUE"

pciPassthru0.deviceId = "1639"

pciPassthru0.vendorId = "14e4"

pciPassthru0.systemId = "4ea55642-5e38-0525-7664-00219b99ddd8"

pciPassthru0.id = "02:00.0"

sched.mem.min = "1072"

The first entry enables PCI Passthru device number 0.

The second entry sets the passthrough device ID based on the physical device PCI
properties. If you look at Figure 10.8, you see that value listed as 1639.

The third entry sets the vendor ID from the same information in Figure 10.8.

The fourth entry sets the system ID, which is the ESXi host’s UUID. You can obtain this
ID using the following command:

esxcli system uuid get

4ea55642-5e38-0525-7664-00219b99ddd8

The fifth entry sets the PCI ID (which is the Slot:Device.Function format).

The last entry sets the VM’s minimum memory to match the limit that was specified when
this VM was created.

Practical Examples of VM Design Scenarios Utilizing
VMDirectPath I/O
Some configurations were qualified by VMware partners under vSphere 4.1. As of the date
of this writing, they have not been updated for vSphere 5. However, because this feature
was not changed between 4.1 and 5.0, I can safely assume that what was qualified on
vSphere 4.1 ends up being qualified on vSphere 5.0.

HP Command View EVA Scenario
HP qualified the following configuration:

From the Library of raphael schitz

ptg7996124

Practical Examples of VM Design Scenarios Utilizing VMDirectPath I/O 359

Qualified HBAs

� Emulex LPe 1205-HP 8Gb FC HBA (456972-B21)

� Emulex LPe12000 8Gb FC HBA (AJ762A/81E)

� Emulex LPe12002 8Gb FC HBA (AJ763A/82E)

� QLogic QMH2562 8Gb FC HBA (451871-B21)

� QLogic QLE2562 8Gb FC HBA

� QLogic QLE2560 8Gb FC HBA

Qualified Software

� Minimum supported version Command View EVA (Enterprise Virtual Array)
version 9.3:

� SSSU v9.3

� EVAPerf v9.3

� SMI-S v 9.3

� Layered applications support

� All layered applications currently supported with supported CVEVA
(Command View EVA) version and VMDirectPath

Qualified HP Storage Arrays

� EVA 4100/6100 (HSV200-A)

� EVA 8100 (HSV210-A)

� EVA 4400 (HSV300)

� EVA 4400 (HSV300-S)

� EVA 6400 (HSV400)

� EVA 8400 (HSV450)

Qualified Guest OS

� Microsoft Windows 2008 R2 Standard

� Microsoft Windows 2008 R2 Enterprise Edition

� Microsoft Windows 2008 R2 Datacenter Edition

� Microsoft Windows 2008 R2 Webserver Edition

From the Library of raphael schitz

ptg7996124

Chapter 10 Using VMDirectPath I/O360

How Is It Used?

This configuration passes through one of the qualified Fibre Channel (FC) HBAs (Host
Bus Adapters) to the VM where Command View EVA is installed to manage one of the
qualified EVA Storage arrays from within the VM. This effectively replaces the physical
appliance that does the same function.

Passing Through Physical Tape Devices
Configuring a VM with a passthrough HBA enables the guest OS to drive tape devices
attached to the HBA. So, if the HBA is an FC initiator, the VM can gain direct access to
FC-attached tape libraries and drives that are zoned to the HBA. This is different from
NPIV (N_Port ID Virtualization) where the latter creates virtual N-Ports assigned to the
VM and the devices are accessed as RDMs.

This also works with SAS and SCSI HBAs for direct-attached tape drives and media
libraries even if they did not work on the ESXi host directly or with “generic passthrough”
configuration.

If you configure more than one FC HBA, you can utilize multipathing using guest OS–
based multipathing software.

Using VMDirectPath I/O does not require N-Port virtualization nor does it need RDMs
configured. The host has no access to the attached devices because it does not have access
to the HBA assigned to the VM.

IMPORTANT NOTE

This configuration is not supported by VMware. If your storage partner is willing to support
it, make sure that they qualify it and submit the results to VMware under the PVSP program
or RPQ (Request for Product Qulalification).

There have been a few issues reported to VMware regarding some I/O devices failing to
work or the VMs failing to use the assigned device. I would strongly recommend that you
check VMware Knowledgebase for reported issues. I would love to hear from you about
your experience via my blog at http://vSphereStorage.com or twitter @mostafavmw.

What About vmDirectPath Gen. 2?
In browsing through the vSphere Client’s user interface (UI), you might have stumbled
upon a field called DirectPath I/O Gen. 2. What is it and how is it used?

From the Library of raphael schitz

http://vSphereStorage.com

ptg7996124

What About vmDirectPath Gen. 2? 361

You can actually find it in the host’s Summary tab (see Figure 10.18). If the field’s value is
Supported, it means that the host platform supports both IOMMU and SR-IOV (Single
Root I/O Virtualization). It also means that if you install PCIe network cards that support
SR-IOV in this host, the cards can be used for passing through Network I/O to VMs
(I explain SR-IOV in the next section). The main difference between this and the first-
generation VMDirectPath I/O is that Gen. 2 is network device I/O centric, a distributed
virtual switch must be configured, and the VM’s virtual NIC uses VMXNET3 emulation
instead of exposing the physical NIC’s properties to the guest OS. Another major
difference is that the I/O card is not dedicated to a single VM.

Figure 10.18 System supports DirectPath I/O Gen. 2

How Does SR-IOV Work?
PCIe devices that support SR-IOV have multiple Virtual Functions (VFs) associated with
one Physical Function (PF) with a single PCI root, which is something similar to what
I mention in Step 10 in the “VMDirectPath I/O Configuration” section but on a larger
scale. Instead of two physical functions sharing the PCI root, multiple VFs are associated
with a PF on a single PCI root.

To illustrate the difference between VMDirectPath I/O and its second generation,
Figure 10.19 shows the VMDirectPath where each I/O device is assigned to a VM.

From the Library of raphael schitz

ptg7996124

Chapter 10 Using VMDirectPath I/O362

Hypervisor

NICs or HBAs

PCIe

Intel VT-d or AMD I0MMU

Application

Operating System

Driver

Application

Operating System

Driver

Application

Operating System

Driver

Figure 10.19 VMDirectPath I/O direct assignment

Figure 10.20 shows the second generation’s VFs, their association with PFs, and
assignment to VMs.

From the Library of raphael schitz

ptg7996124

What About vmDirectPath Gen. 2? 363

Hypervisor

PCIe

Intel VT-d or AMD I0MMU

Application

Operating System

Driver

Application

Operating System

Driver

Application

Operating System

Driver

VF0
VF1
VF2

Figure 10.20 VF assignment (SR-IOV)

Figure 10.20 shows a single PCIe I/O card, which can be a NIC or an HBA that provides
VFs. Each VF is assigned to a separate VM. The latter uses a VF driver for the pass-
through I/O device. For example, passthrough NICs would use the VMXNET3 driver.

The virtual functions can be migrated from one device to another, thus removing
the restrictions with vMotion that were imposed by the earlier generation of
VMDirectPath IO.

From the Library of raphael schitz

ptg7996124

Chapter 10 Using VMDirectPath I/O364

Supported VMDirectPath I/O Devices
There is no HCL for VMDirectPath I/O devices per se. Rather, devices as well as
qualified configurations, are planned to be listed on the PVSP page at http://
www.vmware.com/resources/compatibility/vcl/partnersupport.php.

This page will list both generations of devices. As of the date of this writing, there were
no qualified devices or configurations listed yet. By the time this book is in print, this
policy might have been changed to requiring RPQ instead of PVSP. Please check the
VMware support website for the current support status.

Example of DirectPath IO Gen. 2
Considering a VM running on an ESXi 5 host on a Cisco Unified Computing System
(UCS) that is equipped with Cisco Virtual Machine Fabric Extender (VM-FEX)
distributed switches, the following features are available with VMDirectPath IO Gen. 2
configuration (VM-FEX must be in High-Performance Mode):

� VM can be suspended and resumed.

� VM can have a snapshot taken or restored.

� VM can be vMotioned, which means it can be part of a DRS cluster.

� VM can be protected by HA (High Availability).

The trick for supporting vMotion is that the vmkernel quiesces and checkpoints the Cisco
Dynamic Ethernet interface presented by the Cisco Virtual Interface Card (VIC).

The state, created by the checkpoint process, is transferred to the destination host in a
similar fashion to how the memory checkpoint used to be done for vMotion.

Troubleshooting VMDirectPath I/O
Possible issues you may encounter fall into three groups: interrupt handling, device
sharing, and IRQ (interrupt request) sharing.

The latter can be Virtual IRQ or Physical IRQ.

Interrupt Handling and IRQ Sharing
The default interrupt handling for PCI Passthrough on vSphere 5 is MSI/MSI-x (Message
Signaled Interrupts). This works with most devices by default. If you come across a device
that fails to be configured with VMDirectPath, you may need to disable MSI for the VM

From the Library of raphael schitz

http://www.vmware.com/resources/compatibility/vcl/partnersupport.php
http://www.vmware.com/resources/compatibility/vcl/partnersupport.php

ptg7996124

Troubleshooting VMDirectPath I/O 365

that uses that device. Effectively, this allows the VM to use IO-APIC (Advanced
Programmable Interrupt Controller) instead of MSI. Common examples of such a device
are Broadcom 57710 and 57711 when assigned to a Windows 2003 or 2008 VM.

To disable MSI for the given device in the VM, edit the VM’s vmx file and add the
following line:

pciPassthru0.msiEnabled = "FALSE"

If the virtual device number is higher than 0 (that is, you have more than one passthrough
device), substitute the 0 with the relevant value.

There are some devices that are known to work with the MSI-enabled option set to
TRUE:

� Qlogic 2500 FC HBA

� LSI SAS 1068E HBA

� Intel 82598 10Gbps NIC

Device Sharing
When an I/O device has more than one PCI function (for example, dual or quad port
NIC) and there is no PCI-to-PCI Bridge on the card, most probably it is not fptShareable
(full passthrough shareable). See Table 10.1 earlier for details. If you are using a device
that is not listed in that table and you know it is capable of resetting itself properly using
D3 to D0 power transition (D3D0 value in Table 10.1), you might need to add an entry to
the /etc/vmware/pcipassthru.map file. The following is a sample of the format:

<Vendor ID> <Device ID> d3d0 default

To identify the device’s PCI ID info, you may run the following command on the ESXi
Shell locally, via SSH or via vMA 5:

esxcli hardware pci list

Listing 10.2 shows sample output listing one device:

Listing 10.2 Sample Listing of PCI Device ID Info

000:001:00.1

 Address: 000:001:00.1

 Segment: 0x0000

 Bus: 0x01

 Slot: 0x00

From the Library of raphael schitz

ptg7996124

Chapter 10 Using VMDirectPath I/O366

 Function: 0x01

 VMkernel Name: vmnic1

 Vendor Name: Broadcom Corporation

 Device Name: Broadcom NetXtreme II BCM5709 1000Base-T

 Configured Owner: Unknown

 Current Owner: VMkernel

 Vendor ID: 0x14e4

 Device ID: 0x1639

 SubVendor ID: 0x1028

 SubDevice ID: 0x0236

 Device Class: 0x0200

 Device Class Name: Host bridge

 Programming Interface: 0x00

 Revision ID: 0x20

 Interrupt Line: 0x0e

 IRQ: 14

 Interrupt Vector: 0x88

 PCI Pin: 0x66

 Spawned Bus: 0x00

 Flags: 0x0201

 Module ID: 27

 Module Name: bnx2

 Chassis: 0

 Physical Slot: 0

 Slot Description: Embedded NIC 2

 Passthru Capable: true

 Parent Device: PCI 0:0:1:0

 Dependent Device: PCI 0:0:1:0

 Reset Method: Link reset

 FPT Sharable: true

The values you need are highlighted for easier identification.

So, the sample line looks like this for the device in this example:

14e4 1639 d3d0 default

From the Library of raphael schitz

ptg7996124

Troubleshooting VMDirectPath I/O 367

NOTE

Based on the sample device in Listing10.2, the Reset Method is Link reset. It also
shows that the values of Passthru Capable as well as FPT Shareable are set to true.

These mean that without adding the entry in the pcipassthru.map file, the default values are
what are reported by the PCI info shown in Listing 10.2 and that the device is Shareable and
supports Full Passthru Sharing. Adding the entries in the file overrides Reset Method only
because you are leaving the fptShareable set to default.

Summary

VMDirectPath I/O has been available since vSphere 4.x and continues to exist in vSphere
5. You can use it to pass through physical storage or network devices, which expose the
physical I/O card to the guest OS. The latter installed the physical card’s driver. Design
scenarios include FC-attached and direct-attached tape drives and media libraries and
other devices that otherwise are not available via vmkernel.

A second generation of VMDirectPath IO is introduced in vSphere 5 that utilizes
SR-IOV. This has not been fully implemented yet, and I have seen it with Network I/O
Passthrough. As of the date of this writing, I have not seen an HBA implementation yet.

SR-IOV spec is available from PCI-SIG at http://www.pcisig.com/specifications/iov/
single_root/.

An introduction paper is available from Intel at http://www.intel.com/content/dam/doc/
application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf.

From the Library of raphael schitz

http://www.pcisig.com/specifications/iov/single_root/
http://www.pcisig.com/specifications/iov/single_root/
http://www.intel.com/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
http://www.intel.com/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf

ptg7996124

This page intentionally left blank

From the Library of raphael schitz

ptg7996124

Chapter 11

Storage Virtualization Devices
(SVDs)

Storage vendors competing in the enterprise had to come up with ways to first coexist
with and then migrate from their competitors’ storage. This need begat a storage feature
that is the topic of this chapter: Storage Virtualization Devices (SVDs). As simple as it
may sound, it is a complex concept and varies from one vendor to another. This chapter
deals with this topic from a vSphere 5 perspective. It is not intended to be an in-depth
discussion of the SVD configuration details.

SVD Concept
The concept can be simplified as follows:

Take existing third-party block storage and present it to initiators as if it is the SVD’s
own storage. The SVD then presents virtualized storage as block devices or network file
systems.

From the Library of raphael schitz

ptg7996124

Chapter 11 Storage Virtualization Devices (SVDs)370

How Does It Work?
Virtualizing storage can be done via any—or a mix—of the following approaches:

�� Address Space Remapping—The SVD abstracts the physical location of the data
and provides a logical representation of that data to the initiators. For example, more
than one LUN (logical unit number) on the back-end array (the one being virtu-
alized) can be pooled together as one large LUN. The front-end array (the SVD
itself) keeps a mapping table of which blocks of the virtual LUN (the one it presents
to the initiators) are mapped to which blocks on the back-end LUNs.

�� Metadata—This is “data about data” that presents the big picture to the initiators.
In simple words, the metadata holds the “structure” of the data presented to the
initiators and might include the mapping table mentioned in the previous point. The
device details—LUN size, boundaries, RAID type, and so on—are presented by the
metadata of the SVD. This is somewhat like VMFS presenting a physical device to
a VM as a RAW Device Mapping (RDM). The properties of the device are stored
in the virtual machine file system (VMFS) metadata, but the physical block locations
are obtained from the storage array hosting the physical LUN.

�� I/O Redirection—When I/O is sent from the initiator to a specific block on the
virtualized device, it gets redirected to the mapped physical block on the back-end
device. It is somewhat like how VMkernel redirects the I/O sent from a VM to
an RDM. This function is based on one or more of these three mechanisms (see
Figure 11.1).

LBA0

LBA6

LUN4LUN1

Virtual Device Physical Device

Mapping Table

Virtual Block Physical Block

LUN1:LBA0 LUN4:LBA6

Figure 11.1 I/O redirection and address space mapping

From the Library of raphael schitz

ptg7996124

SVD Concept 371

For example, when I/O is sent to a block on the virtual device (Logical Block
Address 0 (LBA0) on LUN1), it gets redirected to the Logical Block Address
of the block on the physical device (for example, LBA6 on LUN4) based on the
mapping table defined by the Address Space Remapping. The metadata would
have pointers to the data on the virtual LUN so that the initiator would know
where the data is located.

SVD Architecture

SVDs are available mostly in hardware configuration with specialized firmware. There are
some varieties that are available in software form. However, the latter are certified with
vSphere in association with certain hardware configurations or software-only configu-
ration. For example, IBM SVC, HDS USPv, and NetApp V-series were certified as
hardware solutions, whereas others such as Falcon Store NSS Gateway were certified as a
Storage Virtual Appliance.

Figure 11.2 shows a diagram depicting the SVD architecture.

Array 2

Physical
Storage

ESXi Host

ESXi Host

ESXi Host

Array 2 Virtual
LUNs

Array 1 Virtual
LUNs

Back-end
Fabric

SVD

Array 1

Frontend
FC

iSCSI
NFS

Front-end
FC

iSCSI
NFS

Operating System

Application

Operating System

Application

Figure 11.2 SVD architecture

From the Library of raphael schitz

ptg7996124

Chapter 11 Storage Virtualization Devices (SVDs)372

SVD storage connects to two different sets of fabrics: front-end and back-end fabrics.
The front-end fabric connects the hosts to the SVD, and the back-end fabric connects
the SVD to the back-end storage arrays. The front-end fabric may be substituted with
iSCSI or NFS protocols in the few configurations certified with iSCSI or NFS front-end.
Regardless of the front-end protocol, the back-end is only supported with Fibre Channel
(FC) connectivity between the SVD and the back-end storage.

In this configuration the SVD acts as an initiator to the back-end storage arrays while it
acts as a target for the ESXi hosts.

Note

In the case of FC front- and back-ends, the fabric separation can be physical or logical. The
FC back-end can be done via zoning where the hosts and the front-end array’s ports are in
one set of zones, whereas the front-end array and back-end array’s ports are in a separate set
of zones.

Constraints
The SVD configuration certified for vSphere 5 restricts the back-end storage arrays’
connectivity to FC only. Other protocols are not supported for back-end storage. The
ESXi hosts must never be given access to the back-end arrays while zoned to the SVD.
This is to prevent data corruption because the hosts may treat the physical LUNs and the
virtual LUNs as different devices. Back-end LUNs must never be presented to hosts.

If the physical LUNs on the back-end storage have VMFS3 or VMFS5 volumes on them,
the virtual LUNs representing them are seen by the ESXi hosts as snapshot LUNs and the
VMFS volumes are not mounted automatically. I discuss the behavior of snapshot technol-
ogies with VMFS datastores (or volumes) in Chapter 15, “Snapshot Handling.”

The ESXi hosts can access the VMFS volumes via the virtual LUNs by one of two
methods:

�� Resignature the VMFS volumes—This is the process of regenerating a new VMFS
volume signature and writing it to the metadata. This result is a renamed volume
with a prefix snap.

�� Force mount the VMFS volumes—This is a new feature in vSphere 5 that allows
the vSphere Administrator to mount a VMFS volume that resides on a snapshot
LUN without having to resignature the VMFS volume.

I discuss these methods in Chapter 15 as well.

From the Library of raphael schitz

ptg7996124

SVD Concept 373

Migrating Back-end Storage to the SVD

If your final goal of utilizing the SVD is to migrate your data to the new storage array
and then decommission the old storage, you can proceed further beyond the configu-
ration discussed in this chapter by using features provided by the SVD to migrate the data
from the physical LUNs to physical storage on the SVD to back the virtual LUNs. This
process is transparent to the front-end initiators (ESXi hosts) and does not usually impose
a negative effect on I/O performance. When the data is completely migrated, the virtual
LUN is switched to being a physical LUN internally by the SVD. At this point, the SVD
acts as a physical storage array like any others, connected to the initiators via the front-end
fabric.

SVD Design Decisions

There are several choices to consider in your SVD design. Here, I group them into two
major groups: front-end and back-end choices.

Front-end Design Choices
There are several design choices for the front-end, which I cover in this section.

Which SVD?

The choice of SVD is yours based on the features available, supported storage tiers,
supported protocols, capacity, and so on.

The front-end array must be on VMware HCL (Hardware Compatibility List) as an SVD
certified with ESXi 5. The back-end array must also be certified with ESXi 5 (with FC
connectivity). To verify that, you may follow these steps:

 1. Go to http://www.vmware.com/go/hcl.

 2. Select Storage/SAN from the pull-down menu as shown in Figure 11.3.

From the Library of raphael schitz

http://www.vmware.com/go/hcl

ptg7996124

Chapter 11 Storage Virtualization Devices (SVDs)374

Figure 11.3 Accessing storage/SAN HCL page

 3. Select ESXi 5.0 in the Product Release Version: box. (See Figure 11.4.)

 4. Select SVD in the Array Type: box.

Figure 11.4 Selecting release and array type

 5. Click the storage vendor’s name under the Partner Name box. You may select more
than one by pressing Ctrl and clicking on each partner’s name.

 6. Click the Update and View Results button.

 7. Scroll down to see the results.

Which Protocol?

The next design choice for the front-end is the supported protocols. As I mentioned
earlier, SVDs are supported with the FC protocol as well as Fibre Channel over Ethernet
(FCoE), Internet Small Computer System Interface (iSCSI), and network file system

From the Library of raphael schitz

ptg7996124

SVD Concept 375

(NFS). If you plan to use the SVD as a migration tool to the SVD’s physical storage,
you might want to consider the additional storage capacity that you plan to use after the
migration is completed. For example, you might want to add more disks on the array to
accommodate the data to be migrated from the back-end storage.

Which Bandwidth?

As for the connection speed, your choice is limited by what is listed on the HCL for the
SVD. To identify which speeds are supported, follow these steps as a continuation of the
HCL search mentioned earlier:

 1. In the search results, locate the storage array you plan to use and select the hyperlink
under the Model column for the array as shown in Figure 11.5.

Figure 11.5 Search results

 2. The array details are displayed (see Figure 11.6).

Figure 11.6 Array details

From the Library of raphael schitz

ptg7996124

Chapter 11 Storage Virtualization Devices (SVDs)376

The connection speed would be based on the Test Configuration column’s value as
shown in Table 11.1.

table 11.1 Test Configuration and Connection Speeds

test Configuration Front-end Connection Speed Back-end Connection Speed

FC-SVD-FC FC 4Gb or 2Gb FC 4Gb or 2Gb

8G FC-SVD-FC FC 8Gb FC 4Gb or 2Gb

ISCSI-SVD-FC iSCSI 1 Gb or 10Gb FC 4Gb or 2Gb

NAS-SVD-FC Ethernet 1Gb or 10Gb FC 4Gb or 2Gb

To narrow your search result to one of these test configurations, simply add a step
right before Step 6 by selecting the desired test configuration from the Array Test
Configuration field (see Figure 11.7).

Figure 11.7 Selecting the test configuration

How About Initiator Records on the Front-end Array?

The front-end array must be configured with initiator records, FA Director Bits, Host
Records, and so on based on the storage vendor’s recommendations similar to those they
provided as if you are configuring the array with physical LUNs.

Back-end Design Choices
The back-end array choices are actually constraints imposed on your design because
they are existing configurations, and you have to consider the risks resulting from these
constraints and mitigate these risks.

Which Bandwidth?

The common scenario is that the back-end connection speed may be equal to or slower
than the front-end connection speed because the former are older generations with slower
ports. Your configuration’s effective speed is the least common denominator of both the

From the Library of raphael schitz

ptg7996124

SVD Concept 377

front-end and the back-end connection speeds. In most cases, using the SVD for the
purpose of migrating storage from the back-end to the SVD, the existing hosts may be
equipped with FC HBAs with speeds matching the back-end connection speed. This is
another constraint imposed on your design. You can mitigate this by later adding faster
FC HBAs to the ESXi hosts after the storage migration is complete and the back-end is
disconnected.

Which Protocol?

If the front-end array supports additional protocols—for example, FCoE or iSCSI—you
may plan on adding matching initiators in the ESXi hosts. For example, your choice of
storage arrays provides 10Gbps iSCSI SP ports and your network design provides this
bandwidth. You can migrate one host at a time (using vMotion to vacate the host) and then
replace the FC HBAs with 10Gbps iSCSI initiators. You then present the same LUNs
on the SVD to the host via iSCSI protocol. Make sure that the LUN number and UUID
are not changed. After booting, the upgraded ESXi host should start enjoying the added
bandwidth.

Initiator Records

Because the front-end arrays pose as initiators to the back-end arrays, you need to check
with the corresponding front-end array’s configuration requirements.

LUN Presentation Considerations
I briefly touched on this topic earlier in the “Constraints” subsection of the “SVD Archi-
tecture” section.

Depending on the storage array vendor and model, the back-end LUNs’ properties might
not be preserved when presenting their equivalent SVD virtual LUNs. These properties
are

�� LUN number

�� Device ID (for example, NAA ID)

I discuss this in further detail later in Chapter 15, but here is the gist of it:

VMFS datastore’s signature is partly based on the LUN number as well as the device
ID. If either of these values change (especially the device ID), the ESXi hosts treat this
datastore as if it is on a snapshot LUN. This is a major constraint that can be addressed
in this environment by VMFS datastore resignature. I discuss other alternatives in
Chapter 15.

From the Library of raphael schitz

ptg7996124

Chapter 11 Storage Virtualization Devices (SVDs)378

RDM (RAW Device Mapping) Considerations
If your ESXi hosts use LUNs on back-end array as RDMs, you need to re-create the
RDM entries on the “resignatured” VMFS volumes because the original entries were
created using the original LUN properties (LUN number and Device ID). I provide
further details and procedure in Chapter 13, “Virtual Disks and RDMs.”

tIP

If the main business requirement for the design is to migrate the data from the old arrays
to the new ones, I strongly recommend using a phased approach in which you begin with a
heterogeneous storage configuration by adding the new array to the SAN as an additional
physical storage and then utilize Storage vMotion to move the VMs from the old datastores
to the new ones. This has an effect on your design because you need to consider the target
LUN sizing, I/O SLAs, and availability.

Storage vMotion moves the RDM entries to the target datastore. However, you need to plan
a downtime to migrate the mapped physical LUNs to the new storage array and re-create
the RDM entries.

After the data migration is complete, you may move on to the next phase in which you
disconnect and decommission the old storage arrays.

Pros and Cons of Using SVDs

SVDs offer many advantages that you can leverage compared to the older storage arrays
that hide behind them:

�� Migrate your old data with less downtime. (I can’t say “no downtime” because you
need to resignature the VMFS datastores.)

Hmm! Storage vMotion does that, too (Data Migration, that is), and with no
downtime (unless you have RDMs see Chapter 13).

�� Migrate your current data from over-utilized storage arrays.

I’ve heard of that before! Oh yeah! vSphere 5 does this using Storage DRS
(Dynamic Resource Scheduler) automatically.

�� Data replication, mirroring, snapshots, and so on if your old array does not provide it
and the SVD does.

�� SVD might have larger cache, faster processors, faster ports, and larger command
queue. One needs to consider the costs associated with adding an SVD as compared
to upgrading the storage array.

From the Library of raphael schitz

ptg7996124

SVD Concept 379

On the other hand, there are a few disadvantages to using SVDs:

�� VMFS datastores most likely require being resignatured. This also requires rereg-
istering all VMs residing on these datastores. Using Storage vMotion avoids this
because you would be moving the VMs to a new datastore instead of using a virtu-
alized LUN on an SVD.

�� Migrating RDMs requires re-creating their VMFS entries.

�� You cannot take rotating outages of the ESXi hosts to migrate the data because you
should never present the back-end LUNs to some hosts while other hosts access
them via the SVD’s virtual LUNs. This means that all hosts in the cluster must
be down while the switchover is done. Alternatively, you can follow the approach
outlined in the following “Migration Process” section.

Migration Process

Let me take you through the journey from the old array to the new one with a stop in the
twilight zone! Oh, I meant the SVD.

 1. Connect the SVD to the fabric that will serve as the front-end fabric.

 2. Connect the SVD to the fabric that will serve as the back-end fabric.

 3. Zone the SVD SP ports, designated to the connectivity with the back-end storage, to
the SP ports on the back-end storage.

 4. Shut down all VMs running on the back-end storage.

 5. For all ESXi hosts, follow the procedure “Unmounting a VMFS Volume” in
Chapter 7, “Multipathing and Failover,” to unmount the back-end–based VMFS
volumes.

 6. For all ESXi hosts, follow the procedure “Detaching the Device Whose Datastore
Was Unmounted” in Chapter 7 to detach the LUNs associated with the VMFS
volumes you unmounted in Step 5.

 7. Remove all hosts from the zones with the old storage array on the back-end fabric.

 8. Add all hosts to the zones with the SVD on the front-end fabric.

 9. Create the virtual LUNs on the SVD mapping to the physical LUNs on the old
storage array.

 10. Present the virtual LUNs to one ESXi host using the same LUN numbers as the old
one (this is for ease of management rather than functionality).

From the Library of raphael schitz

ptg7996124

Chapter 11 Storage Virtualization Devices (SVDs)380

 11. Using the ESXi host mentioned in Step 10 (via vCenter Server), mount the VMFS
datastores presented by the virtual LUNs. This gives you the choice to resignature
the datastores. See the detailed procedure “Resignaturing Datastores” and other
alternatives in Chapter 15.

 12. Present the virtual LUNs to the remaining ESXi hosts and rescan to discover the
virtual LUNs and mount the VMFS datastores.

 13. Using vCenter, remove the orphaned virtual machines from the inventory and
browse the datastores to register the VMs on their corresponding ESXi hosts.

 14. Make sure to place the VMs in the resource pools to which they belonged prior to
this procedure.

 15. Power on the VMs and all should be back to normal (a better normal I hope).

If your goal is to decommission the old storage array, start the data migration process to
the SVD. It is better to plan this for off-peak hours. After this process is completed, switch
the virtual LUNs to physical mode depending on the SVD’s specific procedures (see
the SVD’s documentation for additional details). Finally, disconnect the SVD from the
back-end fabric when all back-end data has been migrated to the SVD.

Summary

SVDs present older back-end arrays’ LUNs to initiators as if they are physically located
within the SVDs themselves. Back-end connectivity is limited to the FC protocol, whereas
the front-end varies by SVD and spans FC, iSCSI, and NFS. Data migration is one of
the main features of most SVDs. After the data is migrated, you can decommission the
back-end arrays as needed. VMFS volumes on the back-end arrays are detected as being
on snapshot LUNs when presented to the host via the SVD. RDM entries need to be
re-created regardless of keeping the RAW LUNs on the back-end arrays or migrating
them to the SVDs.

From the Library of raphael schitz

ptg7996124

Chapter 12

VMFS Architecture

vSphere 5 and its near predecessors are inherently highly scalable clustered environ-
ments. From the very beginning of the life of ESX, VMware Virtual Machine File System
(VMFS) has been the core element that holds the environment together.

VMFS is the core component of vSphere’s storage virtualization as it abstracts the under-
lying storage and presents it to Virtual Machines (VMs) in various formats: virtual disks,
PassthruRDMs, nonPassthruRDMs, snapshots, and so on. More on that later!

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture382

History of VMFS
VMFS evolved from a flat file system to a highly specialized clustered file system over four
generations.

VMFS1

The first version of VMFS, which shipped with ESX 1.x, was a flat file system (did not
provide directories) and provided three modes: Private, Public, and Shared.

Private mode VMFS was used for storing virtual disks of VMs that are not shared between
hosts. This resided mostly on local storage internal to the host or directly attached to it.

Public mode VMFS was used on shared storage for storing virtual disks of VMs that can
run on more than one ESX host and used file locking mechanism to prevent the same
virtual disks from being opened by multiple hosts concurrently.

Shared mode VMFS was used exclusively for MSCS-clustered VMs. This mode did not
enforce file-level locking and left that function to the clustering software within the guest
OS. Shared mode VMFS was created on local or shared storage to support cluster-in-a-
box (CIB) and cluster-across-boxes (CAB).

Due to the fact that the file system was flat, VM configuration files had to be stored in a
hierarchy of directories on a local EXT2 filesystem (in the early days, the VM configu-
ration file extension was cfg, which was changed to vmx in later releases). The directory
structure used to be located within the user’s home directory, which provided some level
of ACL (Access Control List) based on local users’ Linux-style accounts.

I had an ESX 1.5.2 host running in my home office closet for more than five years, and its
uptime was most of these five years (apart from a couple of prolonged power outages that
depleted my UPS battery). I had so many panics on my physical Linux hosts and BSODs
(Blue Screen of Death) on my physical Windows desktop, I almost forgot that I was still
running the ESX 1.5.2 host.

VMFS2

With the release of ESX 2, VMware upgraded the file system to version 2, which was also
a flat file system. However, the Private mode was deprecated.

Tip

You may see a private mode file system on ESXi 5 but not on VMFS file system. Rather, it is
a property of the ESXi 5 bootbanks, which are VFAT file systems.

From the Library of raphael schitz

ptg7996124

History of VMFS 383

VMFS2 added multi-extent capability to extend the datastore onto additional logical unit
numbers (LUNs) up to 32 extents.

ESX 2.5 introduced vMotion, which requires the use of Public mode VMFS2 datastores
shared between hosts in datacenter.

VMFS3

Virtual Infrastructure 3 (VI3) introduced the first hierarchical version of VMFS and
added file system journaling for enhanced resiliency and recoverability. Also, with this
release, the Shared mode was deprecated leaving Public as the sole mode available from
VMFS. Now you know the origin of that mode you may have observed in the properties of
VMFS3 and 5 file systems (see Figure 12.1).

Figure 12.1 VMFS3 properties

VI3 also introduced Logical Volume Manager (LVM) for VMFS3, which enhanced the
ability to span a VMFS datastore onto multiple LUNs to form a larger datastore beyond
2TB in size. This simply concatenates multiple smaller LUNs into a larger VMFS3
volume up to 32 extents. The main difference between VMFS3 and VMFS2 is that loss of
any of the extents (other than the head extent) will not invalidate the rest of the VMFS3
datastore (more on that later in this chapter in the “Span or Grow?” section).

LVM also handles resignature of VMFS3 or VMFS5 datastores that are detected to be on
snapshot LUNs. (For more details, see Chapter 15, “Snapshot Handling”).

VI3 supported VMFS2 but in Read-Only mode for the sole purpose of live migration of
VMs from the old VMFS2 datastores to VMFS3 datastores. This was done using the early
version of Storage vMotion, which was command-line based in the first release of VI3 via
Remote command-line interface (RCLI) or VIMA (Virtual Infrastructure Management
Assistant).

The Storage vMotion process organized the VMs in directories on the target VMFS3
datastore.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture384

VMFS5

vSphere 5 continues support for VMFS3 in addition to introducing VMFS5. The latter
provides improved scalability and architectural changes to enable scalability which include
the following:

�� GUID Partition Table (GPT) to support larger datastore extent size greater
than 2TB

�� Single block size (1MB) that supports all file sizes. VMFS3 maximum file size was
tied to various block sizes ranging from 1 to 8MB.

�� Smaller sub-block size (8KB) compared to 64KB in VMFS3.

�� Datastores can be tagged as ATS-only volumes after the Storage Arrays, hosting the
LUNs backing them, are detected as supporting the ATS VAAI primitive (Atomic
Test and Set). I cover this in Chapter 16, “VAAI.”

VMFS 3 on Disk Layout
I cannot share with you the exact VMFS layout because it is proprietary VMware IP.
However, I am allowed to share with you some publicly available diagrams that I used in
some of VMworld and Partner Exchange presentations.

Figure12.2 depicts VMFS3 layout.

Disk Offset

LVM Header Offset

VMFS Header

Heartbeat Region

Data

Volume Metadata

Partition Offset

VMFS3

MBR (~64KB)

1MB padding

Figure 12.2 VMFS3 on disk layout

From the Library of raphael schitz

ptg7996124

History of VMFS 385

The regions illustrated in Figure 12.2 are

�� VMFS3 partition offset — It is at a certain location relative to the disk offset. I show
you how to identify this location later in this chapter under the “Re-creating a Lost
Partition Table for VMFS3 Datastores” section.

�� LVM — The next area in the file system is the Logical Volume Manager (LVM)
Header. It starts 1MB from the partition offset. (Remember this fact later when I
show you how to restore the partition table.) It exists on all devices on which the
volume is spanned and holds the following:

�� Number of extents that are logical building blocks of the file system.

�� Number of devices on which the volume is spanned. These are commonly
referred to as extents or physical extents and should not be confused for the pre-
vious item.

�� Volume size.

�� Is this a snapshot? This is an attribute that is turned on by VMFS when it
identifies that the LUN housing the datastore has a different device ID
from that stored in the metadata. I explain the snapshot volumes later in
Chapter 15.

�� Metadata — The following area is the Volume Metadata. It exists on all devices on
which the volume is spanned. The following regions make up the metadata and are
represented by five systems files (see Figure 12.3). These files are hidden (with a
leading period and .sf suffix). They are the Volume Header and four resource system
files.

Figure 12.3 VMFS3 System Files

�� Volume Header (vh) defines the volume structure including

�� The volume name — There is a misconception that the “volume name”
is located in the LVM header, but it is actually in the Volume Header
within the datastore’s metadata.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture386

�� VMFS3 UUID — This is the volume’s unique identifier, which is par-
tially composed of MAC address of the uplink used by the management
port on the ESXi host that was used to first create or resignature the
volume. This is also referred to as the volume “signature.” I discuss this
in Chapter 15.

�� Accessing the datastore via the ESXi Shell or via SSH is via a directory
structure:

/vmfs/volumes/<volume-UUID>

or

/vmfs/volumes/<volume-label>

�� The volume label is actually a symbolic link to the volume UUID. Such
links are automatically created by vmkernel at the time it mounts the
datastore based on the volume name. To see the link, use the ls -al
command as shown in Figure 12.4.

Figure 12.4 VMFS labels are symbolic links

�� The first column of the output shows the file system modes, which are
Unix/Linux style modes modifiable using chmod. The first mode in this
example is either d or l. The former means that this is a directory and
the latter means that this is a link. The remaining modes are the permis-
sions for the Group, User, and Others in the form of rwx which means
Read, Write, and Execute. The last mode for the Others is sometimes t
which means Sticky. The sticky bit means that the directory or link can
only be modified by root or the owner:

�� The second column shows the number of inodes — also known as file
descriptors — used by this directory entry.

From the Library of raphael schitz

ptg7996124

History of VMFS 387

�� The third and fourth columns show the group and usernames of the file
owner, which is the account used to create the entry.

�� The fifth column shows the size in bytes. This is the size of the file or
the directory (not the directory’s content size).

�� The sixth column is the date and time stamp of the last time the file or
the directory was modified.

�� The last column shows the file or directory name and if the entry is a
symbolic link, it would show to which entry it is linked.

NoTe

The output shown in Figure 12.4 shows some UUIDs that have no symbolic links. These
are related to visorFS.

�� The Extent ID — This is the ID that the LVM header uses to identify which
physical extent of the datastore this device holds.

�� Disk Block Size — Do not confuse this with the File Block Size.

The following file system resources are organized in clusters. Each resource in the cluster
has associated metadata and locks (see Figure 12.5).

R-1 R-2 R-4

L1-4 M1-4

R-3

Locks Metadata Resources

Resource
cluster

Figure 12.5 VMFS3 resource cluster

The clusters are grouped into Cluster Groups. The latter repeat to make the file system
(see Figure 12.6).

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture388

L1-4 L5-8M1-4 M5-8

Lx-y Lxx-yyMx-y Mxx-yy

Cluster
group 1

-
-
-
-
-

Cluster
group X

File System

Rx1Rx Rx2 Ry

Rxx Rxx1 Rxx2 Ryy

R1 R2 R3 R4

R5 R6 R7 R8

Figure 12.6 Cluster groups form file system

�� File Descriptor Cluster (fdc) — File descriptors (inodes) keep track of the location
of file data using a fixed number of addresses (256) stored within each inode. These
addresses may be sub-blocks, file blocks (see Figure 12.7), or pointer blocks (see
Figure 12.8).They are for sub-blocks when the file is 64KB or smaller in size. They
are for file blocks when the file is more than 1MB but not larger than 256 * file block
size. They are for pointer blocks when the file is larger than 256 * file block size.

�� Sub-Block Cluster (sbc) — Files that are equal to or smaller than VMFS3
sub-block size occupy a sub-block each (64KB). If a file grows beyond a VMFS3
sub-block size, it is no longer sub-allocated. This helps reduce wasting space
occupied by smaller files. VMFS5 provides smaller sub-blocks (8KB), which I cover
later under the “File Allocation Improvements” section.

An example of a file block direct addressing is shown in Figure 12.7.

From the Library of raphael schitz

ptg7996124

History of VMFS 389

File Block

File Block

File Block

File
Descriptor

File Block

Max File Size before using indirect Addressing
256 Block Addresses x File Block Size

256 x
File Block
Addresses

Direct Addressing

Figure 12.7 VMFS3 direct block addressing

An example of indirect block addressing using pointer blocks is shown in Figure 12.8.

File Block

File Block

File Block

File Block

File
Descriptor

Pointer
Blocks

PB

1024 x File
Block Addresses

1024 x File
Block Addresses

Max File Size
256 Block Addresses x 1024 Pointer Blocks x File Block Size

256 x
Pointer Block

Addresses

Figure 12.8 VMFS3 indirect block addressing

�� Pointer Block Cluster (pbc) — When a file is larger than the direct Block
Addressing limit (refer to Figure 12.7) where each File Descriptor holds 256 block
addresses * file block size, indirect block addressing is used. In the latter, the file
descriptors hold pointer block addresses instead of file block addresses. Each pointer
block holds up to 1024 file block addresses. Pointer blocks are used for indirect
addressing. Figure 12.8 shows an indirect addressing block diagram. Each file
descriptor holds 256 pointer block addresses. Each pointer block in turn holds (or
references) 1024 file block addresses. Pointer blocks are assigned to hosts in cluster
groups for better efficiency.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture390

To better understand the correlation between the file size and VMFS3 resources, see
Table 12.1.

Table 12.1 File Size Correlation with VMFS3 Resources

File Size Type of Addresses Stored in
File Descriptor

Type of Resources Files
that the Data is Stored in

< 1MB Sub-block Sub-blocks

>= 1MB, <= 256 * X MB File block File blocks

> 256 * X MB Pointer block File blocks

�� File Block Bitmap (fbb) — These are the bitmap of the file blocks’ data on disk.
File blocks themselves are fixed-size basic units of storage on the VMFS file system.
VMFS3 provided four different file block sizes that support different max file sizes.
These are listed in Table 12.2.

Table 12.2 VMFS3 File Block Sizes

File Block Size Max File Size

1MB 256GB (minus 512bytes)

2MB 512GB (minus 512bytes)

4MB 1TB (minus 512bytes)

8MB 2TB (minus 512bytes)

The formula for these max file sizes is (256 pointer block addresses per file descriptor *
1024 file block addresses per pointer block * file block size)

Example of 1MB file block: 256*1024*1MB = 256GB

NoTe

Max file size is always short by 512 bytes.

From the Library of raphael schitz

ptg7996124

History of VMFS 391

Tip

You can list the pointer blocks and sub-blocks counts on VMFS3 using the following
command:

vmkfstools -Ph -v10 /vmfs/volumes/FC200/

VMFS-3.54 file system spanning 1 partitions.

File system label (if any): FC200

Mode: public

Capacity 199.8 GB, 39.1 GB available, file block size 1 MB

Volume Creation Time: Wed Mar 16 00:47:30 2011

Files (max/free): 30720/4792

 Ptr Blocks (max/free): 64512/64285

 Sub Blocks (max/free): 3968/0

UUID: 4d8008a2-9940968c-04df-001e4f1fbf2a

Partitions spanned (on "lvm"):

 naa.6006016055711d00cef95e65664ee011:1

DISKLIB-LIB : Getting VAAI support status for /vmfs/volumes/FC200/

Is Native Snapshot Capable: NO

�� The heartbeat region — I explain in Chapter 14, “Distributed Locks,” the function
of this region when I explain locking mechanisms and concurrent access to the
shared VMFS datastores.

VMFS5 Layout
Figure 12.9 depicts VMFS5 on disk layout.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture392

Disk Offset

LVM Header Offset

VMFS Header

Heartbeat Region

Data

Volume Metadata

Partition Offset

VMFS5

Copy of GPT

GPT (1MB)

1MB padding

Figure 12.9 VMFS5 on disk layout

VMFS5 layout is somewhat similar to VMFS3, but it has some major differences including
the following:

�� The partition is GUID Partition Table (GPT) based (see the “GPT on Disk
Layout” section later in this chapter). The move to adopt this format was to break
loose from the limitations of MBR’s (Master Boot Record) 32-bit address space.

�� GPT address space allows vSphere to utilize LUNs larger than 2TB
as VMFS5 extents as well as PassthruRDMs (see the “Double Indirect
Addressing” section later in the chapter). For more information about GPT,
see Wikipedia http://en.wikipedia.org/wiki/GUID_Partition_Table.

�� GPT allows for a theoretical maximum disk and partition size of 8 Zettabytes
(1024 Exabytes)! However, vSphere 5 limits this to 64TB which is the largest
LUN size it supports.

�� GPT supports more than four primary partitions compared to MBR.

From the Library of raphael schitz

http://en.wikipedia.org/wiki/GUID_Partition_Table

ptg7996124

History of VMFS 393

NoTe

When a VMFS3 is upgraded to VMFS5, it retains its MBR partition table.

After the datastore is grown beyond 2TB size, the MBR partition table is switched to GPT.

�� At the end of the device there is a secondary GPT. However, vSphere 5 does not
provide tools for utilizing this for partition table recovery (at least not yet!)

�� In-between the two regions I discussed in the first two bullets lies the VMFS5
partition layout. The latter appears similar to VMFS3, but I am over simplifying this
because I am not authorized disclose the actual details. However, what I can share
with you are some architectural changes that aim at improving VMFS scalability and
performance.

These changes are listed in the following sections.

Spanned Device Table

VMFS3 and VMFS5 are capable of spanning a volume onto multiple LUNs (see the “Span
or Grow?” section later in this chapter). VMFS5 introduced a new property, Spanned
Device Table, which stores the device IDs (for example, NAA IDs) for easier identification
of extents. This table is stored in the Spanned Device Descriptor on the first device of the
spanned VMFS datastore (also referred to as device 0 or head extent).

To list the content of this table, you may do the following:

 1. Identify the device ID of the head extent using the following:

vmkfstools -Ph /vmfs/volumes/<datastore-name>

For example, if the volume name is Datastore1, the command would be

vmkfstools -Ph /vmfs/volumes/Datastore1

The output would be something like Listing 12.1.

Listing 12.1 Listing Extents’ Device ID

VMFS-5.54 file system spanning 2 partitions.

File system label (if any): Storage1

Mode: public

Capacity 414.5 GB, 277.1 GB available, file block size 1 MB

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture394

UUID: 4bd783e0-1916b9ae-9fe6-0015176afd6e

Partitions spanned (on "lvm"):

 naa.6006016012d021002a49e23fa349e011:1

 naa.6006016012d021002b49e23fa349e011:1

This means that the datastore is spanned on two devices. The first one is the
head extent.

 2. Use the head extent device ID you located (including the partition number) to list
the Spanned Device Table as shown in Figure 12.10.

Figure 12.10 Listing spanned device table

The displayed text in the right column of the output is the list of devices matching the
earlier output of vmkfstools.

NoTe

As long as the head extent remains accessible, you can get the information listed in items
1 and 2. The spanned datastore can survive any of its extents going offline other than the
Head Extent. If this happens and the datastore is missing one of these extents, any input/
output (I/O) destined to blocks on the missing extent result in an I/O error while I/O to the
rest of the datastore is successful.

To identify the missing device, you can run the vmkfstools command; the output shown in
Listing 12.2 clearly states which device is offline.

From the Library of raphael schitz

ptg7996124

History of VMFS 395

Listing 12.2 Listing Volume Extent’s Device ID

VMFS-5.54 file system spanning 2 partitions.

File system label (if any): Storage1

Mode: public

Capacity 414.5 GB, 277.1 GB available, file block size 1 MB

UUID: 4bd783e0-1916b9ae-9fe6-0015176afd6e

Partitions spanned (on "lvm"):

 naa.6006016012d021002a49e23fa349e011:1

 (device naa.6006016012d021002b49e23fa349e011:1 might be offline)

 (One or more partitions spanned by this volume may be offline)

File Allocation improvements

To illustrate the following points, let’s first get some verbose VMFS5 properties by
running the command shown in Listing 12.3.

Listing 12.3 Listing VMFS5 Properties

vmkfstools -Ph -v10 /vmfs/volumes/Storage1/

VMFS-5.54 file system spanning 1 partitions.

File system label (if any): Storage1 (2)

Mode: public

Capacity 63.2 GB, 62.3 GB available, file block size 1 MB

Volume Creation Time: Sun Jun 5 00:24:41 2011

Files (max/free): 130000/129990

Ptr Blocks (max/free): 64512/64496

Sub Blocks (max/free): 32000/32000

Secondary Ptr Blocks (max/free): 256/256

File Blocks (overcommit/used/overcommit %): 0/971/0

Ptr Blocks (overcommit/used/overcommit %): 0/16/0

Sub Blocks (overcommit/used/overcommit %): 0/0/0

UUID: 4deaccc9-20cf1f3a-36f7-001f29e04d50

Partitions spanned (on "lvm"):

 mpx.vmhba1:C0:T0:L0:3

DISKLIB-LIB : Getting VAAI support status for /vmfs/volumes/Storage1/

Is Native Snapshot Capable: NO

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture396

The following are VMFS5 improvements to file allocation:

 1. Block size is now 1MB only, which supports all file sizes. There is no longer a need
to specify larger block sizes to be able to support larger file sizes.

Listing 12.3 shows the output taken from a freshly created VMFS5 datastore.
The block size is listed as 1 MB; in contrast, VMFS3 provided block sizes 1, 2, 4,
and 8 MB which supported max file sizes.

 2. Maximum number of files increased to 130,000 compared to 30,720 on VMFS3.

 3. Maximum file size increased to 64TB. However, this is currently limited to
PassthruRDMs. This means that virtual disk file size is still limited to 2TB.

 4. Maximum datastore size remains at 64TB. However, extent size can be more than
2TB with the max being 64TB.

 5. Sub-block allocation is now 8KB block size compared to 64KB on VMFS3 effec-
tively increasing the number of sub-blocks.

 6. Small File Packing (also known as Zero Level Address or ZLA) — When a file size
is smaller than 1KB, it is stored within its own file descriptor (inode). When the file
grows beyond that size, its data is copied out to a sub-block if it has not reached 8KB
in size. When it grows beyond that, it is stored in file blocks.

 7. Improved efficiency of handling Pointer Block Cluster (pbc) caching.

 8. Added .pb2.sf system file to support pbc growth in a future release. Currently, the
max limit of total number of pbc is 64512. Figure 12.11 shows VMFS5 system files.
They are the same system files as in VMFS3 (refer to Figure 12.3) with the addition
of .pb2.sf to VMFS5.

Figure 12.11 VMFS5 System files

From the Library of raphael schitz

ptg7996124

History of VMFS 397

Double indirect Addressing

Freshly created VMFS5 datastore provides 1MB file blocks only. To support varying file
sizes beyond 256GB, it resorts to using double indirect addressing. If you look at VMFS3
implementation of indirect addressing you notice that the maximum number of file blocks
is fixed and the max file size depends on the file block size. On the other hand, VMFS5
has a fixed file block size (1MB), and to be able to address file sizes beyond 256GB, each
secondary pointer block points to 1024 primary pointer block. Because the latter can store
up to 1024 file block addresses, it effectively increases the addressable file blocks 1024
folds (see Figure 12.12).

File Block

File Block

File Block

File Block

File
 Descriptor

Secondary
Pointer
Blocks

Primary
Pointer
Blocks

256 x
Pointer Block

Addresses

1024 x Pointer
Block Addresses

1024 x Pointer
Block Addresses

1024 x File Block
Addresses

1024 x File Block
Addresses

1MB

1MB

1MB

1MB

Theoretical Max File Size
256 Pointer Block x 1024 Pointer Blocks x 1024 File Blocks x 1MB File Block Size

PBPB

Figure 12.12 VMFS5 double indirect block addressing

This architecture would provide a theoretical max file size of 256TB based on the
following formula:

256 block addresses per file descriptor * 1024 addresses per secondary pointer block * 1024
file block addresses per primary pointer block * 1MB per file block

(256*1024*1024*1MB =256TB)

However, vSphere 5 limits the max virtual disk size to 2TB, but the max size of
PassthruRDM as well as the LVM (max datastore size) are limited to 64TB.

The secondary pointer blocks resources are partially used in vSphere 5. They are limited
to 256 addresses. This would explain the 64TB limit, which, based on the formula, is the
resultant of 256*256*1024*1MB.

If we revisit Table 12.1, the revised version of that table for VMFS5 would be Table 12.3.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture398

Table 12.3 File Size Correlation with VMFS5 Resources

File Size Type of Addresses
Stored in File
Descriptor

Secondary pointer
Blocks Used?

Type of Resources
File That the Data
is Stored in

< 1MB Sub-block No Sub-blocks

>= 1MB, <= 256*1MB File block No File blocks

> 256MB, <=256
*1024*1MB

Pointer block No File blocks

>256GB,
<=256*256*1024*1MB
(64TB)

Pointer block Yes File Blocks

Common Causes of partition Table problems
I have seen several cases where a VMFS3 partition table is corrupt or lost. The most
common cause is presenting the VMFS3 LUN to non-ESXi hosts, especially those
running Windows. You are probably familiar with the dialog you get when you first run
the Disk Management tool on a Windows OS that prompts you to “initialize the disk.”
Even if you do not partition it or format it using this tool, initializing the disk results in
overwriting the partition table. Positive proof of that was evident from the dump of the
first few sectors of the LUN housing the VMFS volume where I frequently found the
Windows signature.

The same can happen, although by a different mechanism, with Linux or Solaris hosts
given access to the VMFS3 LUN.

The next most common cause is user error.

VMware has introduced some mechanisms to prevent such corruption, except for
hardware/firmware issues, to prevent the partition table that is in use from being clobbered
or deleted.

I have not seen this as much recently. However, older logs had shown the following
messages:

in-use partition modification is not supported

Can’t clobber active ptable for LUN <Device ID>

From the Library of raphael schitz

ptg7996124

History of VMFS 399

It is strongly recommended that you utilize a logical grouping of initiator records on
storage arrays — for example, host groups — and assign the LUNs to that group only.
This prevents accidental presentation of ESXi hosts’ LUNs to non-ESXi hosts.

Another less common cause is storage array rebuilding the RAID set after losing one of the
backing disks. Sometimes with a faulty cache or firmware some blocks fail to be written to
the disk and all you see on these blocks are some fixed pattern similar to that used by the
disk manufacturer to test the media. This has been fixed later by the storage vendors with
which VMware has collaborated on identifying this mode of corruption. Depending on
which blocks were affected, the partition table could get corrupt.

Re-creating a Lost partition Table for VMFS3 Datastores
For the increasingly rare occasion that you would face a situation where the partition
table is gone or corrupt, let me share with you a process that can help you re-create it.
This process works most of the time as long as the corruption does not extend into the
metadata.

Normal partition Table

Before I begin with the process, let me first review how the normal partition table looks!

To list the partition table, you use fdisk. This tool is based on Linux which was modified
to support VMFS3 file system. The command to list it on ESXi 5 is

fdisk -lu /vmfs/devices/disks/<device ID>

or

fdisk -lu /dev/disks/<device ID>

NoTe

/vmfs/devices is a symbolic link to /dev on ESXi 5

The output of a healthy partition table looks like Figure 12.13.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture400

Figure 12.13 Listing a VMFS3 healthy partition table

In this example I used -lu option to get the units in sectors that are physical disk blocks
512bytes in size. You see why I need to use this unit when I go through the process of
rebuilding the partition table.

If you use -l instead, you get something like this:

fdisk -l /dev/disks/naa.6006016055711d00cef95e65664ee011

Disk /dev/disks/naa.6006016055711d00cef95e65664ee011: 214.7 GB,
214748364800 bytes

255 heads, 63 sectors/track, 26108 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id
System

/dev/disks/naa.6006016055711d00cef95e65664ee011p1 1 26108 209711486 fb
VMFS

Notice that the outcome is using Cylinders as units whose size is 16065 * 512, which
makes it difficult to count blocks in the procedure.

Now let’s continue with the first output. It shows that the VMFS partition with ID fb
starts at sector 2048, which means it starts 1MB from the disk offset. The partition ends
at sector 419425019. Note that fb is the System ID for VMFS. This was an available ID
at the time VMware first extended fdisk for use with ESX. Another ID VMware also uses
is f, which is for vmkcore or vmkernel core dump partition. You would usually encounter
the latter type on ESXi boot devices.

From the Library of raphael schitz

ptg7996124

History of VMFS 401

Repairing Corrupt or Lost partition Table

Now, on to the important part of this section; the actual process of repairing the partition
table.

The outline of the process is the following:

 1. Identify the device name that represents the affected LUN.

 2. Locate the LVM header offset.

 3. Calculate the partition offset.

 4. Use fdisk to re-create the partition table.

 5. Mount the datastore.

Identifying Device Name

 1. List the VMFS datastores and their associated device names using esxcli.
Figure 12.14 show the output of command:

esxcli storage vmfs extent list

This command lists all VMFS datastores extents and their associated device
names and partition numbers.

Figure 12.14 Listing VMFS extents (devices)

 2. List all devices on this host using the esxcfg-scsidevs command. In this example,
I used the -c option to get a compact list of devices and their associated Console
Device names. (Figure 12.15 was cropped to show only the relevant columns.)

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture402

Figure 12.15 Listing all storage devices

 3. Notice that I have four Direct-Access devices but my previous output showed
three VMFS datastores. Comparing both outputs, I can identify the device ID and
console device name of the potentially affected LUN, which is naa.6006016055711
d00cff95e65664ee011.

From Steps 1 and 2 the device name I need to use with this procedure is

/dev/disks/naa.6006016055711d00cff95e65664ee011

Notice that I changed /vmfs/devices to /dev because the former is linked to the latter, and
it makes the command line shorter.

To verify that you located the affected device, you can run fdisk -lu to list its partition
table.

fdisk -lu /dev/disks/naa.6006016055711d00cff95e65664ee011

Disk /dev/disks/naa.6006016055711d00cff95e65664ee011: 10.7 GB, 10737418240
bytes

255 heads, 63 sectors/track, 1305 cylinders, total 20971520 sectors

Units = sectors of 1 * 512 = 512 bytes

Disk /dev/disks/naa.6006016055711d00cff95e65664ee011 doesn’t contain a
valid partition table

What If the Datastore Has Extents?

If you have a datastore with extents and one or more of these extents suffer from a
damaged or lost partition table and the head extent is intact, the best way to identify the
affected devices is by running

vmkfstools -P /vmfs/volume/<volume-name>

This should list the extents and their device names. Use the device name whose status is
offline. The rest of the procedure stays the same.

From the Library of raphael schitz

ptg7996124

History of VMFS 403

If the head extent is also affected, attempt to rebuild the partition tables on all affected
devices and, if it’s successful, it all comes together and the volume is mounted.

Locating LVM Header Offset

To located the LVM header offset, you may use hexdump as shown in Listing 12.4.

Listing 12.4 Locating the LVM Header Offset Using hexdump

hexdump /dev/disks/naa.6006016055711d00cff95e65664ee011

00001f0 0000 0000 0000 0000 0000 0000 0000 aa55

0000200 0000 0000 0000 0000 0000 0000 0000 0000

*

0200000 d00d c001 0003 0000 0015 0000 1602 0000

0200010 0000 0000 0000 0000 0000 0000 0000 0000

Using the hexdump utility included with ESXi 5, you can list the hex content of the device.

The LVM header offset would show d00d c001 as the first 4 bytes. The following 2 bytes
show the major VMFS version. In this example it is 0003, which means that this volume
was VMFS3 version. If it were VMFS5, the value would have been 0005.

Tip

Do not use the -C option with hexdump because it lists the output in reverse byte order. For
example, d00d c001 would be listed as 0d d0 01 c0 which can get you confused.

Based on the dump shown in Listing 12.4, the LVM header offset is at 0200000 address.

Calculating the Partition Offset

Now, let’s use the LVM header offset to count backward 1MB, which is how far it lies
from the partition offset:

 1. Convert the LVM header offset value from hex to decimal:

0200000 Hex = 2097152 Decimal

 2. Convert the byte count to sectors (divide by 512, which is the sector size):

2097152 / 512 = 4096 sectors

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture404

 3. Subtract the number of sectors that add up to 1MB (2048 sectors of 512 bytes each):

4096– 2048 = 2048

 This means that the partition starts at sector 2048.

Using fdisk to Re-create the Partition Table

The process of re-creating the partition table is fairly straightforward using these steps:

fdisk -u /dev/disks/naa.6006016055711d00cff95e65664ee011

This uses fdisk to specify sectors instead of cylinders.

Now use the following options and values:

�� n (to create a new partition)

�� p (to specify that this is a primary partition)

�� 1 (to specify that this is the first partition)

�� 2048 (to set the partition offset)

�� [enter] (to accept the default value for the last sector)

�� t (to change the system type)

�� fb (to specify VMFS as the system type)

�� w (to write the changes and exit fdisk)

Mounting the Recovered Datastore

To mount the VMFS datastore, rescan the device for VMFS datastore by running

vmkfstool -V

This is a hidden option that probes the filesystem and mounts the datastore found on the
re-created partition table. To verify if the datastore was mounted successfully, check the
content of /vmfs/volumes directory using

ls /vmfs/volume

Re-creating a Lost partition Table for VMFS5 Datastores
VMFS5 datastores have a relatively similar partition table geometry using GPT instead
of MBR.

From the Library of raphael schitz

ptg7996124

History of VMFS 405

The process of identifying the partition offset is identical to that of VMFS3, as discussed
in the previous section. The only difference is that the major version of VMFS is 5 instead
of 3 in the hexdump.

The process of re-creating the partition table utilizes partedUtil instead of fdisk.

GpT on Disk Layout

Before I delve into the process details, let’s first review the GPT on disk layout.

Figure 12.16 shows the GUID partition table scheme.

Protective MBRLBA 0
LBA 1
LBA 2
LBA 3

LBA 34

LBA – 34

LBA – 33

LBA – 2

LBA – 1

Primary GPT Header

Entries 5-128

Partition 1

Partition 2

Remaining Partitions

Secondary GPT Header

Entry 1 Entry 2 Entry 3 Entry 4

Entries 5-128

Entry 1 Entry 2 Entry 3 Entry 4

GUID Partition Table Scheme

Pr
im

ar
y

G
PT

Se
co

nd
ar

y
G

PT

Figure 12.16 GPT layout
[Permission to use image under CC-By-SA-2.5 from Wikipedia]

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture406

The layout in Figure 12.16 shows the following:

�� The first LBA (Sector), which is LBA0, is occupied by a Protective MBR.

�� The Primary GPT Header on LBA1 (second disk sector).

�� LBA2 has the first four entries followed by entries 5 through 128 which end on
LBA33. VMFS partition can be anywhere beginning from LBA34 (35th disk sector).

�� The secondary GPT header is on the last LBA on the disk. So, it starts at LBA -1,
which means that if the device has 1024000 sectors, the last LBA would be number
1024000 minus 1 or 1023999.

�� The backup entries 5 through 128 are on the previous 31 sectors (LBA -2 through
LBA -32).

�� The remaining entries 1 through 4 are on the previous sector (LBA -33).

This means that the usable sectors on the device begin on LBA 34 and end on LBA -34.

To illustrate this, let’s examine the following output:

partedUtil getptbl /dev/disks/naa.6006016055711d00cff95e65664ee011

gpt

1305 255 63 20971520

1 2048 20971486 AA31E02A400F11DB9590000C2911D1B8 vmfs 0

This command lists the healthy gpt partition table from the device I used as a recovery
example. This output was before the partition table was removed.

The output shows the following:

�� The partition type — in this example, it is gpt. Another value you might see is
msdos which is what you see when you use partedUtil with a VMFS3 partition
created by pre-ESXi 5 hosts.

�� The second line shows the disk geometry in the format of (C, H, S, Sectors) or
Cylinders, Heads, Sectors per track, and Total Sector count.

�� The last line shows the VMFS partition details in the format of (Partition Number,
Offset (first sector), Last Sector, GUID, Partition type, and finally the attribute).

The GUID is specific to VMFS. You can get this value from the following output:

partedUtil showGuids

Partition Type GUID

 vmfs AA31E02A400F11DB9590000C2911D1B8

From the Library of raphael schitz

ptg7996124

History of VMFS 407

 vmkDiagnostic 9D27538040AD11DBBF97000C2911D1B8

 VMware Reserved 9198EFFC31C011DB8F78000C2911D1B8

 Basic Data EBD0A0A2B9E5443387C068B6B72699C7

 Linux Swap 0657FD6DA4AB43C484E50933C84B4F4F

 Linux Lvm E6D6D379F50744C2A23C238F2A3DF928

 Linux Raid A19D880F05FC4D3BA006743F0F84911E

 Efi System C12A7328F81F11D2BA4B00A0C93EC93B

 Microsoft Reserved E3C9E3160B5C4DB8817DF92DF00215AE

 Unused Entry 00000000000000000000000000000000

The partition type is vmfs and the attribute is always 0 for VMFS partitions.

partedUtil getUsableSectors /dev/disks/naa.6006016055711d00cff95e65664ee011

34 20971486

This command lists the first and last usable sector on the device. Based on the gpt on disk
layout details I provided in the getptbl command, the last usable sector is LBA -34. This
example shows that the total number of sectors on this device is 20971520. If you subtract
34 to get the last usable sector, that would be (20971520 - 34 = 20971486), which matches
the getptbl command output.

Re-creating the partition Table

The syntax to re-create the partition table is

partedUtil setptbl "/dev/disks/<DeviceName>" DiskLabel "partNum startSec-
tor endSector type/guid attribute"

Required parameters:

�� DeviceName — Use the NAA ID of the affected device including path—for
example, /dev/disks/naa.6006016055711d00cff95e65664ee011.

�� DiskLabel —This is the partition type which for our purpose can be either msdos
or gpt. The former creates a partition fdisk style, (MBR) whereas the latter creates
a partition for use with ESXi 5 datastores. To rebuild a VMFS5 partition table, this
must be gpt.

�� partNum —This is the partition number. Because any of VMFS5 datastores are
stored on a single partition (other than local storage used for booting ESXi or
Boot-from-SAN LUNs), the partition number is always 1.

�� startSector —This is the partition offset that you calculated from the hexdump
analysis in the “Locating LVM Header Offset” section. In our example, it is 2048.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture408

�� endSector —This is the last usable sector I discussed in the “GPT on Disk Layout”
section. So, to get the last usable sector number, you subtract 34 from the total
number of sectors of the affected device.

To refresh your memory, you get the size of the device in sectors, by running

partedUtil get /dev/disks/<device-ID>

If this does not work, possibly because the primary gpt was also damaged or
deleted, you may use fdisk instead using:

fdisk -lu /dev/disks/<device-ID>

For example:

fdisk -lu /dev/disks/naa.6006016055711d00cff95e65664ee011

Disk /dev/sdd: 10.7 GB, 10737418240 bytes

255 heads, 63 sectors/track, 1305 cylinders, total 20971520 sectors

In this example, the total number of sectors on this device is 20971520. To get
the last usable sector, subtract 34 from that and you get 20971486.

 6. The GUID is AA31E02A400F11DB9590000C2911D1B8, which I listed earlier in
the output of

partedUtil showGuids

 7. The partition attribute, which is always 0 for VMFS partitions.

Using these guidelines, the command to re-create the partition table for this example
would be

partedUtil setptbl "/dev/disks/naa.6006016055711d00cff95e65664ee011" gpt "1
2048 20971486 AA31E02A400F11DB9590000C2911D1B8 0"

After the partition table has been re-created, you can mount the datastore automatically by
running:

vmkfstools -V

If the operation is successful, you should see the datastore listed in the /vmfs/volumes
directory.

From the Library of raphael schitz

ptg7996124

History of VMFS 409

Tip

Check the /var/log/vmkernel.log for the following error:

LVM: 2907: [naa.6006016055711d00cff95e65664ee011:1] Device expanded (actual size
20969439 blocks, stored size 20964092 blocks)

This message means that the last sector used in re-creating the partition table did not match
the original value. You can simply calculate the difference and add it to the partedUtil
command you used to re-create the table. So, in this example, I had deliberately used a “last
sector” value that was 5347 sectors short of the correct last usable sector.

You do not need to delete the table you created. Just rerunning the command with the new
values overwrites the current table.

oNe MoRe Tip

If you see the following message in /var/log/vmkernel.log

WARNING: Partition: 434: No Prot MBR for “naa.6006016055711d00cff95e65664ee011”.
GPT entries will be skipped

This means that the “protective MBR” on the first sector was deleted or corrupt.
Re-creating the table as outlined this section should recover from this situation as long as
the corruption was limited to the first 34 sectors of the device.

YeT ANoTHeR Tip

In the very rare situation where the primary GPT is corrupt while the protective MBR is
still intact, you would get the following output when you run “partedUtil getptbl”
command:

partedUtil getptbl /dev/disks/naa.6006016055711d00cff95e65664ee011

Error: The primary GPT table is corrupt, but the backup appears OK,

so that will be used.

Gpt

1305 255 63 20971520

If this is the case, you might be able to recover the Primary GPT using partedtUtil fix
<device-name> which copies secondary GPT and places it in the primary GPT blocks.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture410

preparing for the Worst! Can You Recover from a File System
Corruption?
The procedures previously discussed assume that the extent of the corruption was limited
to certain sectors whose structure is repairable using generally available tools such as fdisk
and partedUtil. However, damage beyond the VMFS partition offset that involves the
metadata is much harder to repair without enlisting the services or a data recovery service
such as Kroll-Ontrack or Seagate (see VMware KB 1015413 http://kb.vmware.com/
kb/1015413).

To improve your chances of recovering your VMFS file system, you should have a BC/DR
(Business Continuity/ Disaster Recovery) plan that provides backup of your data, storage
replication/mirroring/snapshots and so on, recovery site(s), as well as infrastructure/fabric
redundancy. Let me share with you a few tips that can improve your chances using simple
tasks that do not take too much of your time.

Maintain a List of Your VMFS partition Tables

The easiest way to gather the partition table it to collect vm-support dumps either locally
on the host or preferably via vSphere Client 5 connected to vCenter Server.

Collecting Diagnostics Data

To collect vm-support dumps, follow this procedure:

 1. Log on to vCenter Server using the vSphere 5 client.

 2. Select Administration, Export System Logs. (See Figure 12.17.)

Figure 12.17 Accessing the Export System Logs menu

 3. In the Source dialog (see Figure 12.18), expand the inventory tree and select the list
of ESXi hosts from which you want to collect the dumps. If you want all hosts in the
datacenter or the Cluster, select the checkbox next to one of the latter two. If you
want to collect vCenter Server logs and vSphere Client logs, select the checkbox

From the Library of raphael schitz

http://kb.vmware.com/kb/1015413
http://kb.vmware.com/kb/1015413

ptg7996124

History of VMFS 411

at the bottom of the dialog and then click Next. Note that I manually uncheck the
boxes next to the hosts that are not responding.

Figure 12.18 Selecting hosts for exporting system logs

 4. In the Select System Logs dialog, you may accept the defaults and click Next to
continue. If you want to reduce the dump size, you may uncheck all but the log types
you want to collect. To understand what gets collected by each selection, read the
corresponding manifests located in /etc/vmware/vm-support directory on one of the
ESXi 5 hosts.

 5. In the Download Location dialog, specify a folder accessible your vSphere 5 Client
desktop and then click Next.

 6. Review the summary, and if it matches your choices, click Finish to start the
collection process.

 7. The final dialog shows the progress of the log collection tasks. When it is completed,
the logs are located in the folder you specified in Step 5 within a folder named after
the following pattern:

VMware-vCenter-support-YYYY-MM-DD@HH-MM-SS

The vm-support dumps are named after the following pattern:

ESXiHostName-vmsupport-YYYY-MM-DD@HH-MM-SS.tgz

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture412

 8. When the need arises to use the collected data, you can do the following:

a. Transfer the dump to an ESXi host or a Linux host.

b. Extract the dump using

tar zxvf <dump-file-name>

c. The extracted files are in a directory named after the following pattern:

esx-ESXiHostname-YYYY-MM-DD--HH.MM

d. Before proceeding with utilizing the content of the extract dump, you must
first reconstruct some output that was collected in chunks. You do so by
running

cd <path-to-extracted-dump>

./reconstruct.sh

Which Parts of the Dump Provide Partition Table Details?

After expanding the vm-support dump as outlined in Steps 8b through 8d, you can locate
the output of

esxcfg-info -a

in the /commands directory.

In this output you find all publicly available ESXi host properties and configuration as of
the time the dump was collected. It is organized in a text-based tree structure. Branches
are known as VSI Nodes, which include objects that hold certain properties.

Each VMFS volume’s info, including its extents and partition table, is located in nodes like
those listed in Figure 12.19.

From the Library of raphael schitz

ptg7996124

History of VMFS 413

Figure 12.19 VMFS5 VSI Nodes

Here you see all properties of the VMFS volume. This helps you identify the following:

�� Volume’s UUID (signature).

�� VMFS version (in this example, the major version is 5 and the minor one is 54).

�� The device ID (NAA ID) which is the Name field listed under Extents, which also
includes the partition number after a colon (:).

�� The start sector (in this example it is 2048).

�� The end sector (in this example it is 20971487). Notice that this value is always one
sector larger compared to the partedUtil outputs. I am investigating this discrepancy
as of the time of this writing.

Manually Collecting partition info Summary

If you have a small number of hosts, or otherwise have the time, you may collect a list of
partitions from each host using

esxcli storage core device partition list

This gives you output similar to Figure 12.20.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture414

Figure 12.20 Listing partitions on all devices

The list includes the following:

 1. Device ID — This is NAA ID of the LUN on which VMFS datastore resides.

 2. Partition number — When the partition number listed is 0, this means that the
listing represents the whole LUN, which is why the start sector is 0. Conversely, the
end sector in this case refers to the last LBA (Logical Block Address) on the LUN.

The output shown in Figure 12.20 was collected from an ESXi 5 host with
typical configuration, which boots from a local disk because one of the devices
has eight partitions (1 through 8).

 3. Start Sector — This is the first LBA in the partition. If the value is 0, the partition
number is also 0 because the listing is for the whole device. A value higher than 0
means the actual LBA numbers on which the partition offset is located.

 4. End Sector — This is the last LBA in the partition. For devices with a single
partition, this value should match the last usable sector obtained by the partedUtil
getUsableSectors command listed earlier in this chapter in the “GPT on Disk
Layout” section.

For listings representing the whole device, this value represents the last LBA on
the LUN.

From the Library of raphael schitz

ptg7996124

History of VMFS 415

NoTe

This output is derived from the VSI nodes I mentioned in relation to Figure 12.19. As such,
I want to draw your attention to the fact that the end sector from this output is always one
sector more than what you get from partedUtil outputs. So, keep this in mind when you will
calculate the partition’s last sector for the purpose of rebuilding the partition table.

For example, if you get the partition table listing of the boot device that has eight partitions
(device ID naa.600508e000000000d4506d6dc4afad0d). you observe this as well. See
the third column values in the following output for comparison. (I arranged the output for
readability.) So, if you collect this output, it would be a more reliable calculation.

partedUtil getptbl /dev/disks/naa.600508e000000000d4506d6dc4afad0d

gpt

8875 255 63 142577664

1 64 8191 C12A7328F81F11D2BA4B00A0C93EC93B systemPartition 128

5 8224 520191 EBD0A0A2B9E5443387C068B6B72699C7 linuxNative 0

6 520224 1032191 EBD0A0A2B9E5443387C068B6B72699C7 linuxNative 0

7 1032224 1257471 9D27538040AD11DBBF97000C2911D1B8 vmkDiagnostic 0

8 1257504 1843199 EBD0A0A2B9E5443387C068B6B72699C7 linuxNative 0

2 1843200 10229759 EBD0A0A2B9E5443387C068B6B72699C7 linuxNative 0

3 10229760 142577630 AA31E02A400F11DB9590000C2911D1B8 vmfs 0

 5. Partition Type — For VMFS partitions, the type is always fb in this output even
though it is a GUID partition table, which means that the type should have been
VMFS. This output uses the partition type similar to that used by fdisk regardless of
the partition table format.

 6. Partition Size — The size is in sectors. Notice that for listings whose partition
number is 0, the size represents the total number of sectors in the LUN.

Maintain a Set of Metadata Binary Dumps

One more step you can take to improve your chances of data recovery is to regularly
collect metadata binary dumps of the first 32MB of the devices on which VMFS3 or
VMFS5 datastores reside as well as their extents, if any, using dd.

The syntax for collecting the dumps is

dd if=/dev/disks/<device-name> of=/<path-to-enough-space>/<Vol-x>-dump.bin
count=32 bs=1M

Just fill in the path to where you want to store the dumps and give each a name denoting
the VMFS volume name from which it is collected.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture416

This command collects 32MB from the device offset, which includes the Protective
MBR/Primary GPT and VMFS metadata binary dump. This is sufficient for most file
system and partition table recovery.

To collect backup of other resources that may also be affected by corruption, it is a good
idea to increase the size of the dump to the first 1200MB of each device. This is what
VMware support would ask you to collect if you report VMFS corruption.

The syntax for this is the same as the previous dd command but the count is 1200 instead
of 32, as follows:

dd if=/dev/disks/<device-name> of=/<path-to-enough-space>/<Vol-x>-dump.bin
count=1200 bs=1M

Save the collected dumps in a safe place!

Span or Grow?
Careful design that accounts for expected workloads and capacity requirements usually
provisions storage that satisfies these requirements. However, there is always a possibility
that new business requirements will justify a design change.

A VMFS3 or VMFS5 datastore can be spanned onto additional LUNs or grown onto
additional free space added to the existing device. However, before making this decision,
you should also consider using storage DRS (Dynamic Resource Scheduler), which can
effectively provide additional space that meets both I/O and Availability SLAs (Service
Level Agreements).

For completeness sake, I discuss both extending and expanding VMFS3 and VMFS5.

Spanning VMFS Datastores

Adding physical LUNs to an existing VMFS3 or VMFS5 datastore spans the file system
over these LUNs. The first LUN used to create the datastore is referred to as the head
LUN because it includes part of the metadata without which the VMFS datastore cannot
be mounted. The added LUNs are referred to as extents. VMFS3 and later can tolerate
loss of any of the extents except for the head extent. If non-head extent is unavailable,
the VMFS3 or 5 datastores remain accessible. Any I/O destined to blocks on the missing
extent result in I/O errors.

From the Library of raphael schitz

ptg7996124

History of VMFS 417

How to Span a VMFS Datastore onto a New Extent

To span a VMFS datastore onto a new extent, follow this procedure:

 1. Log on to vCenter Server using vSphere 5 Client as a user with Administrator/Root
privileges.

 2. Navigate to one of the hosts in the cluster/datacenter in the inventory tree.

 3. Select the Configuration tab and then select Storage under the Hardware section.

 4. In the Datastores pane, select the VMFS volume you want to span and click the
Properties link in the Datastore Details pane (see Figure 12.21).

Figure 12.21 Selecting a datastore to span

 5. In the Volume Properties dialog (see Figure 12.22), observe the Extent Device
section where you see the total device capacity (in this example 200GB) and the
primary partitions capacity, which indicate that the latter is using full device capacity.
This means that you cannot grow this volume and that to increase its size, additional
space is needed. You can get this space by either adding a new LUN to this host or
by resizing the existing LUN on the array. Using the latter enables you to grow the
volume. I cover this in the “Growing VMFS Datastores” section later in this chapter.

 6. Click the Increase button (see Figure 12.22).

From the Library of raphael schitz

ptg7996124
Figure 12.22 Datastore properties

 7. In the Increase Datastore Capacity dialog, you see all devices that are not part of
a VMFS volume or mapped via an RDM (see Figure 12.23). vCenter Server hides
such devices to protect them from being used. Otherwise, it results in corrupting
the file system already on these devices. Select a device to add. In this example, I
am using VMFS3 datastore, but this procedure also applies to VMFS5. Notice the
note at the bottom of the dialog stating “This datastore uses VMFS3. In order to use
extents larger than 2TB, you must upgrade this datastore to VMFS5.” As long as the
capacity of each device that will be added as an extent is 2TB or less, you should be
able to proceed. Larger device capacity is usable by VMFS5 only.

From the Library of raphael schitz

ptg7996124

History of VMFS 419

Figure 12.23 Selecting a device to add to a VMFS3

If this datastore were VMFS5, you would see the dialog in Figure 12.24 instead.
Click Next to proceed.

Figure 12.24 Selecting a device to add to a VMFS5 datastore

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture420

Notice that there is no warning about the device size in the dialog in
Figure 12.24.

 8. The Current Disk Layout dialog (see Figure 12.25) shows the head extent’s disk
layout and the new extent is blank. Click Next to continue.

Figure 12.25 Spanning VMFS volume — Disk Layout

 9. The resulting dialog (see Figure 12.26) enables you to use the maximum available
space on the device or use less by selecting the Custom Space Setting radio button
and specifying a smaller capacity. For this example, I’m using the whole device. Click
Next to continue.

From the Library of raphael schitz

ptg7996124

History of VMFS 421

Figure 12.26 Spanning VMFS volume — Extent Size

NoTe

Notice that the block size cannot be changed as it must match the head extent’s block size.
Because this file system is VMFS3, you must use a block size that supports the largest file
size you plan to use on this datastore.

If you plan to use a larger file size than the head extent’s block size supports, the best
approach is to upgrade the head extent prior to spanning it onto this new device. Doing
so upgrades it to VMFS5, which, as I mentioned earlier, uses a single block size (1MB) to
support all file sizes previously requiring larger block sizes.

 10. The final dialog shows the new spanned volume size as well as the extent’s disk
layout (see Figure 12.27). Notice that the partition format is MBR because this is
VMFS3. If this were a VMFS5 datastore, it would have been GPT instead. Click
Finish when complete.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture422

Figure 12.27 Spanning VMFS3 datastore — Ready to complete

 11. vCenter Server triggers a rescan operation on all hosts sharing this volume so that
they all can recognize the newly added capacity.

Tip

Although it is not enforced by vCenter Server, it is not advisable to span VMFS datastores
onto extents of differing properties (RAID type, Physical Disk Types, Disk Interface type,
Disk RPM rating, Storage Processor Port Speed, and Protocol).

The LUNs should practically be identical in all properties except for the capacity, which
can vary according to your need and availability. Using vStorage API for Storage Awareness
(VASA) can help you identify these properties from within vCenter Server.

How Does LVM Know the Members of Datastore?

VMFS3 volume header includes an extent ID as well as the volume UUID. At the load
time or upon rescanning for VMFS datastores, LVM reads the metadata on each device.
If it finds multiple devices share the same VMFS volume UUID, it assembles the volume
using the extent ID starting with the head extent that has the first extent ID.

From the Library of raphael schitz

ptg7996124

History of VMFS 423

VMFS5 LVM header has the Spanned Device Table that lists the device IDs of all the
volume’s extents. This makes it easier to identify the members of the spanned volume.

How Is Data Spread over Extents?

When a datastore has extents, data is written to them in a fashion that all extents are used
concurrently, not sequentially. There is a misconception that data is written sequentially
on the first extent and then when it is full the next extent gets used. This is not true.
VMFS Resource Manager, which is built in to the file system kernel modules, uses all
extents that make up the spanned VMFS volume when hosts require allocating new space
on that volume. The resource manager bases its block allocation decisions on a variety
of factors that I cannot publically disclose. The net effect is that blocks from any LUN
in a spanned VMFS volume may be allocated at any time. The exact sequence varies by
volume, connectivity, and sequence of events among other factors. The VMFS resources
are assigned to each host in resource groups across all available extents. Hosts distance the
physical location of the files they create from those written by other hosts. However, they
try to keep the objects they manage within close vicinity.

Spanning VMFS pros and Cons

In medicine, each drug has several effects. For treating some diseases one or more of these
effects are therapeutic and the rest are just side effects. Depending on the desired outcome
from taking that drug the classification of these effects change.

The same concept lends itself to the computer industry, which usually refers to it as pros
and cons. (I am tempted to use the joke about the Congress and Progress but I will restrain
myself.)

Pros

Spanning a VMFS volume can provide the following benefits:

�� Obviously, it adds more space to a space constrained VMFS datastore.

�� Because SCSI reservations are done on the head extent only, spanning a VMFS
volume reduces the SCSI reservations overall. However, this can be achieved better
by using VMFS5 with a VAAI-enabled array that supports ATS primitive. VAAI
would also help with VMFS3 datastores but VMFS5 has the property “ATS Only”
that improves on using ATS without the need to check if the array supports it. I
explain this in detail in Chapter 16.

�� It can possibly reduce “hot spots” on the array because the data is spread over
multiple extents on different disk groups.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture424

�� If the extents are on devices on different storage arrays or on the same or different
controllers on the same array, this may help reduce the Device Queue exhaustion
under high I/O utilization. This benefit is on the array’s end only. The initiator is
still limited to the max queue depth provided by the HBA’s driver.

�� Using Spanned Datastores with VMFS5 no longer imposes the limitation of the file
block size. So, you can span the datastore to use fewer larger files. However, if these
files belong to fewer VMs, then the benefit of using VMFS5 — which also adds the
use of ATS-Only mode and effectively eliminates SCSI-2 reservations as long as
the array supports that primitive — ends up diminishing the need to use such lower
number of files. On the other hand, you must pay attention to your defined RTO;
will you be able to restore such a large file fast enough to meet that SLA?

Cons

Spanning a VMFS has the following side-effects, drawbacks, or disadvantages:

�� There is no easy way to identify which files live on which extent. So, if you happen
to lose an extent, you only lose the data on that extent while the surviving ones
keep chugging along. (You may say that this is a benefit by itself.) The only way
you can tell what was affected is by observing which VMs get I/O errors writing to
the missing blocks. How would you mitigate this risk? Backup!!!! Do that on the
hardware level and the file level. Taking hardware snapshots or making a replica of
the business-critical VMs/datastores/extents should help you recover more quickly
compared to having one large single extent-based datastore of the same size as the
spanned one. The time it takes you to restore the humongous datastore may go way
beyond your RTO (Recovery Time Objective). Another way to mitigate this is to use
Datastore Clusters with Storage DRS.

�� Losing the head extent can result in losing the whole datastore. However, this is the
same outcome if you are using a large LUN equal in size to the total size of extents
making up the spanned datastore.

Growing VMFS Datastores

Many storage arrays provide the capability of growing LUNs. In the past, utilizing this
space required manual changes to the partition table where you add a new partition in the
added space and then create a VMFS extent on it in the same fashion you usually do with
spanning VMFS volumes. Beginning with vSphere 4.0, VMware introduced a new feature
of growing a VMFS datastore onto free space available on the physical LUN on which
it resides. This effectively resizes the partition and modifies the metadata to add the new
space as available resources.

From the Library of raphael schitz

ptg7996124

History of VMFS 425

Architecturally speaking, the end result is similar to freshly creating the VMFS volume on
the device. The main difference between using this feature with VMFS3 and VMFS5 is
that the latter can be grown onto LUNs larger than 2TB in size.

How to Grow a VMFS Volume

You can grow a VMFS volume using the vSphere 5 client or vmkfstools via the CLI.

Procedure Using vSphere 5 Client

To grow a VMFS datastore using the vSphere 5 Client, follow this procedure:

 1. Log on to vCenter Server using vSphere 5 Client as a user with Administrator/Root
privileges.

 2. Navigate to one of the hosts in the cluster/datacenter in the inventory tree.

 3. Select the Configuration tab; then select Storage under the Hardware section.

 4. In the Datastores pane, select the VMFS volume you want to grow; then click
Properties… link in the Datastore Details pane (Figure 12.28).

Figure 12.28 Selecting a datastore to grow

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture426

 5. In the Volume Properties dialog, observe the Extent Device section where you
will see the total device capacity (in this example 200GB) and the Primary
Partitions capacity indicates that the latter is using half of the total device capacity
(see Figure 12.29). This means that we can double the VMFS volume capacity using
the remaining free capacity. Also, in this example, I am using VMFS5 datastore, but
this procedure also applies to VMFS3 as long as the device capacity is 2TB or less.
Larger device capacity is usable by VMFS5 only.

Figure 12.29 Volume properties

 6. Take a note of the device ID (in this example, it is the NAA ID) under the Extents
section; then click the Increase… button in the General section.

 7. In the Increase Datastore Capacity dialog, select the device with the same device
ID you noted in the last step. Notice that the Expandable column shows Yes. This
means that you are OK to proceed. Notice the information listed on the bottom part
of the dialog informing you that “the datastore already occupies one or more extents
on this device” (see Figure 12.30). Click the Next button to proceed.

From the Library of raphael schitz

ptg7996124

History of VMFS 427

Figure 12.30 Selecting device to grow volume

 8. The resulting disk layout dialog (see Figure 12.31) shows that there is one Primary
Partition and that the Free space that will be used to expand the VMFS volume.
Click Next to proceed.

Figure 12.31 Current Disk Layout

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture428

 9. You are almost there! The Extent Size dialog (see Figure 12.32) allows you to use the
Maximum available space or use a Custom space setting, which allows you to use part
of the available space. In this example, I will use all available space. Click Next to
proceed.

Figure 12.32 Specifying capacity to allocate

 10. The Ready to Complete dialog (see Figure 12.33) shows the final settings that will
be applied to the volume. Notice that the Primary Partition will be resized to utilize
full device capacity instead of adding a second primary partition utilizing the free
capacity you specified in the previous step. Click Finish to complete the operation.

From the Library of raphael schitz

ptg7996124

History of VMFS 429

Figure 12.33 Ready to Complete “Grow Volume” process

 11. Observe the Recent Tasks pane (see Figure 12.34) and you should notice that the
following actions took place in that order:

a. Compute disk partition information.

b. Compute disk partition information for resize.

c. Expand VMFS datastore.

d. Finally, rescan VMFS on all ESXi hosts in the Datacenter.

Figure 12.34 Tasks done to grow volume

Step D ensures that all hosts in the datacenter can see the added capacity to
the VMFS volume. This prevents other hosts in the cluster/datacenter from
accidentally repeating this process if they had not seen the added capacity.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture430

NoTe

Comparing this process to that of adding a new device as an extent on which to span the
VMFS volume, the only difference is that in Step 7 you would select a different device from
that used by the datastore already.

In this case, instead of modifying the partition table on the head extent, the VMFS metadata
is modified to reflect the added extent and its resources. See the previous section for details
of spanning a VMFS volume.

This concludes the procedure.

Procedure Using vmkfstools

Growing the datastore onto the newly added device capacity is not as straightforward as
using the vSphere 5 Client and is error prone since it requires the following high-level
steps:

 1. Use partedUtil to resize the partition.

This process will effectively overwrite the GPT partition table and relocate the
secondary GPT to the last sectors on the device. The VMFS partition is also
resized. To find out the last sector that will be used by the resized partition, you
would use partedUtil getUsableSectors option.

 2. Use vmkfstools -G option to grow the volume.

As you see, using partedUtil can introduce errors that may result from typographical
errors or miscalculations of the last sector number. It is a lot safer and faster to utilize the
UI instead.

Upgrading to VMFS5
The upgrade process from VMFS3 to VMFS5 can be done live while VMs are actively
running on the datastore. It is a very simple process that can be done via the UI or
the CLI.

Before doing that, you must make sure that all hosts sharing the datastores you plan to
upgrade have been themselves upgraded to ESXi 5. Once the datastore is upgraded, you
cannot reverse the process and all hosts running versions pre-5.0 will lose access to the
upgraded datastores.

From the Library of raphael schitz

ptg7996124

History of VMFS 431

Upgrade process Using the CLi

To upgrade VMFS 3 to VMFS5 datastore using the CLI, follow this procedure:

 1. Log in to ESXi host directly, via SSH or vMA 5.0.

 2. Run the upgrade command using the following syntax:

vmkfstools -T /vmfs/volumes/<volume-name>

 3. You are prompted with a reminder about the older ESX versions on hosts sharing
the datastore. The prompt asks you to select 0 (Yes) or 1 (No) to continue or abort
the process, respectively. Select 0 then Enter to continue. (See Figure 12.35.)

Figure 12.35 Upgrading VMFS via the CLI

The upgrade process continues showing the following text:

Checking if remote hosts are using this device as a valid file system. This
may take a few seconds...

Upgrading file system /vmfs/volumes/Smallville...

done.

 4. Rescan from all ESXi 5 hosts sharing the upgraded datastore. This is the main
drawback of using the CLI to upgrade the datastore. In comparison, the UI process
listed next triggers rescan automatically after the upgrade is complete.

To verify the outcome, run the command in the following listing:

vmkfstools -Ph /vmfs/volumes/Smallville/

VMFS-5.54 file system spanning 1 partitions.

File system label (if any): Smallville

Mode: public

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture432

Capacity 9.8 GB, 9.2 GB available, file block size 2 MB

UUID: 4f0a2605-2cdf65d1-f2b3-001f29e04d52

Partitions spanned (on "lvm"):

 naa.6006016055711d00cff95e65664ee011:1

Is Native Snapshot Capable: NO

The new version is now listed in the output as VMFS-5.54. I highlighted the relevant
text. Notice the file block size is still 2MB because the VMFS3 datastore was originally
formatted with that block size.

Table 12.4 compares Upgraded VMFS5 datastores to those freshly created.

Table 12.4 Comparing Upgraded VMFS5 Datastores to Freshly Created Datastores

Features Upgraded VMFS5 Formatted VMFS5

File-block size 1, 2, 4, and 8MB 1MB

Sub-block size 64KB 8KB

Partition type MBR (GPT when grown) GPT

Number of sub-blocks, file
descriptors, and pointer blocks

Inherited from VMFS3 Limits proportionate to
filesystem size

ATS only support (see Chapter 16) No Yes

Upgrade Related Log entries

Events related to the upgrade process are posted to /var/log/vmkernel.log file. See the
following listing for entries from the previous example. I cropped the date and time stamps
for readability:

cpu0:6155853)FS3: 199: <START pb2>

cpu0:6155853)256 resources, each of size 4096

cpu0:6155853)Organized as 1 CGs, 64 C/CG and 16 R/C

cpu0:6155853)CGsize 4259840. 0th CG at 65536

cpu0:6155853)FS3: 201: <END pb2>

cpu0:6155853)Vol3: 3347: Successfully upgraded file system 4f0a28e3-
4ea353b6-08b6-001e4f1fbf2a to 5.54 from 3.54

Do you recall the pb2 I discussed earlier in this chapter in the “VMFS5 Layout” section?

The first five lines of this log show the creation of this new system file. It also shows the
following properties:

�� Resources: 256

�� Resource size: 4096

From the Library of raphael schitz

ptg7996124

History of VMFS 433

�� Number of Resource Clusters (R/C): 16

�� Number of Clusters per Cluster Group (C/CG): 64

�� Number of Cluster Groups (CGs): 1

�� Cluster Group size (CGsize): 4259840

�� Offset of Cluster Group number 0 (0th. CG): 65536

Upgrade process Using the Ui

To upgrade VMFS3 to VMFS5 using the UI, follow this procedure:

 1. Log in to vCenter as Root, Administrator, or equivalent.

 2. Locate one of the ESXi 5 hosts, sharing the volume to upgrade, in the inventory.
Select its Configuration tab and then select Storage under the Hardware section.

 3. Click the VMFS3 datastore you plan to upgrade.

 4. Click the Upgrade to VMFS-5 link (see Figure 12.36).

Figure 12.36 UI — Upgrade to VMFS-5 option

 5. If you still have ESXi hosts older than 5.0, you see the dialog shown in Figure 12.37.
To remedy this, click the View Incompatible Hosts link, which displays a list of
hosts that you must upgrade before proceeding. Click Cancel to dismiss the dialog.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture434

Figure 12.37 Error you get if older hosts still access the old volume

 6. If, after upgrading the identified hosts, you no longer see the Upgrade to VMFS-5
link, click the Rescan All link at the top right-hand side of the Datastores pane.

 7. Now you should be able to click the Upgrade to VMFS5 link, which should result in
the dialog shown in Figure 12.38. Click OK to proceed with the upgrade.

Figure 12.38 OK to proceed

 8. When the upgrade process is complete, vCenter Triggers a rescan on all ESXi 5
hosts sharing the datastore.

 9. To verify the outcome, check the value displayed in the File System field under
the Formatting section in the Datastore Details section (see Figure 12.39). In this
example, it is VMFS 5.54. Also notice that the block size remained at 2MB, which
was the original volume’s file block size.

Figure 12.39 Locating the upgraded volume’s version in the UI

From the Library of raphael schitz

ptg7996124

History of VMFS 435

If you check /var/log/vmkernel.log file for the upgrade events, notice that they match
those that I listed earlier when I ran the upgrade via the CLI. However, this time around, I
had originally formatted the VMFS3 datastore using ESXi 4.1. This would explain the last
line in the set of log entries shown in the next line:

Successfully upgraded file system 4f0a521b-94ef49da-7f00-001a64664b44 to
5.54 from 3.46

Notice that the previous version is 3.46 compared to 3.54 listed earlier under the CLI
procedure. The reason is that the higher “minor” version of the file system was created
using ESXi 5.0. The difference in minor versions has no effect on features available for
VMFS3 on ESXi 5.0.

What if VMFS5 Datastore is presented to eSXi 4.x?

Assume that your SAN administrator accidentally presented a device on which a VMFS5
volume resides, what would happen?

The answer is “nothing will happen!” The reason is that the older version of the vmkernel
has a module for VMFS3 only. The latter identifies the major version is 5, and gracefully
fails to mount the VMFS5 datastore.

How about another variation on this scenario?

In the section for upgrading using the CLI, the process depends on you to verify that all
hosts accessing this datastore have been upgraded to ESXi 5. Let’s assume you overlooked
one or two hosts. The process still continues, and the datastore is upgraded to version
5.54.

What actually happens with the older hosts? You should see something like the following
messages in /var/log/vmkernel on the 4.x hosts:

WARNING: LVM: 2265: [naa.6006016047301a00eaed23f5884ee011:1] LVM major
version mismatch (device 5, current 3)

FSS: 3647: No FS driver claimed device ‘naa.6006016047301a00eaed23f5884
ee011:1’: Not supported

FSS: 3647: No FS driver claimed device ‘48866acd-d8ef78ec-5942-
001a6436c322’: Not supported

I added blank lines between each message for readability. The first message states that the
LVM version on the datastore is newer. What is on the disk is version 5; what the host
has in memory is version 3. This means that the host has not rescanned the storage area
network (SAN) since the datastore was upgraded.

From the Library of raphael schitz

ptg7996124

Chapter 12 VMFS Architecture436

The second and third lines are the same but one references the device ID (NAA ID) and
the other references the volume signature (UUID). What they mean is that this host has a
VMFS kernel module that does not support this version. As a result, none of the FS drivers
(file system drivers) claimed the device(s).

Summary

VMFS5 is the latest version of VMware-clustered file system that introduced several
scalability and performance enhancements. In this chapter I shared with you the file
system history, architecture, and recovery tips.

From the Library of raphael schitz

ptg7996124

Chapter 13

Virtual Disks and RDMs

VMware vSphere 5, and earlier releases, abstract the storage and presents it to virtual
machines in various forms which are virtual disks, Raw Device Mappings (RDMs), and
generic pass-through SCSI devices. This chapter deals with virtual disks and RDMs.

The Big Picture
To better understand how virtual disks and RDMs are abstracted, see Figure 13.1 for a
high-level diagram.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs438

LUN2

SAN

Disk DiskMemory NICCPU

x86 Architecture

Virtual Machine

VMware Virtualization Layer

Operating System Operating System

App App App App App App

VMFS
ESXI

Virtual
Disk

RDM

LUN1

Figure 13.1 Virtual disks and RDMs

In Figure 13.1, virtual machine file system (VMFS) datastore was created on LUN1 on
the storage area network (SAN). A virtual disk is a file on the VMFS datastore. When
the virtual disk is attached to the virtual machine, it sees it as a VMware SCSI Disk. In
contrast, an RDM is created on the VMFS datastore that is simply a file that acts as a
pointer to LUN2. When the RDM is attached to the virtual machine, it sees it as one
of two possible modes; a VMware SCSI Disk or a Native Physical LUN (for example,
CLARiiON RAID5 LUN). I explain the differences in the “Virtual Mode RDMs” and
“Physical Mode RDMs” sections later in this chapter.

Virtual Disks
Virtual disks are files created on VMFS or NFS (Network File System) datastores. These
files use a .vmdk extension and are made up of more than one file depending on the type of
virtual disk they represent.

The main file is referred to as the Virtual Disk Descriptor File, which is an ASCII
(actually, UTF-8 encoded) text file that defines the structure of the virtual disk.
Listing 13.1 is an example of such a file:

From the Library of raphael schitz

ptg7996124

Virtual Disks 439

Listing 13.1 Sample Virtual Disk Descriptor File

Disk DescriptorFile

version=1

encoding=”UTF-8”

CID=fffffffe

parentCID=ffffffff

isNativeSnapshot=”no”

createType=”vmfs”

Extent description

RW 33554432 VMFS “vSphere Management Assistant 5.0_1-flat.vmdk”

The Disk Data Base

#DDB

ddb.virtualHWVersion = “4”

ddb.longContentID = “0481be4e314537249f0f1ca6fffffffe”

ddb.uuid = “60 00 C2 93 7f fb 16 2a-1a 66 1f 50 ed 10 51 ee”

ddb.geometry.cylinders = “2088”

ddb.geometry.heads = “255”

ddb.geometry.sectors = “63”

ddb.adapterType = “lsilogic”

The Virtual Disk Descriptor File has the following sections:

�� Disk DescriptorFile — The fields in this section are listed in Table 13.1.

Table 13.1 Virtual Disk DescriptorFile Section Fields

Field Possible Values Notes

CID fffffffe or lower hexadecimal value Content ID is unique per disk
hierarchy. Read more details
in the “Linked Clones” sec-
tion.

ParentCID ffffffff for the top-level virtual disk and
lower for children in a snapshot or
linked clone

Snapshot files or linked clone
files identify their parent vir-
tual disk by its parent virtual
disk’s Content ID (CID). Read
more details in the “Linked
Clones” section.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs440

Table 13.1 Continued

Field Possible Values Notes

isNativeSnapshot No or Yes For use by a future vSphere
release.

createType Vmfs Virtual disk.

vmfsRawDeviceMap Virtual mode RDM.

vmfsPassthroughRawDeviceMap Physical mode RDM.

twoGbMaxExtentSparse 2GB sparse disk.

vmfsSparse Virtual disk snapshot.

�� Extent description — Lists the virtual disk extent files and is made up of four
sections listed in Table 13.2. The actual field names are not stated in the vmdk file.
All values are listed on one line under the Extent Description section in the vmdk
file.

Table 13.2 Extent Description Fields

Field Possible Values Notes

Access RW Inherited from older releases. On ESXi 5 it is always
RW (read-write).

Size device block count Size of the extent file in 512-byte disk blocks.

Type VMFS Virtual disk extent. One extent per virtual disk.

VMFSRDM RDM extent (both virtual and physical). One extent
per RDM.

SPARSE Extents of Virtual Disk created via vmkfstools using
2gbsparse option. (Read more details in the
“Creating Virtual Disks Using vmkfstools” section.)

VMFSSPARSE Extents of virtual disks of a VM snapshot.

Extent Files *-flat.vmdk This is where the Virtual Disk data gets written.

*-rdm.vmdk This is the VMFS pointer to the raw device (virtual
mode).

*-rdmp.vmdk This is the VMFS pointer to the raw device (physical
mode).

*.s00(n).vmdk These represent the 2GB segments of the sparse
virtual disk. The size can be smaller than 2GB. The
(n) represents the extent number counting from 1.

From the Library of raphael schitz

ptg7996124

Virtual Disks 441

�� The Disk Database — This section lists the virtual disk properties as seen by the
VM. It includes the seven fields listed in Table 13.3 (and one additional field for thin
provisioned virtual disks).

Table 13.3 Disk Database Fields

Field Possible Values Notes

ddb.virtualHWVersion 4 or 8 Virtual hardware version.

ddb.longContentID Hexadecimal value Long Content ID is used to resolve
conflicts in CID. For example, if there
are multiple descriptor files with the
same CID, the Long CID is used as a
unique ID instead.

ddb.uuid Hexadecimal value Random text. Unique to the virtual
disk. Generated from the SHA1 hash of
the host ID, time stamp, and a random
number.

ddb.geometry.cylinders Decimal value The number of cylinders of the disk
presented to the guest OS.

ddb.geometry.heads Decimal value The number of heads of the disk
presented to the guest OS.

ddb.geometry.sectors Decimal value The number of sectors of the disk
presented to the guest OS.

ddb.adapterType lsilogic, buslogic
or ide

Matches the virtual storage adapter
used by the VM.

ddb.thinProvisioned 1 Denotes that the virtual disk was
created as thin provisioned. This field
will not have a value other than 1. If
the virtual disk is not thin provisioned,
this property would not exist in the
descriptor file.

Virtual Disk Types
Virtual disks on ESXi 5–based VMFS3 or VMFS5 datastores are categorized according to
their disk provisioning as the following:

�� Zeroed thick — In the UI, this is referred to as flat disk. Disk blocks are pre-allocated
at creation time, but the blocks are zeroed out (zeros written to the blocks) upon first
write. The file is created faster because all that is done is to create the metadata file
entry and specify the file blocks that it occupies but that are not zeroed out.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs442

�� Eager zeroed thick — Disk blocks are pre-allocated and zeroed out at creation time.
This is the most secure type of virtual disks because any previous data that might
have been on the allocated disk blocks is overwritten with zeros. On VMFS3 or -5
datastores that are on non-VAAI (VMware vStorage APIs for Array Integration)
storage arrays (see Chapter 16, “VAAI”) the creation process takes more time
compared to the creation time for the zeroed thick type and is proportionate to the
virtual disk size. If the storage array supports WRITE_SAME (also known as block
zeroing) primitive, the block zeroing is offloaded to the storage array. This signifi-
cantly reduces the file creation time.

�� Thin — This type of virtual disk is analogous to thin provisioning physical LUNs
(logical unit numbers). The virtual disk file size is predefined, but the disk blocks are
not allocated at the time the file is created.

Table 13.4 compares all three types.

Table 13.4 Virtual Disk Types Comparison

Characteristics

Zeroed
Thick

Eager Zeroed
Thick

Thin

Disk allocation Fully pre-allocated. Fully pre-allocated. On demand.

Block placement
on file system

Higher chance of
using contiguous
file blocks.

Same as zeroed
thick.

Depending on how active the
datastore is at the time the file
is grown, the allocated blocks
might not be contiguous.

Block zeroing On demand upon
first write.

At the time of
creating the file.

At the time the file is grown.

Reading previously
unwritten blocks

Blocks not read
from disk. Rather,
memory buffers
are filled with
zeros. This is
very fast because
zeroing memory
is extremely faster
than zeroing disk.

Read request sent
to disk. This might
return stale data
from disk. This is
slower than zeroed
thick because it
reads from disk
instead of memory.

Same as zeroed thick.

From the Library of raphael schitz

ptg7996124

Virtual Disks 443

Characteristics Zeroed
Thick

Eager Zeroed
Thick

Thin

Writing previously
unwritten blocks

Blocks are zeroed
before sending the
write to disk. This
results in higher
latency of the
original write (from
guest OS). This is
much slower than
eager zeroed thick.

Write requests
are sent to disk
because the blocks
were zeroed at the
time of creating the
file.

Block is allocated and zeroed
on disk first. Then the write
is sent to disk. This is slightly
slower than zeroed thick and
has a higher latency of the
original write (from the guest
OS). Allocating blocks results in
some distributed locking traffic
unless the VAAI ATS and Write_
Same primitives are supported.

Reading previously
written blocks

Requests sent to
disk. If this occurs
while the first write
to the blocks are
still in progress, the
reads are queued
until the writes are
done.

Request is
forwarded to disk.
No other overhead.

Same as zeroed thick.

Writing previously
written blocks

Same as reading
previously written
blocks.

Same as reading
previously written
blocks.

Same as zeroed thick.

Physical disk
space usage

Does not need
more space while
the VM is running
because the file
blocks were pre-
allocated.

Same as zeroed
thick.

Because the file blocks are
allocated on demand, the guest
may be paused if the VMFS vol-
ume runs out of space or, if on
thin provisioned LUN, the LUN
reaches its maximum capacity.
See more details in the “Thin-
on-Thin Configuration” section
later in this chapter.

Appearance in
vSphere UI

Thick provision lazy
zeroed.

Thick provision
eager zeroed.

Thin provision.

Datastore
Compatibility

VMFS3

VMFS5

NFS*

VMFS3

VMFS5

NFS*

VMFS3

VMFS5

NFS (Default type)

* NFS datastore on storage arrays must support VAAI NAS (Network Attached Storage) primitives.
See more details about VAAI in Chapter 16. For thin provisioned virtual disks, VAAI support is not
required as this is the default format for NFS datastores.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs444

Thin on Thin
Using thin provisioned virtual disks on thin provisioned LUNs poses the risk of LUNs
running out of space before thin virtual disks reach their maximum provisioned capacity.
To mitigate this risk, VMware introduced alarms and VOBs (vSphere Observations) to
alert the vSphere Administrator of two possible states:

�� Out of Space Warning — Storage array vendors can provide a Free Space Soft
Threshold Limit setting on the array. When set, a warning is sent to the ESXi host
that attempted to write blocks and resulted in reaching the threshold. The write
operation would succeed, though. This warning can be sent in-band or out-of-
band. This means that it can be sent as a SCSI error directly to the host (as a check
condition with sense key 0x6 ASC 0x38 ASCQ 0x7) or as a VASA (VMware vStorage
APIs for Storage Awareness) event polled by the VASA provider installed in the
vSphere environment. Storage vendors opt to use one or the other but not both. The
vSphere environment can be configured to move virtual disks to other datastores if
using the Storage DRS feature.

�� Out of Space Error — This is a similar setting to be configured on the Storage
Array as a hard threshold that generates an Out-of-Space error (to the host directly
as a check condition with sense key 0x6 ASC 0x27 ASCQ 0x7). This results in failing
the I/O (input/output) that resulted in reaching the hard threshold of free space.
Similar integration with Storage DRS is implemented in vSphere 5.

Virtual Disk Modes
Virtual disk modes dictate how these virtual disks are affected by VM snapshots (see the
“Snapshots” section later in this chapter):

�� Dependent — This is the default mode. It means that when a snapshot of the VM is
taken the virtual disk has a snapshot created.

�� Independent — The virtual disk is independent from VM snapshot activities. So,
when a VM snapshot is taken, the virtual disk does not have a snapshot created. In
this mode the virtual disk can be set as persistent or non-persistent:

�� Persistent — Data written to the virtual disk persists when the VM is
powered off and then powered on.

�� Non-persistent — Data written to the virtual disk are redirected to a delta
file (also know as a REDO file) that is discarded upon powering off the VM.
Note that just rebooting the Guest Operating System (GOS) does not result in
discarding the delta files. Only powering off the VM does.

From the Library of raphael schitz

ptg7996124

Creating Virtual Disks Using the UI 445

Creating Virtual Disks Using the UI
Virtual disks are created in the process of creating a VM as well as editing existing VMs to
add new virtual disks.

Creating Virtual Disks During VM Creation
Choosing the custom VM creation path enables you to specify the type, mode, and
location of the virtual disks that you define as outlined in this procedure.

 1. Log on to vCenter Server 5 via vSphere Client 5 as a user with Administrator
privileges.

 2. Navigate to and select the Datacenter or Cluster in which you want to create the
new VM.

 3. Use Ctrl+N keyboard hotkey or right-click the Datacenter or Cluster object in the
inventory tree then select New Virtual Machine (see Figure 13.2).

Figure 13.2 New Virtual Machine command

 4. Select the Custom radio button and then click Next (see Figure 13.3).

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs446

Figure 13.3 Selecting the Custom VM option

 5. Type the VM name and select in which inventory location you want to store the
VM. Click Next.

 6. Select the host on which you want to run the VM and then click Next.

 7. Select the storage on which to store the VM files.

 8. In the Virtual Machine Version dialog select 7 if you want the VM shared with
hosts earlier than ESXi 5 or select 8 if you plan to run it on ESXi 5 or later (see
Figure 13.4).

Figure 13.4 Selecting the VM version

This choice dictates the Virtual hardware version used by the VM, version 7 or
8, respectively.

 9. Select the Guest OS type, the number of virtual sockets and cores per virtual socket,
the VM Memory Size, and the Virtual NIC count and type in the subsequent the
dialogs, respectively.

From the Library of raphael schitz

ptg7996124

Creating Virtual Disks Using the UI 447

 10. Select the virtual SCSI Controller (see Figure 13.5). The default selection is based
on your choice of Guest OS selected in Step 9. See the section “Virtual Storage
Adapters” for more details.

Figure 13.5 Selecting the virtual SCSI controller

 11. Select the Create a New Virtual Disk radio button and click Next.

 12. Specify the Capacity, Disk Provisioning, and Location of the virtual disk. (See
Figure 13.6.)

Figure 13.6 Selecting virtual disk capacity, disk provisioning, and VM location

 13. Select the Virtual Device Node and the Mode of the Virtual Disk. Click Next (see
Figure 13.7).

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs448

Figure 13.7 Selecting the virtual device node and mode

 14. Review your selections and click Finish to create the VM.

The Virtual Disk created using this procedure is stored in the location you selected in Step
12 and is named after the Virtual Machine name you specified in Step 3.

Creating a Virtual Disk After VM Creation
You may add virtual disks to existing VMs while they are powered on if the guest OS
supports hot-add; otherwise, the VM must be powered off. The process is the same
regardless of the power state.

 1. Log on to vCenter Server or to the ESXi host directly as a user with admin privi-
leges.

 2. Locate the VM in the inventory to which you want to add a virtual disk. Right-click
it and then select Edit Settings (see Figure 13.8).

From the Library of raphael schitz

ptg7996124

Creating Virtual Disks Using the UI 449

Figure 13.8 Editing VM settings

 3. In the resulting dialog, click the Add button.

 4. Select Hard Disk from the list of devices and then click Next.

 5. Follow Steps 11 through 13 under the previous section “Creating Virtual Disks
During VM Creation.”

 6. Click Finish to conclude the virtual disk creation.

The new virtual disk shows in the device list as New Hard Disk (adding) (see
Figure 13.9).

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs450

Figure 13.9 Result of adding a new virtual disk

 7. To save the changes to the VM, click OK.

NoTE

In Step 6 of this procedure you can change the virtual device node as well as the virtual disk
mode if you forgot to select them during the earlier steps.

I discuss the design choices for the virtual device node in the “Virtual Storage Adapters”
section later in this chapter.

Creating Virtual Disks Using vmkfstools
vmkfstools is the ESXi tool to use for managing VMFS datastores and Virtual Disks. It is
available on the ESXi 5 host as well as vMA 5.0 and vCLI 5. If you run vmkfstools without
any parameters, it displays available options shown in Listing 13.2.

From the Library of raphael schitz

ptg7996124

Creating Virtual Disks Using vmkfstools 451

Listing 13.2 vmkfstools Options

~# vmkfstools

vmkfstools: unrecognized option

OPTIONS FOR VIRTUAL DISKS:

vmkfstools -c --createvirtualdisk #[gGmMkK]

 -d --diskformat [zeroedthick|

 thin|

 eagerzeroedthick]

 -a --adaptertype [buslogic|lsilogic|ide]

 -w --writezeros

 -j --inflatedisk

 -k --eagerzero

 -K --punchzero

 -U --deletevirtualdisk

 -E --renamevirtualdisk srcDisk

 -i --clonevirtualdisk srcDisk

 -d --diskformat [zeroedthick|

 thin|

 eagerzeroedthick|

 rdm:<device>|rdmp:<device>|

 2gbsparse]

 -N --avoidnativeclone

 -X --extendvirtualdisk #[gGmMkK]

 [-d --diskformat eagerzeroedthick]

 -M --migratevirtualdisk

 -r --createrdm /vmfs/devices/disks/...

 -q --queryrdm

 -z --createrdmpassthru /vmfs/devices/disks/...

 -v --verbose #

 -g --geometry

 -I --snapshotdisk srcDisk

 -x --fix [check|repair]

 -e --chainConsistent

 vmfsPath

The relevant options for this chapter are those listed in the “Options for Virtual Disks”
section. I removed the other options from the output.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs452

In the output shown in Listing 13.2, the reference to vmfsPath in the context of virtual
disk options represents the virtual disk filename including the path to the VMFS datastore.
It is also worth noting that a subset of the virtual disk–related options apply to manipu-
lating virtual disk files on NFS datastores as well. I point these out where appropriate.

Creating a Zeroed Thick Virtual Disk Using vmkfstools
Zeroed Thick Virtual Disks have pre-allocated blocks on the datastore (see Table 13.4
earlier in this chapter), but the blocks are not zeroed out at creation time. This is the
default type for virtual disks created on VMFS3 or VMFS5 datastores. You can create this
type of a virtual disk using vmkfstools using this command:

vmkfstools --createvirtualdisk <size> --diskformat zeroedthick --adapter-
type <type> /<vmfs-path to VM directory>/<Virtual Disk file name>

The shorthand version of this command is

vmkfstools -c <size> -d zeroedthick -a <type> /<vmfs-path to VM
directory>/<Virtual Disk file name>

Example:

vmkfstools --createvirtualdisk 40G --diskformat zeroedthick --adaptertype
lsilogic /vmfs/volumes/datastore1/Book-Demo/bookdemo-disk2.vmdk

This creates a 40GB zeroed thick virtual disk named bookdemo-disk2.vmdk in datastore
named datastore1 in a VM directory named Book-Demo.

The size option accepts a single letter g, m, or k in upper- or lowercase representing GB,
MB, and KB units, respectively. The number preceding the letter is the virtual disk size in
the specified unit.

Creating an Eager Zeroed Thick Virtual Disk Using vmkfstools
Eager zeroed thick virtual disks have pre-allocated blocks on the datastore, and all blocks
have zeros written to them. This ensures that if there were any data from files previously
occupying the allocated blocks, they get overwritten with zero patterns.

To create such a file using vmkfstools, you use the same command in the previous section
substituting zeroedthick with eagerzeroedtick as follows:

vmkfstools --createvirtualdisk <size> --diskformat eagerzeroedthick
--adaptertype <type> /<vmfs-path to VM directory>/<Virtual Disk file name>

From the Library of raphael schitz

ptg7996124

Creating Virtual Disks Using vmkfstools 453

The shorthand version of this command is

vmkfstools -c <size> -d eagerzeroedthick -a <type> /<vmfs-path to VM
directory>/<Virtual Disk file name>

Example:

vmkfstools --createvirtualdisk 40G --diskformat eagerzeroedthick --adapter-
type lsilogic /vmfs/volumes/datastore1/Book-Demo2/bookdemo-disk3.vmdk

Listing 13.3 shows a sample output.

Listing 13.3 Output of Creating Eager Zeroed Thick Virtual Disk

Creating disk ‘/vmfs/volumes/datastore1/Book-Demo2/bookdemo-disk3.vmdk’ and
zeroing it out...

Create: 74% done.

As the file creation progresses, the percentage done is incremented in the Create line until
it reaches 100%.

To measure how long it takes for the file creation to complete, you may run the command
in Listing 13.4.

Listing 13.4 Measuring Time to Create Eager Zeroed Thick Virtual Disk

time vmkfstools -c 40G --diskformat eagerzeroedthick --adaptertype lsilogic
/vmfs/volumes/iSCSI_LUN0/Book-Demo2/bookdemo-disk4.vmdk

Creating disk ‘/vmfs/volumes/iSCSI_LUN0/Book-Demo2/bookdemo-disk4.vmdk’ and
zeroing it out...

Create: 100% done.

real 3m 16.99s

user 0m 1.68s

sys 0m 0.00s

The command time tracks the time taken for the task to complete. The value you need
to track is listed in the real field. In this example it took 3 minutes, 16 seconds, and 99
milliseconds to create a 40GB eager zeroed thick virtual disk on the datastore named
iSCSI_LUN0.

Running the same command to create the same virtual disk on a datastore located on a
VAAI-capable storage array completes almost immediately because the process of writing
zeroes is offloaded to the storage array. I discuss this further in Chapter 16.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs454

Creating a Thin Virtual Disk Using vmkfstools
Thin virtual disks blocks are allocated as needed when data is written to the virtual disk
and the file grows in size. This is the default type for virtual disks created on NFS
datastores.

To create a thin virtual disk using vmkfstools, use this command:

vmkfstools --createvirtualdisk <size> --diskformat thin --adaptertype
<type> /<vmfs-path to VM directory>/<Virtual Disk file name>

The shorthand version of the command is

vmkfstools -c <size> -d thin -a <type> /<vmfs-path to VM
directory>/<Virtual Disk file name>

Example:

vmkfstools --createvirtualdisk 40G --diskformat thin --adaptertype lsilogic
/vmfs/volumes/datastore1/Book-Demo2/bookdemo-disk5.vmdk

This creates a 40GB thin virtual disk file named book-demo-disk5.vmdk on a datastore
named datastore1.

Listing File System Usage by Thin Virtual Disks

To VMs, thin virtual disks appear to be pre-allocated, but they actually occupy the blocks
used by data written to the virtual disk only. To demonstrate that, let’s run a couple of
commands.

The following command lists a virtual disk file named book-demo-thin-flat.vmdk in the
current directory. I named thin for demonstration purposes. Normally thin virtual disks
are named whatever you name them and the provisioning type is not included in the
filename. This file is the extent of the virtual disk with a descriptor file named
book-demo-thin.vmdk.

ls -al book-demo-thin*

-rw------- 1 root root 4294967296 Mar 25 02:39 book-demo-
thin-flat.vmdk

-rw------- 1 root root 499 Mar 25 02:39 book-demo-
thin.vmdk

The size of the extent file is 4294967296 bytes, which is 4GB (4GB × 1024MB × 1024KB
× 1024bytes). This is the size the file system reports to the virtual machine that uses it as a
virtual disk.

Now, let’s see the actual number of disk blocks this file occupies on the file system (see
Listing 13.5).

From the Library of raphael schitz

ptg7996124

Creating Virtual Disks Using vmkfstools 455

Listing 13.5 Count of Blocks Used by Thin Virtual Disk

stat book-demo-thin-flat.vmdk

 File: “book-demo-thin-flat.vmdk”

 Size: 4294967296 Blocks: 0 IO Block: 131072 regular file

Device: d03aaeed4049851bh/15004497442547270939d Inode: 88096004 Links: 1

Access: (0600/-rw-------) Uid: (0/ root) Gid: (0/ root)

Access: 2012-03-25 02:39:10.000000000

Modify: 2012-03-25 02:39:10.000000000

Change: 2012-03-25 02:39:10.000000000

The command stat lists the filename, its size, and how many disk blocks it occupies.
In this example, the file size matches what we got from the directory listing. However,
the block count is zero! Why is it zero? The answer is Small File Packing or Zero Level
Addressing discussed under the “File Allocation Improvements” section in Chapter 12,
“VMFS Architecture.”

Where is the file actually stored if it occupies zero blocks? It is stuffed into the VMFS
file descriptor block (inode). In this example the inode number is 88096004. When a VM
writes data to this file and it grows beyond 1K in size, it is placed in a VMFS sub-block
(64k for VMFS3 and 8K for VMFS5) until it grows beyond the sub-block size, which is
when it occupies whole File System block (1MB for newly created VMFS5 or whatever
block size used to format VMFS3). See the “File Allocation Improvements” section in
Chapter 12.

In comparison, see what a thick disk block allocation looks like in Listing 13.6.

Listing 13.6 Count of Blocks Used by Thick Virtual Disk

stat book-demo-thick-flat.vmdk

 File: “book-demo-thick-flat.vmdk”

 Size: 4294967296 Blocks: 8388608 IO Block: 131072 regular file

Device: d03aaeed4049851bh/15004497442547270939d Inode: 71318788 Links: 1

Access: (0600/-rw-------) Uid: (0/ root) Gid: (0/ root)

Access: 2012-03-25 02:36:33.000000000

Modify: 2012-03-25 02:36:33.000000000

Change: 2012-03-25 02:36:33.000000000

In this example, I created a thick virtual disk with the exact size as the thin one and I used
the word thick in the file name for demonstration purposes. The output of stat shows that
the size is 4294967296, which is 4GB, and the number of disk blocks are 8388608. If you

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs456

multiply the number of block by the disk block size which is 512bytes, you get 4294967296
which is the total file size in bytes.

Cloning Virtual Disks Using vmkfstools
The process of creating a copy of a virtual disk via vmkfstools is referred to as cloning. It
used to be known as importing but because the output can be any supported virtual disk
type which can be different from the original virtual disk, the term cloning is more appro-
priate. Do not confuse this process with that available in vCenter Server which clones
the whole VM. The latter clones the VM configuration along with the virtual disks. This
process is also used by View Composer, which creates full clones or linked clones. I explain
that further in Chapter 15, “Snapshot Handling.”

To clone a virtual disk, you need to decide on the following items:

�� Source virtual disk name

�� Target virtual disk name

�� Target virtual disk format

The first two items are self-explanatory. The third item can be any of the following disk
formats:

�� zeroedthick (zeroed thick)

�� thin (thin)

�� eagerzeroedthick (eager zeroed thick)

�� rdm (virtual mode RDM)

�� rdmp (physical mode RDM)

�� 2gbsparse (2GB sparse disk)

I already covered the first three types. I discuss RDMs later in this chapter in the “Raw
Device Mapping” section.

2GB sparse disk format is the default VMware Workstation and VMware Fusion virtual
disk format. To clone a virtual disk using this disk format you may use this command:

vmkfstools --clonevirtualdisk <source-virtual-disk) --diskformat 2gbsparse
<target-virtual-disk>

The shorthand version is

vmkfstools -i <source-virtual-disk) -d 2gbsparse <target-virtual-disk>

From the Library of raphael schitz

ptg7996124

Creating Virtual Disks Using vmkfstools 457

Example:

vmkfstools -i book-demo-thin.vmdk -d 2gbsparse book-demo-thin-clone.vmdk

This clone results in the creation of the files shown in Listing 13.7.

Listing 13.7 Sparse Files Created by Cloning Option

ls -al book-demo-thin-clone*

-rw------- 1 root root 327680 Mar 25 20:40 book-demo-thin-clone-s001.vmdk

-rw------- 1 root root 327680 Mar 25 20:40 book-demo-thin-clone-s002.vmdk

-rw------- 1 root root 65536 Mar 25 20:40 book-demo-thin-clone-s003.vmdk

-rw------- 1 root root 619 Mar 25 20:40 book-demo-thin-clone.vmdk

The smallest file is the virtual disk descriptor file: book-demo-thin-clone.vmdk.

The remaining files are the extents of the virtual disk with a suffix s00x where x is a
sequential numeric value starting from 1.

Listing 13.8 shows a sample of the relevant content from the descriptor file.

Listing 13.8 Content of a Sparse Disk Descriptor File

Disk DescriptorFile

version=1

encoding=”UTF-8”

CID=fffffffe

parentCID=ffffffff

isNativeSnapshot=”no”

createType=”twoGbMaxExtentSparse”

Extent description

RW 4192256 SPARSE “book-demo-thin-clone-s001.vmdk”

RW 4192256 SPARSE “book-demo-thin-clone-s002.vmdk”

RW 4096 SPARSE “book-demo-thin-clone-s003.vmdk”

The Disk Data Base

#DDB

ddb.deletable = “true”

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs458

In this example, the createType property is twoGbMaxExtentSparse, which means that
the virtual disk is divided into extents of 2GB or smaller in size. The extents are specified
in the Extent description section of the descriptor file.

The extents in this example are

�� book-demo-thin-clone-s001.vmdk

�� book-demo-thin-clone-s002.vmdk

�� book-demo-thin-clone-s003.vmdk

The first two extents are less than 2GB in size each (4192256 disk blocks of 512 bytes
each). The last extent is the balance of the 4GB. All three extents are of the SPARSE type.
It is evident from the directory listing shown in Listing 13.7 that the extents’ size on disk
is smaller than the provisioned size. Note that source virtual disk from which I cloned;
this one was freshly created and had no data written to it at the time I cloned it. If there
were data written to the source virtual disk, the target virtual disk extents would have been
larger than this example. They would have been equivalent to the non-zero blocks cloned
from the source virtual disk.

To identify the number of VMFS blocks these extents occupy on the datastore, run the
stat command as shown in Listing 13.9.

Listing 13.9 Count of Blocks Used by a Sparse Disk

stat book-demo-thin-clone* |grep ‘vmdk\|Blocks’

 File: “book-demo-thin-clone-s001.vmdk”

 Size: 327680 Blocks: 2048 IO Block: 131072 regular file

 File: “book-demo-thin-clone-s002.vmdk”

 Size: 327680 Blocks: 2048 IO Block: 131072 regular file

 File: “book-demo-thin-clone-s003.vmdk”

 Size: 65536 Blocks: 2048 IO Block: 131072 regular file

 File: “book-demo-thin-clone.vmdk”

 Size: 619 Blocks: 0 IO Block: 131072 regular file

In this output I grepped for text that includes vmdk and Blocks to filter out the rest of the
output and list on the filename and related size information. Here you should notice that
the number of blocks used by each extent is 2048 disk blocks, which are equal to 1MB.
The reason they used only 1MB is that the file size is less than 1MB and more than 8KB in
size. In other words, they are smaller than the VMFS5 file block size and larger than the
VMFS5 sub-block size. If the datastore were VMFS3 volume or upgraded from VMFS3,
the last two files would have occupied a 64KB sub-block each instead. This is also why the

From the Library of raphael schitz

ptg7996124

Raw Device Mappings 459

descriptor file, which is the last one on the list, occupies zero blocks because it is smaller
than 1KB in size.

NoTE

You cannot freshly create a virtual disk using the vmkfstools 2gbsparse option. This
option is only available when you use the vmkfstools --clonevirtualdisk option.

Raw Device Mappings
Certain virtualized applications — for example, Microsoft Clustering Services (MSCS)
or Storage Layered Applications — require direct access to raw storage devices. vSphere
enables these applications via Raw Device Mappings (RDMs). These mappings are
pointers to the physical LUN and stored on VMFS datastores. These RDMs can be
attached to virtual machines in the same fashion you do with virtual disks. The VMFS
metadata entry representing the RDM pointer on the file system occupies no data blocks. I
show you how that works later in this section.

RDMs are available in two modes:

�� Virtual Mode RDMs (also known as non-pass-through RDMs) — Hide the physical
properties of the mapped device and VMs using them see these RDMs as VMware
SCSI Disk similarly to how they see the virtual disks.

�� Physical Mode RDMs (also known as pass-through RDMs) — Expose the physical
properties of the mapped LUNs and the virtual machines using them to see these
RDMs as a physical LUN directly presented from the storage array. All SCSI
commands issued by the guest OS to the mapped LUNs are passed through to the
storage array unmodified. The only SCSI command that is not passed through is
REPORT_LUN as the VM cannot discover targets not presented to it via RDMs.

Creating Virtual Mode RDMs Using the UI
The process of creating Virtual Mode RDMs is relatively similar to that of creating virtual
disks:

 1. Log on to vCenter Server as a user with Administrator or Root permissions.

 2. Locate the VM to which you want to add the RDM in the inventory. Right-click and
select Edit Settings.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs460

 3. Click the Add button and then select Hard Disk. Click Next.

 4. Select the Raw Device Mappings radio button and then click Next (see
Figure 13.10).

Figure 13.10 Creating an RDM

 5. Select the LUN you want to map and then click Next (see Figure 13.11).

Figure 13.11 Selecting the LUN to map

From the Library of raphael schitz

ptg7996124

Raw Device Mappings 461

 6. Select where you want to store the LUN mapping. You can either store it with the
VM or specify a datastore. Select the corresponding radio button. If you store the
LUN mapping on a datastore, select that datastore from the list. Click Next after
you make your selection (see Figure 13.12).

Figure 13.12 Selecting the datastore for RDM entry

 7. Select the Virtual radio button under the Compatibility section and then click Next
(see Figure 13.13).

Figure 13.13 Selecting the RDM compatibility mode

 8. Select the first radio button under the Virtual Device Mode section and then select
one of the modes from the pull-down selection. It is a common practice to select a
different virtual SCSI adapter number from that assigned to the guest OS’s system
disk. In this example it is SCSI(1:0), which means that the RDM will be attached
as the first device on the second virtual SCSI adapter which is SCSI1 (see Figure
13.14). Click Next.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs462

Figure 13.14 Selecting virtual device node

 9. Review your selections and then click Finish (see Figure 13.15).

Figure 13.15 Reviewing and finishing the selection

The added RDM shows up in the listed of VM devices as New Hard Disk
(adding) as shown in Figure 13.16. In this dialog, you should also see the mapped
device, which is the LUN’s NAA ID (A), the Virtual Device Node (B), and the
RDM Compatibility Mode (C).

 10. Click OK to save the changes to the VM configuration.

From the Library of raphael schitz

ptg7996124

Raw Device Mappings 463

AB

C

Figure 13.16 RDM ready to be added

NoTE

Because the RDM you created in this procedure is a virtual mode, the section labeled Mode
shows that the option for setting the Independent mode is available. This is due to the fact
that the virtual mode RDM is treated like a virtual disk from the VM’s point of view. This
option is not available for physical mode RDMs.

 11. To see the actual datastore mapping file representing the RDM, edit the virtual
machine settings again and see the second field under the Physical LUN and
Datastore Mapping File section (see Figure 13.17, A). In this example, the mapping
file is Book-Demo_1.vmdk. Note that the Physical LUN now shows as the vml file
instead of the NAA ID. This is simply a symbolic link to the device as described in
the “Listing RDM Properties Using vmkfstools” section later in this chapter. Click
Cancel when done.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs464

A

Figure 13.17 Viewing RDM properties

Creating Physical Mode RDMs Using the UI

To create a physical mode RDM, follow the procedure in the “Creating a Virtual Mode
RDM” section earlier in the chapter, with the following exceptions:

�� In Step 7, select the Physical radio button instead of Virtual.

�� In Step 10, the Independent Mode option is not available (see Figure 13.18).

From the Library of raphael schitz

ptg7996124

Raw Device Mappings 465

Figure 13.18 Adding a physical mode RDM

Creating RDMs Using the Command-Line Interface

You can create RDMs, both virtual and physical modes, using the vmkfstools -r and -z
commands respectively. See Listings 13.10 and 13.11 for command-line examples.

Listing 13.10 vmkfstools Command to Create a Virtual Mode RDM

vmkfstools --createrdm /vmfs/devices/disks/<naa ID> /vmfs/volumes/<Datastore>/<vm-
directory>/<rdm-file-name>.vmdk

The short-hand version is

vmkfstools -r /vmfs/devices/disks/<naa ID> /vmfs/volumes/<Datastore>/<vm-
directory>/<rdm-file-name>.vmdk

Example:

vmkfstools -r /vmfs/devices/disks/naa.6006016055711d00cff95e65664ee011 /
vmfs/volumes/iSCSI_LUN0/Book-Demo/Book-Demo_2.vmdk

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs466

Listing 13.11 vmkfstools Command to Create Physical Mode RDM

vmkfstools --createrdmpassthru /vmfs/devices/disks/<naa ID> /vmfs/
volumes/<Datastore>/<vm-directory>/<rdm-file-name>.vmdk

The short-hand version is

vmkfstools -z /vmfs/devices/disks/<naa ID> /vmfs/volumes/<Datastore>/<vm-
directory>/<rdm-file-name>.vmdk

Example:

vmkfstools -z /vmfs/devices/disks/naa.6006016055711d00cff95e65664ee011 /
vmfs/volumes/iSCSI_LUN0/Book-Demo/Book-Demo_3.vmdk

Listing RDM Properties
After an RDM is created, you might need to identify its properties. The user interface
(UI) as shown in Figure 13.18 earlier only shows the vml name of the mapped device. The
VMFS entries of a given RDM appear to be similar to virtual disks. Each RDM has two
vmdk files on the datastore on which you created the RDM. These files are the virtual
machine descriptor file and the RDM pointer file.

To list the files in the VM directory you may run

ls -al /vmfs/volumes/<datastore>/<vm-directory> |sed ‘s/.*root //’

This assumes that the file owner is root. This command truncates the output to remove
the word root and all text before it leaving only the size, date, and time stamp as well as the
filenames. A sample output is shown in Listing 13.12.

Listing 13.12 Listing VM Files

ls -al /vmfs/volumes/iSCSI/Book-Demo/ |sed ‘s/.*root //’

 4294967296 Feb 14 04:44 Book-Demo-flat.vmdk

 468 Feb 14 04:44 Book-Demo.vmdk

 0 Feb 14 04:44 Book-Demo.vmsd

 1844 Apr 9 19:47 Book-Demo.vmx

 264 Apr 9 19:47 Book-Demo.vmxf

 10737418240 Apr 9 17:51 Book-Demo_1-rdm.vmdk

 486 Apr 9 17:51 Book-Demo_1.vmdk

 10737418240 Apr 9 19:01 Book-Demo_2-rdm.vmdk ← Pointer

 486 Apr 9 19:01 Book-Demo_2.vmdk ← Descriptor

 10737418240 Apr 9 19:14 Book-Demo_3-rdmp.vmdk

 498 Apr 9 19:14 Book-Demo_3.vmdk

From the Library of raphael schitz

ptg7996124

Listing RDM Properties 467

In this example there are three RDMs descriptor files (I marked one of them with ←
descriptor) named Book-Demo_1.vmdk through Book_Demo_3.vmdk. The RDM pointer
files (I marked one of them with ← pointer), which are equivalent to the virtual disk extent
files, have a suffix of rdm or rdmp. Files with rdm suffix are pointers to a virtual mode
RDM. Conversely, files with rdmp suffix are pointers to physical mode RDMs, which are
also known as pass-through RDMs.

Based on the file size of each RDM pointer file, they appear to be 10GB in size. These
match the mapped LUNs’ size. However, because these are not actual file blocks on the
datastore, they should have been zero bytes in size. To find out the actual size of these
files, you may run

cd /vmfs/volumes/<datastore>/<vm-directory>

stat *-rdm* |awk ‘/File/||/Block/{print}’

A sample output is shown in Listing 13.13.

Listing 13.13 Output of Commands Listing RDM Pointers Block Count

stat *-rdm* |awk ‘/File/||/Block/{print}’

 File: “Book-Demo_1-rdm.vmdk”

 Size: 10737418240 Blocks: 0 IO Block: 131072 regular file

 File: “Book-Demo_2-rdm.vmdk”

 Size: 10737418240 Blocks: 0 IO Block: 131072 regular file

 File: “Book-Demo_3-rdmp.vmdk”

 Size: 10737418240 Blocks: 0 IO Block: 131072 regular file

This output clearly shows that, although the size is 10GB (listed here in bytes), the actual
number of blocks is zero for all three files. This is easily explained by the fact that the
actual file blocks are mapped to blocks on the physical LUN that each RDM represents.

Listing 13.14 shows the content of a virtual mode RDM descriptor file.

Listing 13.14 Content of a Virtual Mode RDM Descriptor File

Disk DescriptorFile

version=1

encoding=”UTF-8”

CID=fffffffe

parentCID=ffffffff

isNativeSnapshot=”no”

createType=”vmfsRawDeviceMap”

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs468

Extent description

RW 20971520 VMFSRDM “Book-Demo_1-rdm.vmdk”

The Disk Data Base

#DDB

ddb.virtualHWVersion = “8”

ddb.longContentID = “2d86dba01ca8954da334a0e4fffffffe”

ddb.uuid = “60 00 C2 9c 0e da f3 3f-60 7a f7 fe bc 34 7d 0f”

ddb.geometry.cylinders = “1305”

ddb.geometry.heads = “255”

ddb.geometry.sectors = “63”

ddb.adapterType = “lsilogic”

The highlighted lines in the output are unique to virtual mode RDMs:

�� The createType field value is vmfsRawDeviceMap, which means virtual mode
RDM.

�� The Extent description section shows the RDM sectors count, which is in
512-byte disk blocks. It also shows the extent type, which is VMFSRDM. This type is
also used by physical mode RDMs as well, which I show you in Listing 13.15.

Listing 13.15 shows the content of a physical mode RDM descriptor file.

Listing 13.15 Content of a Physical Mode RDM Descriptor File

Disk DescriptorFile

version=1

encoding=”UTF-8”

CID=fffffffe

parentCID=ffffffff

isNativeSnapshot=”no”

createType=”vmfsPassthroughRawDeviceMap”

Extent description

RW 20971520 VMFSRDM “Book-Demo_3-rdmp.vmdk”

The Disk Data Base

#DDB

ddb.virtualHWVersion = “8”

From the Library of raphael schitz

ptg7996124

Listing RDM Properties 469

ddb.longContentID = “307b5c6b4c696020ffb7a8c7fffffffe”

ddb.uuid = “60 00 C2 93 34 90 2c ca-c9 96 f2 a6 7f a6 65 e1”

ddb.geometry.cylinders = “1305”

ddb.geometry.heads = “255”

ddb.geometry.sectors = “63”

ddb.adapterType = “buslogic”

Again, I highlighted the lines in the output that are unique to physical mode RDMs:

�� The createType field value is vmfsPassthroughRawDeviceMap, which means
physical mode RDM (also known as pass-through RDM).

�� The Extent description section shows the RDM sectors count, which is
in 512-byte disk blocks. It also shows the extent type, which is VMFSRDM. As I
mentioned in the explanation of the virtual mode RDM, this extent type is common
between both types of RDMs.

Now that I showed you the file structure of RDMs, it’s time to identify the RDM
properties to locate which device it maps. You can do this using vmkfstools as well as
the UI.

Listing RDM Properties Using vmkfstools

To list RDM properties using vmkfstools, you may follow these steps:

 Use vmkfstools --queryrdm, or the shorthand version vmkfstools -q, to
identify the vml ID of the mapped LUN (see Listing 13.16).

This option lists the RDM properties, which includes the RDM type — for
example, pass-through RDM or non-pass-through RDM.

Listing 13.16 Using vmkfstools to List RDM Properties

vmkfstools -q /vmfs/volumes/FC200/win2K3Enterprise/win2K3Enterprise.vmdk

Disk /vmfs/volumes/FC200/win2K3Enterprise/win2K3Enterprise.vmdk is a
Passthrough Raw Device Mapping

Maps to: vml.02000100006006016055711d00cff95e65664ee011524149442035

I highlighted vml id in the output.

 Use the vml ID with esxcli storage core device command to find the device
ID of the mapped LUN (see Listing 13.17).

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs470

The syntax is

esxcli storage core device list --device=<vml ID>

Or the shorthand version is

esxcli storage core device list -d <vml ID>

Listing 13.17 Identifying Device ID Using vml ID

esxcli storage core device list --device=vml.02000100006006016055711d00cff9
5e65664ee011524149442035 |grep naa

naa.6006016055711d00cff95e65664ee011

 Display Name: DGC Fibre Channel Disk (naa.6006016055711d00cff95e65664
ee011)

 Devfs Path: /vmfs/devices/disks/naa.6006016055711d00cff95e65664ee011

I highlighted the device ID in the output. The NAA ID is usually sufficient to identify the
LUN. However, if you need to identify the LUN number as well, you run this command
using the NAA ID you just identified:

esxcli storage nmp device list --device=<NAA ID> |grep Current

Or the shorthand version is

esxcli storage nmp device list -d <NAA ID> |grep Current

Listing 13.18 shows the output of this command.

Listing 13.18 Identifying the LUN Number Based on Device ID

esxcli storage nmp device list --device=naa.6006016055711d00cff95e65664
ee011 |grep Current

 Path Selection Policy Device Config: Current Path=vmhba3:C0:T1:L1

The output shows that this LUN’s runtime name is vmhba3:C0:T1:L1, which means that
the LUN number is LUN 1 on storage array port on Target 1. See the “FC Targets”
section in Chapter 2, “Fibre Channel Storage Connectivity,” for details.

Listing RDM Properties Using the UI

To list RDM properties using the UI, follow these steps:

 1. While logged on to the vCenter Server using vSphere 5 client as an administrator,
locate the VM in the inventory tree.

From the Library of raphael schitz

ptg7996124

Listing RDM Properties 471

 2. Right-click the VM listing and then select Edit Settings.

You should see a dialog similar to that shown in Figure 13.19.

Figure 13.19 Listing RDM properties using the UI

 3. Locate the device showing Mapped Raw LUN in the summary column and select it.

 4. Click the Manage Paths button on the lower-right corner of the dialog.

 5. The device ID is listed in the lower pane of the resulting dialog. The ID is right after
the last dash in the Name field. (See Figure 13.20.)

Figure 13.20 Listing RDM’s NAA ID

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs472

In this example, the device ID is

naa.6006016055711d00cff95e65664ee011

TIP

If you look closer at the vml and NAA ID in this example, you will notice that the NAA ID
is actually part of the VML ID or the other way around; the vml ID is based on the NAA ID
of the device.

vml.02000100006006016055711d00cff95e65664ee011524149442035

naa.6006016055711d00cff95e65664ee011

For example, the matching bytes are highlighted.

If the mapped LUN is an iSCSI device, the process is the same as with the FC
example, but the last step’s dialog would look like Figure 13.21.

Figure 13.21 Listing iSCSI RDM NAA ID

Virtual Storage Adapters
VMs utilize virtual disks and RDMs as SCSI disks attached to a virtual SCSI HBA. Some
virtual disks may be also connected to an IDE adapter.

Virtual machine configuration files (*.vmx) show the type of virtual storage adapter.

For example, running the following command while in a virtual machine directory returns
its list of virtual SCSI HBAs:

fgrep -i virtualdev *.vmx |grep scsi

scsi0.virtualDev = “lsisas1068”

scsi1.virtualDev = “lsilogic”

scsi3.virtualDev = “buslogic”

From the Library of raphael schitz

ptg7996124

Virtual Storage Adapters 473

This example shows that the VM has three different virtual SCSI HBAs:

�� Virtual SCSI HBA number 0 is lsisas1068, which is LSI Logic SAS type

�� Virtual SCSI HBA number 1 is lsilogic, which is LSI Logic Parallel type

�� Virtual SCSI HBA number 2 is buslogic, which is BusLogic Parallel type

Selecting the Type of Virtual Storage Adapter
To select the type of virtual storage adapter, follow this procedure using vSphere Client 5
while logged in as an administrator or root user:

 1. Locate the VM in the inventory, right-click it, and select Edit Settings.

 2. Click on the SCSI controller you want to modify in the list of devices and then click
the Change Type button (see Figure 13.22).

Figure 13.22 Modifying the virtual SCSI controller type

 3. Select the SCSI Controller Type by clicking the radio button next to the type you
want to choose (see Figure 13.23).

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs474

Figure 13.23 Selecting the virtual SCSI controller type

Figure 13.24 shows the device list with the original SCSI controller 1 marked
with (replacing) and the new one at the bottom of the list marked with
(replacement) that shows the new type.

 4. Click OK to apply the changes.

Figure 13.24 Virtual HBA type changes ready to apply

From the Library of raphael schitz

ptg7996124

Virtual Storage Adapters 475

VMware Paravirtual SCSI Controller
Paravirtualization is a technique that allows ESXi to present to the GOS a high-
performance virtual SCSI controller that is almost identical to the underlying physical
SCSI controller.

This high-performance virtual SCSI controller is referred to as VMware Paravirtual SCSI
Controller (PVSCSI). It utilizes specialized GOS kernels that support paravirtualization.
Such a combination provides better I/O throughput and reduces CPU utilization. To find
out if your GOS is supported, follow this procedure to check VMware HCL (Hardware
Compatibility List):

 1. In a browser, go to http://www.vmware.com/go/hcl.

 2. Select the file in Figure 13.25 as follows:

a. What you are looking for: Guest OS (A)

b. Virtual Hardware: Paravirtualization (VMI) (B)

c. Product Release Version: ESXi 5.0 and ESXi 5.0 U1 (C)

 3. Click the Update and View Results button (D) and scroll down to see the results.

A B

C

D

Figure 13.25 Searching VMware HCL for supported PVSCSI Guest OS

Configuring a VM to Use PVSCSI

To configure a VM to use PVSCSI, follow Steps 1 through 4 under the previous section,
“Selecting the Type of Virtual Storage Adaptor.” However, in Step 3 you need to select
VMware Paravirtual as the adapter type.

From the Library of raphael schitz

http://www.vmware.com/go/hcl

ptg7996124

Chapter 13 Virtual Disks and RDMs476

WARNING

Do not change the type of virtual SCSI controller to which the GOS system disk is attached.
Doing so may render the GOS unbootable.

PVSCSI Limitations

The following limitations are imposed on the PVSCSI controllers:

�� If you hot add or hot remove a virtual disk to the VM attached to the PVSCSI
controller, you must rescan the SCSI BUS from within the GOS.

�� If the virtual disks attached to the PVSCSI controller have snapshots, they will not
benefit from the performance improvements.

�� If the ESXi host memory is overcommitted, the VM does not benefit from the
PVSCSI performance improvement.

�� PVSCSI controllers are not supported for GOS boot devices (see the earlier
warning).

�� MSCS clusters are not supported with PVSCSI.

Known Issues with PVSCSI

Although Windows Server 2008 and Windows Server 2008R2 are not listed on the HCL
as supported with PVSCSI, several customers have been using it without issues. However,
VMware received several reports of sever performance degradation on these operating
systems when using PVSCSI under high disk I/O. The following message is logged to the
guest’s event logs:

Operating system returned error 1117 (The request could not be performed
because of an I/O device error.)

According to vSphere 5.0 Update 1 Release Notes, it fixed this issue.

Virtual SCSI Bus Sharing

You might have noticed in Figure 13.24 that there is a section named SCSI Bus Sharing.
This feature is designed mainly to support MSCS clustered VMs.

There are two bus sharing policies: virtual and physical. Do not confuse them with
RDM Compatibility Modes bearing the same names. What the SCSI Bus Sharing does
is to allow multiple VMs to open the same shared virtual disks or RDMs concurrently.

From the Library of raphael schitz

ptg7996124

Virtual Machine Snapshots 477

You accomplish this by turning off file locking for virtual disks attached to virtual SCSI
controllers with bus sharing enabled. To prevent concurrent writes to the shared virtual
disks, the GOS must provide the functionality that elects which node in the cluster is
allowed to write to the shared disks. This is provided by MSCS and the use of quorum
disks.

Table 13.5 compares virtual and physical bus sharing policies.

Table 13.5 Virtual and Physical Bus Sharing Comparison

Feature Virtual Physical None

Virtual Disks Concurrent Access Yes No No

Virtual Mode RDMs Concurrent
Access

Yes Yes No

Physical Mode RDMs Concurrent
Access

No Yes No

Supported with VM Snapshots (see
next section)

No No Yes

Supported with Multi-Writer Locking
(see footnote)

No No Yes

Multi-Writer Lock is discussed in Chapter 14, “Distributed Locks.”

Virtual Machine Snapshots
Have you ever been in a situation when you install an OS patch or update that renders it
unbootable or keeps crashing? You probably wished you could turn back the time to right
before you installed the problematic patches.

I once got a VMware T-Shirts that had an “Undo Your Whole Day” slogan on the back
of the shirt. This was the slogan we used when VMware first introduced the concept that
allows you to do that — go back in time that is.

This feature was referred to as REDO logs. They enabled you to discard changes made to
the VM after the REDO logs were created.

Now the VM is all grown up and so are its features. The concept of REDO logs evolved
into virtual machines snapshots. They enable you to take a point-in-time snapshot of
the Virtual Machine state, which includes the virtual disks and optionally, if the VM was
powered on at the time, take a snapshot of the VM memory.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs478

These states are saved to a set of files stored in the VM directory. Before taking the first
snapshot, let me show you the baseline set of files in the VM directory (see Listing 13.19).

Listing 13.19 Virtual Machine Files before Taking Snapshot

ls -Al |sed ‘s/.*root//’

 8589934592 Apr 13 04:13 Book-Demo3-flat.vmdk

 497 Apr 13 04:13 Book-Demo3.vmdk

 0 Apr 13 04:13 Book-Demo3.vmsd

 1506 Apr 13 04:13 Book-Demo3.vmx

 265 Apr 13 04:13 Book-Demo3.vmxf

Table 13.6 lists the extensions of these files and their functions.

Table 13.6 VM File Extensions

File Extension Function Comments

vmdk Virtual Disk There are two files with that extension for each
virtual disk. The file without -flat suffix is the
descriptor file that I covered in Virtual Disks
section earlier in this chapter. The other file
with -flat suffix is the extent file which, I also
covered in the same section as the descriptor file

vmsd Virtual Machine
Snapshot Dictionary

It defines the Snapshot Hierarchy. More about
that in this section. The file is blank prior to
taking any snapshots

vmx Virtual Machine
Configuration File

Defines the Virtual Machine structure and virtual
hardware.

vmxf Virtual Machine Foundry
File

Holds information used by vSphere Client when it
connect to the ESXi host directly. This is a subset
of information stored in the vCenter Server
Database.

Creating the VM’s First Snapshot While VM Is Powered off
To create a snapshot, follow this procedure using vSphere Client 5:

 1. Log in to vCenter Server as an Administrator or root user.

 2. Locate the VM in the Inventory tree and right-click it, select the Snapshot menu,
and then select the Take Snapshot submenu (see Figure 13.26).

From the Library of raphael schitz

ptg7996124

Virtual Machine Snapshots 479

Figure 13.26 Creating a VM snapshot

 3. When prompted, fill the Name and Description fields with the Snapshot Display
Name and its description respectively and then click OK (see Figure 13.27). Note
the two checkboxes that are grayed out. This is because the VM is not powered on at
the time the snapshot is taken. I discuss these checkboxes later in this section.

Figure 13.27 Entering the snapshot name and description

You should see a task created in the Recent Tasks pane showing the Create virtual
machine snapshot status is in progress. The status changes to completed when it’s
done.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs480

Let’s see now which files were added or modified when the snapshot was created.

Listing 13.20 shows three new files created and two files modified.

Listing 13.20 VM Directory Listing After First Snapshot Created

ls -Al |sed ‘s/.*root//’

 20480 Apr 13 05:03 Book-Demo3-000001-delta.vmdk

 323 Apr 13 05:03 Book-Demo3-000001.vmdk

 18317 Apr 13 05:03 Book-Demo3-Snapshot1.vmsn

 8589934592 Apr 13 04:13 Book-Demo3-flat.vmdk

 497 Apr 13 04:13 Book-Demo3.vmdk

 464 Apr 13 05:03 Book-Demo3.vmsd

 1513 Apr 13 05:03 Book-Demo3.vmx

 265 Apr 13 04:13 Book-Demo3.vmxf

Table 13.7 lists the added and modified files and explanations.

Table 13.7 Files Added or Modified by Snapshot Creation

Filename Descriptions Comments

Book-Demo3-000001-delta.vmdk Delta Disk Extent New data written after snapshot is
taken gets redirected to this extent
file. Its type is vmfsSparse.

Book-Demo3-000001.vmdk Delta Disk
Descriptor File

Descriptor file defining the
snapshot virtual disk. See Listing
13.20 for content.

Book-Demo3-Snapshot1.vmsn VM Snapshot File This is the actual snapshot file,
which is the state of the VM
configuration. It actually combines
the original unmodified content
of both vmx and vmxf files. If
the VM were powered on at the
time of taking the snapshot and I
chose to take a snapshot of the
VM’s memory, this file would have
included that as well as the CPU
state.

Book-Demo3.vmsd VM Snapshot
Dictionary

This file used to be blank before
the snapshot was taken. Now it
includes the snapshot hierarchy.
See Listing 13.21 for content.

From the Library of raphael schitz

ptg7996124

Virtual Machine Snapshots 481

Filename Descriptions Comments

Book-Demo3.vmx VM Configuration
File

The value of scsi0:0.fileName
is changed to be the Delta Disk
Descriptor filename.

To better understand the relationships between these files, let me walk you through the
relevant content from each file. I’m doing that in the order of relevance. Note that all
added files are named based on the VM Name, which is also the default system disk virtual
disk name. In this example it is Book-Demo3:

 1. The VM Configuration file (vmx) is modified as follows:

Before snapshot:

scsi0:0.fileName = “Book-Demo3.vmdk”

After snapshot:

scsi0:0.fileName = “Book-Demo3-000001.vmdk”

This means that the virtual disk attached to scsi0:0 is now the delta disk file
descriptor.

 2. The delta disk descriptor file content is shown in Listing 13.21. It shows that the
delta disk is a sparse file with vmfsSparse type.

Listing 13.21 Delta Disk Descriptor File Content

Disk DescriptorFile

version=1

encoding=”UTF-8”

CID=fffffffe

parentCID=fffffffe

isNativeSnapshot=”no”

createType=”vmfsSparse”

parentFileNameHint=”Book-Demo3.vmdk”

Extent description

RW 16777216 VMFSSPARSE “Book-Demo3-000001-delta.vmdk”

The Disk Data Base

#DDB

ddb.longContentID = “a051b9fb9b43b7ae0b351f1dfffffffe”

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs482

The highlighted lines are explained in Table 13.8.

Table 13.8 Delta Disk Descriptor Properties

Property Virtual Comments

parentCID fffffffe The parent disk’s Content ID.

isNativeSnapshot no For use in a future release that will allow the
snapshot creation to be handled by the storage
array directly.

createType vmfsSparse All delta disks are sparse files regardless of
their parent disks type.

parentFileNameHint Book-Demo3.
vmdk

The name of the parent disk. This disk stays
unmodified..

Extent Description Multi-values The relevant values are the type, again, is
VMFSSPARSE and the extent filename is that
with the -delta suffix.

Parent disk remains unmodified. When the VM is powered on, that file is
opened with Read-Only locks. This is the same function done by the VADP API
(vStorage APIs for Data Protection) when it backs up a virtual disk while the
VM is running. This allows the backup software to copy the parent disk since the
Read-Only lock allows Multi-Readers to access and open the parent virtual disk
for reads.

NoTE

Many types of storage arrays implement snapshot-backup capabilities. These technologies
are often implemented in one of two fashions: Copy-On-Write (EMC) or Pointer-Based
(NetApp and ZFS-based arrays). These technologies provide a means for arrays to provide
LUN and file system snapshots. With VMware, storage partners, like NetApp, are able to
provide file-based snapshots. Because VMDKs are files that can take advantage of such tech-
nology, this capability provides a more granular level of functionality.

 3. The virtual machine snapshot dictionary file (vmsd) stores the properties that define
the snapshot hierarchy, which is the relationship between snapshot files and the
snapshot to which they belong. Listing 13.22 shows the content of this file.

From the Library of raphael schitz

ptg7996124

Virtual Machine Snapshots 483

Listing 13.22 Virtual Machine Snapshot Dictionary File Content

.encoding = “UTF-8”

snapshot.lastUID = “1”

snapshot.current = “1”

snapshot0.uid = “1”

snapshot0.filename = “Book-Demo3-Snapshot1.vmsn”

snapshot0.displayName = “Before installing patch xyz”

snapshot0.description = “Snapshot taken before installing patch xyz”

snapshot0.createTimeHigh = “310664”

snapshot0.createTimeLow = “1673441029”

snapshot0.numDisks = “1”

snapshot0.disk0.fileName = “Book-Demo3.vmdk”

snapshot0.disk0.node = “scsi0:0”

snapshot.numSnapshots = “1”

Because this is the first snapshot taken for the VM, there is only one snapshot
definition listed, and its ID is 1. All properties in that file have a prefix: snapshot0.
The list of properties without the prefix are better explained in Table 13.9.

Table 13.9 Properties in the Virtual Machine Snapshot Dictionary File

Property Value Comments

lastUID 1 ID of the most recently created
snapshot.

current 1 ID of the snapshot currently in use.

uid 1 Snapshot ID.

filename “Book-Demo3-Snapshot1.vmsn” Name of the Snapshot file.

displayName “Before installing patch xyz” Snapshot name entered in the
dialog shown in Figure 13.29.

description “Snapshot taken before installing
patch xyz”

Description of snapshot entered in
the dialog shown in Figure 13.29.

numDisks 1 Number of virtual disks that are not
configured as independent. This is
the number of virtual disks that will
have delta files.

disk0.filename “Book-Demo3.vmdk” Name of the first parent virtual disk.

disk0.node scsi0:0 Parent virtual disk node.

numSnapshots 1 Total number of snapshots take for
this VM.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs484

These properties dictate how the Snapshot Manager displays the current
hierarchy of the snapshots in the UI. Figure 13.26 shows the hierarchy of the
first snapshot of this VM. To display the Snapshot Manager, right-click the VM
in the inventory and then select Snapshot menu followed by Snapshot Manager
submenu. This opens the dialog shown in Figure 13.28.

Figure 13.28 Displaying Snapshot Manager

In this figure you can easily identify the parent disk, the snapshot display name,
and description. The You Are Here Marker is the current state that points to the
snapshot. I explain the Go To and Delete buttons in the “Snapshot Operations”
section later in this chapter.

Creating a VM Second Snapshot While Powered on
Now take a second snapshot. This time, the VM is powered on. Follow the same steps
you used to create the first snapshot:

 1. Log in to vCenter Server as an Administrator, root, or virtual machine power user.

 2. Locate the VM in the Inventory tree, right-click it, and then select the Snapshot
menu and then the Take Snapshot submenu.

From the Library of raphael schitz

ptg7996124

Virtual Machine Snapshots 485

 3. When prompted, fill the Name and Description fields with the Snapshot Display
Name and its description, respectively and then click OK (see Figure 13.29). Note
the two checkboxes that are now available because the VM is powered on. The first
one, Snapshot the Virtual Machine’s Memory, is selected by default. This is self-
explanatory. The second checkbox uses the same function that the VADP uses to
take a snapshot before backing up the parent virtual disk. As the option indicates,
VMware Tools must be installed in the VM for this to work. The reason is that part
of the tools installation is a set of scripts that are run when this function is used.

Figure 13.29 Entering the snapshot name and description of a Power On VM

Let’s see which files were added or modified in the VM directory. Listing 13.23 shows the
VM directory after the second snapshot was created.

Listing 13.23 VM Directory Content After Creating Second Snapshot (Powered On)

ls -Al |sed ‘s/.*root//’

 20480 Apr 13 05:03 Book-Demo3-000001-delta.vmdk

 323 Apr 13 05:03 Book-Demo3-000001.vmdk

 20480 Apr 13 08:27 Book-Demo3-000002-delta.vmdk

 330 Apr 13 08:27 Book-Demo3-000002.vmdk

 18317 Apr 13 05:03 Book-Demo3-Snapshot1.vmsn

 1074980997 Apr 13 08:29 Book-Demo3-Snapshot2.vmsn

 1073741824 Apr 13 08:02 Book-Demo3-f1994119.vswp

 8589934592 Apr 13 04:13 Book-Demo3-flat.vmdk

 497 Apr 13 04:13 Book-Demo3.vmdk

 890 Apr 13 08:27 Book-Demo3.vmsd

 2585 Apr 13 08:27 Book-Demo3.vmx

 265 Apr 13 04:13 Book-Demo3.vmxf

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs486

The highlighted files were added or modified. Notice that the size of the
Book-Demo3-Snapshot2.vmsn file is much larger than the snapshot1 one. This is
because the VM is powered on, and I have chosen to snapshot the VM’s memory. The
CPU state and the memory state are both kept in the corresponding snapshot file.

Book-Demo3-000002.vmdk and Book-Demo3-000002-delta.vmdk are the virtual disk
snapshot for this new snapshot. However, its parent disk is not the same as the first
snapshot’s parent. How did I know that? Listing 13.24 shows the descriptor file.

Listing 13.24 Content of Second Snapshot’s Delta Disk Descriptor File

Disk DescriptorFile

version=1

encoding=”UTF-8”

CID=fffffffe

parentCID=fffffffe

isNativeSnapshot=”no”

createType=”vmfsSparse”

parentFileNameHint=”Book-Demo3-000001.vmdk”

Extent description

RW 16777216 VMFSSPARSE “Book-Demo3-000002-delta.vmdk”

The Disk Data Base

#DDB

ddb.longContentID = “a051b9fb9b43b7ae0b351f1dfffffffe”

I highlighted the relevant properties in the listing. The parentFileNameHint clearly
shows that the parent disk is Book-Demo3-000001.vmdk which is the first snapshot’s delta
disk. This means that all new data get redirected to Book-Demo3-000002-delta.vmdk file.

Also note that the vmx file has been changed to reflect that the new delta file is the current
virtual disk attached to scsi0:0.

After the first snapshot:

scsi0:0.fileName = “Book-Demo3-000001.vmdk”

After the second snapshot:

scsi0:0.fileName = “Book-Demo3-000002.vmdk”

In addition, the vmsd file now shows an additional snapshot whose properties are prefixed
with snapshot1 (see Listing 13.25).

From the Library of raphael schitz

ptg7996124

Virtual Machine Snapshots 487

Listing 13.25 vmsd File Content

.encoding = “UTF-8”

snapshot.lastUID = “2”

snapshot.current = “2”

snapshot0.uid = “1”

snapshot0.filename = “Book-Demo3-Snapshot1.vmsn”

snapshot0.displayName = “Before installing patch xyz”

snapshot0.description = “Snapshot taken before installing patch xyz”

snapshot0.createTimeHigh = “310664”

snapshot0.createTimeLow = “1673441029”

snapshot0.numDisks = “1”

snapshot0.disk0.fileName = “Book-Demo3.vmdk”

snapshot0.disk0.node = “scsi0:0”

snapshot1.uid = “2”

snapshot1.filename = “Book-Demo3-Snapshot2.vmsn”

snapshot1.parent = “1”

snapshot1.displayName = “After Installing App X”

snapshot1.description = “Second snapshot taken after installing Application
X”

snapshot1.type = “1”

snapshot1.createTimeHigh = “310667”

snapshot1.createTimeLow = “1030355829”

snapshot1.numDisks = “1”

snapshot1.disk0.fileName = “Book-Demo3-000001.vmdk”

snapshot1.disk0.node = “scsi0:0”

snapshot.numSnapshots = “2”

I highlighted the lines that were added or changed.

All lines prefixed with snapshot1 are the properties of the newly added snapshot. They
look identical to those of the first snapshot file but with different values. A new property
was added: snapshot1.parent. It simply states that this snapshot’s parent is another
snapshot whose ID is 1, which is the first snapshot we covered earlier. Also note that the
numSnapshots value is now 2. This means that the total count of snapshots for the VM is
currently 2.

The snapshot1.uid is 2. Why wasn’t it given a higher number? The reason is that this
number is the next number in sequence after the value of the field named snapshot.
lastUID in the previous version of the vmsd file. If you look at Table 13.9, you will notice
that the value was 1. If it were higher, the second snapshot’s UID would have been higher
than 2.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs488

Figure 13.30 shows how these properties look in the Snapshot Manager’s UI.

Figure 13.30 Listing second snapshot

Note that now the You are here marker points to the second snapshot.

Snapshot operations
Available snapshot operations are

�� Go to a snapshot.

�� Delete a snapshot.

�� Revert to a snapshot.

�� Consolidate a snapshot (a new feature in vSphere 5). I explain each operation
separately.

From the Library of raphael schitz

ptg7996124

Snapshot Operations 489

Go to a Snapshot operation
Consider the following scenario: I am testing an application that is still in beta and I am
not comfortable with what damage it can do to my VM. So, I take a snapshot before
installing the application. In Figure 13.29, the snapshot is labeled Before Installing App
X (instead of taking it after installing the app as I did in the previous section). Then what
I expected happens, the VM crashed. I’m not certain I can reproduce the crash. So, I take
a snapshot to save the state of the VM showing the problem. Because the application is a
beta quality, there is no live support for it. I decide that I need to rule out patch xyz, which
I installed before the application, as the root cause of the problem. So, the plan is to go
to the VM state before I installed patch xyz and then take another snapshot. Then I can
install the application.

Figure 13.31 displays the Snapshot Manager (cropped) showing the current state:

 1. Click the snapshot labeled Before Installing Patch xyz and then click the Go To
button.

Figure 13.31 Snapshot Manager showing a crashed VM snapshot

The dialog in Figure 13.32 opens. Note that the icon for the Before Installing
Patch xyz does not have the power on symbol (the right-pointing triangle) like
the other two below it. This means that when it was taken, the VM was powered
off. So, when I click the Go To button, the VM is powered off because it was the
state of the VM at that time.

 2. Click Yes in the resulting dialog (see Figure 13.32).

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs490

Figure 13.32 Confirming the Go To operation

 3. After the process is done, the snapshot manager should look like Figure 13.33, and
the VM is powered off.

Figure 13.33 The completed Go To operation

 4. Now let’s take another snapshot before installing App X. If the Snapshot Manager
is still open, click Close. Make sure the VM is still selected (A) in the inventory
tree, and then click the Take a Snapshot of This Virtual Machine button (B) (see
Figure 13.34).

From the Library of raphael schitz

ptg7996124

Snapshot Operations 491

A

B

Figure 13.34 Taking a new snapshot to create a new branch

 5. Enter the snapshot name and description (for example, Side Branch Before Installing
App X), and then click OK.

 6. Power the VM on and install App X. So far, so good! The application seems stable.

 7. To be on the safe side, let’s take a snapshot in this state. Click the Take a Snapshot
of This Virtual Machine button, enter the snapshot name and description (for
example, After Installing App X), and click OK.

 8. Click the Snapshot Manager Toolbar (A) button to display the current snapshot
hierarchy (B) (see Figure 13.35).

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs492

A

B

Figure 13.35 Listing second snapshot branch in Snapshot Manager

TIP

Keep an eye on the target! That is the You Are Here marker. This represents the current
state of the VM since you took the last snapshot. Assume that the VM is powered off at this
time. If you want to discard what you did since you took the snapshot, select the snapshot to
which the target is pointing and then click the Go To button. You should observe that the
VM is now powered on and is at the state taken by that snapshot.

Delete a Snapshot operation
After taking a VM snapshot the original VM CPU, optionally, memory states are kept in
the VM snapshot file (vmsn), and the original unmodified data is kept in the parent virtual
disk file. All changes to the CPU and memory state are kept in the running VM memory
and don’t get written to a snapshot file until you take another snapshot. Continuing
with the example from the previous section, assume that App X, installed on the OS
without a patch, is proven to be stable. You can safely delete the snapshot because you
no longer need to restore the VM to its App X state. I want to delete the Side Branch

From the Library of raphael schitz

ptg7996124

Snapshot Operations 493

Before Installing App X snapshot and keep the most recent one. The following procedure
continues from the end of the procedure from the “Go to a Snapshot Operation” section.
The VM is now running in the state After Installing App X:

 1. Still referring to Figure 13.35 at the end of the previous section, click Side Branch
Before Installing App X snapshot and then click the Go To button. Click Yes
to continue. Snapshot Manager should look like Figure 13.36 now, and the VM is
powered off.

Figure 13.36 Going to parent snapshot before deleting it

 2. Click the Delete button. You get the Confirm Delete dialog. Click Yes to proceed
with deleting the snapshot.

The Snapshot Manager should look like Figure 13.37, and the VM is still
powered off.

Figure 13.37 Side branch snapshot deleted

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs494

What actually happened here is that all the changes that were written to the delta
file of the Side Branch Before Installing App X snapshot got written to its parent
virtual visk. This means that these changes can no longer be discarded.

 3. To switch to the state with the installed App X, select the After Installing App X
snapshot and then click the Go To button.

 4. Click Yes to confirm the operation. The Snapshot Manager should look like
Figure 13.38.

Figure 13.38 Going to child snapshot

 5. Click Close.

Consolidate Snapshots operation
Snapshot consolidation searches for snapshot hierarchies, or delta disks, to combine
without violating data dependency. The outcome of consolidation is the removal of
redundant disks. This improves virtual machine performance and saves storage space.

Identifying Consolidation Candidates

To identify which VMs require snapshot consolidation, follow this procedure:

 1. Log on to vCenter Server as Administrator or root user.

From the Library of raphael schitz

ptg7996124

Snapshot Operations 495

 2. Navigate to Home, Inventory, VMs and Templates (see Figure 13.39).

Figure 13.39 Switching to the VMs and Templates view

 3. Select the Virtual Machines Tab (A).

 4. Right-click on any of the column headers (B) and select Needs Consolidation (C)
(see Figure 13.40).

AB

C

Figure 13.40 Adding a Needs Consolidation column

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs496

 5. The column is added to the far right-hand side of the view. You may move it by
clicking and dragging the column header to the desired location in the view. If a VM
needs consolidation, the value of this column will be Yes. Otherwise, it would be No.

 6. Right-click a VM that needs consolidation and then click Snapshot followed by
Consolidate (see Figure 13.41).

Figure 13.41 The Consolidate Snapshot command

 7. Confirm the operation when prompted by clicking Yes.

What Actually Happens When Snapshots Are Consolidated?

Continuing with the example I used under the “Delete Snapshot Operation” section, the
deletion left a delta disk behind. To find out which one, I collected some outputs before
and after the consolidation process. Listings 13.26 through 13.29 show these outputs.

Listing 13.26 Virtual Disk Descriptors Before Consolidation

 323 Apr 14 20:26 Book-Demo3-000001.vmdk

 330 Apr 14 20:29 Book-Demo3-000002.vmdk

 330 Apr 15 00:57 Book-Demo3-000003.vmdk

 346 Apr 15 03:27 Book-Demo3-000004.vmdk

 330 Apr 15 04:10 Book-Demo3-000005.vmdk

 520 Apr 15 03:27 Book-Demo3.vmdk

From the Library of raphael schitz

ptg7996124

Snapshot Operations 497

Listing 13.27 Virtual Disk Descriptors After Consolidation

 323 Apr 14 20:26 Book-Demo3-000001.vmdk

 330 Apr 14 20:29 Book-Demo3-000002.vmdk

 346 Apr 15 04:47 Book-Demo3-000004.vmdk

 330 Apr 15 04:47 Book-Demo3-000005.vmdk

 520 Apr 15 03:27 Book-Demo3.vmdk

Comparing the listings, it is obvious that one delta disk was removed (which I highlighted
in listing 13.26). This is the virtual disk descriptor for the delta file used by the snapshot I
deleted earlier. Because its blocks have been converged with its parent disk, it is no longer
needed. To find out which was its parent disk, I ran the following command:

fgrep vmdk Book-Demo3-00000?.vmdk |grep parent

The outputs before and after the consolidation process are shown in Listings 13.28 and
13.29.

Listing 13.28 Snapshot Parent Disks Before Consolidation

fgrep vmdk Book-Demo3-00000?.vmdk |grep parent

Book-Demo3-000001.vmdk:parentFileNameHint=”Book-Demo3.vmdk”

Book-Demo3-000002.vmdk:parentFileNameHint=”Book-Demo3-000001.vmdk”

Book-Demo3-000003.vmdk:parentFileNameHint=”Book-Demo3-000004.vmdk”

Book-Demo3-000004.vmdk:parentFileNameHint=”Book-Demo3.vmdk”

Book-Demo3-000005.vmdk:parentFileNameHint=”Book-Demo3-000003.vmdk”

Listing 13.29 Snapshot Parent Disks After Consolidation

fgrep vmdk Book-Demo3-00000?.vmdk |grep parent

Book-Demo3-000001.vmdk:parentFileNameHint=”Book-Demo3.vmdk”

Book-Demo3-000002.vmdk:parentFileNameHint=”Book-Demo3-000001.vmdk”

Book-Demo3-000004.vmdk:parentFileNameHint=”Book-Demo3.vmdk”

Book-Demo3-000005.vmdk:parentFileNameHint=”Book-Demo3-000004.vmdk”

Listing 13.28 shows, from the bottom up, that delta disk Book-Demo3-000005.vmdk
had a parent disk Book-Demo3-000003.vmdk. It also shows that delta disk
Book-Demo3-000003.vmdk had a parent disk Book-Demo3-000004.vmdk. So, when
the snapshot that used Book-Demo3-000003.vmdk as the delta disk was deleted, the
content of that disk was combined with its parent Book-Demo3-000004.vmdk. This left
the snapshot using Book-Demo3-000005.vmdk delta desk still pointing to the deprecated
delta disk Book-Demo3-000003.vmdk.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs498

The consolidation process corrected this discrepancy by modifying Book-Demo3-000005.
vmdk to point to its new parent Book-Demo3-000004.vmdk, which was evident by
Listing 13.29.

How about the VM snapshot dictionary? It, too, should be corrected. Listings 13.30 and
13.31 show before and after consolidation for the output of

fgrep vmdk Book-Demo3.vmdk

This command lists all references to virtual disks in the dictionary file, which shows their
association with their corresponding snapshot.

Listing 13.30 Virtual Disks Association with Snapshots Before Consolidation

fgrep vmdk Book-Demo3.vmsd

snapshot0.disk0.fileName = “Book-Demo3.vmdk”

snapshot1.disk0.fileName = “Book-Demo3-000001.vmdk”

snapshot2.disk0.fileName = “Book-Demo3-000003.vmdk”

snapshot3.disk0.fileName = “Book-Demo3-000002.vmdk”

Listing 13.31 Virtual Disks Association with Snapshots After Consolidation

fgrep vmdk Book-Demo3.vmsd

snapshot0.disk0.fileName = “Book-Demo3.vmdk”

snapshot1.disk0.fileName = “Book-Demo3-000001.vmdk”

snapshot2.disk0.fileName = “Book-Demo3-000004.vmdk”

snapshot3.disk0.fileName = “Book-Demo3-000002.vmdk”

The highlighted line in Listings 13.30 and 13.31 show that snapshot2 was changed from
using Book-Demo3-000003.vmdk to Book-Demo3-000004.vmdk, which is consistent with
the changes I demonstrated in Listing 13.28 and Listing 13.29.

The diagram shown in Figure 13.42 shows the combined relations from the previous six
listings before and after consolidation.

From the Library of raphael schitz

ptg7996124

Reverting to Snapshot 499

NoTE

If your storage array does not support VAAI block device or NAS primitives (see
Chapter 16), the process of deleting or consolidating snapshots might have a negative
effect on performance.

Consolidate

Consolidate

Before After

Delta Disk

Snapshot name

C
om

bi
ne

Pa
re

nt
Pa

re
nt

Pa
re

nt

Book-Demo3-ODODO4.vmdk

Book-Demo3-ODODO5.vmdk Book-Demo3-ODODO5.vmdk

Book-Demo3-ODODO4.vmdk

Book-Demo3-ODODO3.vmdk

Figure 13.42 Snapshot consolidation process flow

Reverting to Snapshot
Let’s continue further with the example I used in the last few sections. I now have an appli-
cation that is stable but somehow the VM got infected by a virus that I am unable to clean
without reinstalling the GOS. I had to power off the VM to prevent it from spreading
to other VMs. Because all changes done to the VM, after taking the After Installing App
X, get written to what is represented by the You Are Here state, all I need is to discard
current state and return to the snapshot itself (see Figure 13.43). The process of discarding
the current state is referred to as Revert to Current Snapshot.

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs500

Revert to this

To discard this

Figure 13.43 Snapshot hierarchy of current snapshot state

To revert to a snapshot, follow this procedure:

 1. Click the Revert to Current Snapshot button (A) or right-click on the VM in the
inventory tree (B) and then select Snapshot, Revert to Current Snapshot (C)
menu (see Figure 13.44).

From the Library of raphael schitz

ptg7996124

Linked Clones 501

AB

C

Figure 13.44 Revert to Current Snapshot command

 2. Click Yes to confirm the operation.

Notice that the VM is now powered on even though it was off before I reverted to the
current snapshot. The reason for that is how I took the snapshot originally; the VM was
powered on and I chose to take a memory snapshot.

Linked Clones
Looking back at the setup of the example I used so far, I realized that because I have two
branches of snapshots, why don’t I use both branches concurrently?

For example, App X tech support finally got back to me on my beta support call that I
submitted when the app crashed on the OS with patch xyz. However, I can’t stop what I
am doing with the stable branch of snapshots. I stepped back from my white board with
all my scribbles that depicted my snapshot hierarchy and took a look at the bigger picture.
It looked like what I saw with a VMware VDI (Virtual Desktop Infrastructure) setup I did
a while back in which multiple VMs share a parent disk and get deployed in seconds with
minor customization efforts. I thought to myself, “I think I can get away with this for a

From the Library of raphael schitz

ptg7996124

Chapter 13 Virtual Disks and RDMs502

short period.” What I had in mind was to create a temporary linked clone of my VM using
the crashed state snapshot if I connected the temporary VM to an isolated network. So, I
went for it, and it saved me a ton of time that I might have wasted trying to re-create the
crash state.

First, I needed to identify the virtual disk used by the snapshot called Crashed App X by
using the following procedure:

 1. Search the VM Snapshot Dictionary file (vmsd) for the word Crashed to identify the
snapshot prefix in that file (see Listing 13.32).

Listing 13.32 Locating Snapshot Prefix of the Crashed App X Snapshot

fgrep Crash Book-Demo3.vmsd

snapshot3.displayName = “Crashed App X”

I highlighted the snapshot prefix, which is snapshot3.

 2. Search the vmsd for the virtual disk name associated with the snapshot prefix (see
Listing 13.33).

Listing 13.33 Locating the Delta Virtual Disk Used by a Snapshot

fgrep snapshot3.disk Book-Demo3.vmsd

snapshot3.disk0.fileName = “Book-Demo3-000002.vmdk”

snapshot3.disk0.node = “scsi0:0”

I highlighted the virtual disk name. Also note the node name, which is scsi0:0.

 3. Create a new VM using custom options to use an existing disk. Browse for the file
name identified in Step 2 and select it. Make sure to change the virtual network to
use a port group on a virtual switch connected to a different network from that of the
original VM.

 4. To be able to preserve the crashed state, I decided to set the virtual disk as
independent, nonpersistent. What this does is create a REDO log to store all
changes done while the VM is powered on. The REDO log gets discarded when the
VM is powered off.

 5. Go through the debugging needed for the crashed VM. If you need to start over
again, just power off the VM and then power it on.

 6. When done, delete the VM but make sure to not delete the virtual disk.

From the Library of raphael schitz

ptg7996124

Linked Clones 503

NoTE

Using linked clones is supported by VMware in a VDI and Lab Manager/VMware vCloud
Director environments only. If you decide to play with linked clones in vSphere envi-
ronment, make sure that it is not in production environment and not on a permanent basis.

Summary

In this chapter, I have introduced the basics of virtual disks and RDMs’ structure, layout,
and type, which are eager zeroed thick, zeroed thick, and thin. I also explained the various
virtual disks types from the file systems perspective, that is, SPARSE, VMFSSPARSE, and
VMFSRDM.

I discussed RDMs (both virtual and physical modes) in detail.

I explained virtual machine snapshots and how they affect their virtual disks. In addition,
I covered deleting, going to, reverting to, and consolidating snapshots. I gave you a quick
glance at linked clones and how they correlate to certain snapshot hierarchies.

From the Library of raphael schitz

ptg7996124

This page intentionally left blank

From the Library of raphael schitz

ptg7996124

Chapter 14

Distributed Locks

By default a logical unit number (LUN) is not designed to be accessed simultaneously by
multiple hosts. VMware developed Virtual Machine File System (VMFS), their clustered
file system, to allow ESXi hosts concurrent access to shared datastores. To prevent
corruption resulting from more than one host writing to the same file or metadata area, an
on-disk distributed locking mechanism is used. To put it simply, VMFS “tells” each host
which areas in the metadata and disk it can update. It tracks this via on-disk lock records in
the metadata. At the time each ESXi host was first installed and configured, it is assigned a
unique ID referred to as Host UUID (Universally Unique Identifier). You can locate this
ID on each host by running:

esxcli system uuid get

4d7ab650-e269-3374-ef05-001e4f1fbf2c

When an ESXi host first mounts a VMFS3 or VMFS5 volume, it is assigned a slot within
the VMFS heartbeat region where the host writes its own heartbeat record. This record
is associated with the host UUID. All subsequent operations done by this host on the file
system that require metadata updates are associated with this heartbeat record. However,
for the host to create its heartbeat record, it must first get a lock on its slot in the heartbeat
region to which it will write that record. This, like any other updates to the metadata,
requires SCSI-2 reservation on the VMFS LUN or head extent (if it is a spanned volume)
if the array does not support vStorage APIs for Array Integration (VAAI) primitive Atomic
Test and Set (ATS). I discuss ATS in detail in Chapter 16, “VAAI.”

From the Library of raphael schitz

ptg7996124

Chapter 14 Distributed Locks506

Note

SCSI-2 reservations are nonpersistent and are acquired by one host at a time.

Basic Locking
The typical sequence of distributed locking operations on pre ESXi 3.5 is Reserve-Read-
Modify-Write-Release. This translates to the following:

 1. ESXi host requests a SCSI-2 reservation from the storage array on the LUN.

 2. The ESXi host reads the on-disk lock records into memory.

Figure 14.1 shows a block diagram representing the VMFS building block,
which is the Resource Cluster (see Chapter 12, “VMFS Architecture,” in the
“VMFS 3 on Disk Layout” section).

R-1 R-2 R-4

Resource
cluster

L1-4 M1-4

R-3

Locks Metadata Resources

Figure 14.1 VMFS3 Resource Cluster

On-disk locks are kept close to the metadata records they protect.

 3. The ESXi host acquires a free on-disk lock, writes it to disk, and then releases the
SCSI-2 reservation.

 4. The ESXi host modifies, in memory, the metadata protected by the lock(s) but does
not write it to disk yet.

 5. If the host ID is not set in the heartbeat region, the host also updates the following
in an available heartbeat slot:

�� Host ID—This is the system UUID, which you can list using the esxcli
system uuid get command.

From the Library of raphael schitz

ptg7996124

Basic Locking 507

�� Generation Number—This number is set when the host first created its
heartbeat record. From that point on, it updates the live-ness (see the next
bullet). If the host loses access to the datastore or otherwise crashes leaving a
stale heartbeat record, it breaks the lock on its own heartbeat and a new gen-
eration number is set.

�� Live-ness—This is also referred to as the time stamp. It is changed by the
host on a regular interval. If it fails to update the time stamp, other hosts
interpret that the host is dead or has lost access to the datastore.

�� Journal offset—This is where the heartbeat’s journal is located on disk. It
is used by other hosts that need to break a dead host’s lock by replaying the
heartbeat’s journal. (See the next section, “What Happens When a Host
Crashes?”)

 6. If the host needs additional on-disk locks, it repeats Steps 1–4 but does not write the
changes to disk yet. Each of these cycles requires a separate SCSI-2 reservation.

 7. The host then writes the updated metadata to the journal.

 8. The journal is then committed to the file system.

 9. The host releases the on-disk locks.

If the requested lock was to modify certain VMFS resources or the metadata—creating
a file or growing it, the relevant File Descriptor Clusters (FDCs) are assigned to
this host in the form of a cluster group. If the files require pointer blocks (ptr) and/
or secondary pointer blocks (secondary ptr) in addition to the range of file blocks,
the host updates these resources and associates them with its own heartbeat record. ESXi
4 and later increased the size of the VMFS resource clusters, which makes them easier to
cache.

Note

The VMFS resources are kept close to their metadata on disk. This provides better
performance.

What Happens When a Host Crashes?
In a situation where a host suffers from a crash, it might leave behind stale locks on the
VMFS datastore. If you have configured the HA (High Availability) feature, it attempts

From the Library of raphael schitz

ptg7996124

Chapter 14 Distributed Locks508

to power on the protected virtual machines (VMs) on one of the surviving hosts in the
cluster. However, due to the stale locks, this might not be possible. For this operation to
succeed, the host attempting to power on the VM does the following:

 1. Checks the heartbeat region of the datastore for the lock owner’s ID.

 2. A few seconds later, it checks to see if this host’s heartbeat record was updated.
Because the lock owner crashed, it is not able to update its heartbeat record.

 3. The recovery host ages the locks left by this host. After this is done, other hosts in
the cluster do not attempt to break the same stale locks.

 4. The recovery host replays the heartbeat’s VMFS journal to clear and then acquire
the locks.

 5. When the crashed host is rebooted, it clears its own heartbeat record and acquires a
new one (with a new generation number). As a result, it does not attempt to lock its
original files because it is no longer the lock owner.

optimistic Locking
Optimistic locking was introduced in ESX 3.5, which enabled the host to modify all
metadata protected by free locks and then request a single SCSI-2 reservation when it is
ready to write these changes to disk.

The revised process follows:

 1. ESXi host reads on-disk locks into memory.

 2. The host modifies all metadata that is protected by free locks in memory (in other
words, they were not locked by other hosts at that time) instead of doing this one
record at a time.

 3. Before the host can write these metadata updates to the journal, it acquires all the
necessary disk locks with one SCSI-2 reservation.

 4. All metadata updates are written to the journal.

 5. The journal is committed to disk.

 6. The host releases all on-disk locks.

Optimistic locking requires a lot fewer SCSI-2 reservations and reduces the chances of
SCSI (Small Computer System Interface) reservation conflicts.

From the Library of raphael schitz

ptg7996124

Basic Locking 509

If, at the time the host attempts to acquire the on-disk locks (Step 3), another host had
stolen the locks, this ESXi host would fall back to the standard locking mechanism for the
whole batch of locks it tried to acquire optimistically.

Dynamic Resource Allocation
As the contention for and/or occupancy of on-disk locks increases, the optimistic locks
are decreased. So, in an extremely busy environment, this mechanism might still run into
reservation conflicts. So, to reduce the number of locks required for these operations, the
number of resources per cluster (for example, FDC and PBC) were increased, which may
increase chances of cross-host contention. To work around that, the number of clusters
per resource group was also increased, but this might increase contention and distance
between the data and its metadata.

The combination of Optimistic Locking and Dynamic Resource sizing helps with opera-
tions such as:

�� File creation

�� File deletion

�� File extension

However, they do not help with File Open operations such as

�� Powering VMs on

�� Resuming VMs

�� Migrating VMs with vMotion

These operations require a SCSI reservation to lock the files for exclusive access by the
VMs.

SAN Aware Retries
As you see from the above, SCSI reservation conflicts are prone to happen in a busy
environment that is overutilized or undersized (for example, too few datastores for the
number of running VMs across multiple ESXi hosts, which results in contention for SCSI
reservations). To help reduce the effect on the running VMs, VMware introduced the
SAN Aware Retries mechanism in vSphere 4.

From the Library of raphael schitz

ptg7996124

Chapter 14 Distributed Locks510

To better explain what it does, let’s look at the block diagram shown in Figure 14.2.

Guest OS

Storage Array

HypervisorI/O

I/O

B
us

y

R
et

ry

Fabric/iSCSI Network R
et

ry

Figure 14.2 SAN Aware Retries

This block diagram shows the path of an I/O and its related error when there are SCSI
Reservation conflicts. The arrow on the left side shows that the I/O traverses the hyper-
visor and the SAN from the VM on its way to the storage array.

Without SAN Aware Retries the following is the journey of the I/O:

 1. The VM sends the I/O.

 2. If the hypervisor encounters SCSI reservation conflicts, a Device Busy error is
returned to the guest OS.

 3. The guest OS retries the I/O until the host runs out of conflict retries, at which
point the I/O fails and the failure is reported to the guest OS.

With SAN Aware Retries the following is the journey of the I/O represented in
Figure 14.2 by the shorter arrow on the right side:

 1. The VM sends the I/O.

 2. If the hypervisor encounters SCSI reservation conflicts, it retries the I/O (not the
reservation).

 3. The guest OS does not receive a Device Busy error as frequently as without SAN
Aware Retries. If the hypervisor exhausts the conflict retries, the guest receives an
I/O failure error.

 4. The guest OS retries the I/O.

As a result, the guest OS receives significantly fewer Device Busy errors.

From the Library of raphael schitz

ptg7996124

Basic Locking 511

optimistic I/o
Optimistic locking and dynamic resource allocation do not address SCSI reservations
resulting from a File Open operation at VM power on time. These are characterized by
the following:

�� Most of the File Open operations are to read and re-read VM files such as *.vmx
(virtual machine configuration file) or *.vmdk (virtual disks). See Chapter 13,
“Virtual Disks and RDMs,” for further detail about VM files.

�� Most of these files are closed almost immediately after being read.

�� As application complexity increases, the number of the File Open operations increase
as well.

vSphere 4.x introduced optimistic I/O to address this issue. It leverages optimistic locking
for reading, re-reading, validating, and invalidating file contents without using SCSI reser-
vations.

The way this works is by requesting the optimistic locks and proceeding with the read
I/O assuming that the locks will succeed. This approach results in significant reduction in
SCSI reservations during VMs boot time (also known as boot storm).

List of operations that Require SCSI Reservations
There are two groups of operations that require SCSI-2 reservations: VMFS datastore–
specific operations and on-disk locks–related operations.

VMFS Datastore–Specific operations

Such operations result in metadata modifications such as

�� Creating a datastore

�� Spanning or growing a datastore

�� Re-signature of datastore

on-Disk Locks–Related operations

In the previous sections I discussed the distributed locking mechanism and how it requires
on-disk lock acquisition. It should be clear from that discussion that SCSI reservations are
required to complete such operations in the absence of ATS. Examples of these operations
are

�� Powering on a VM (optimistic I/O alleviates the need for the reservation)

From the Library of raphael schitz

ptg7996124

Chapter 14 Distributed Locks512

�� Acquiring a lock on a file

�� Creating or deleting a file

�� Creating a virtual machine template (the previous two bullets apply here)

�� Deploying a VM from a template

�� Creating a new VM

�� Migrating a VM with vMotion (this involves both the source and target hosts on the
shared datastore)

�� Growing a file—for example, snapshot file or thin provisioned virtual disk (see
Chapters 13).

MSCS-Related SCSI Reservations
One of the most common questions I receive is related to Microsoft Windows Failover
Clustering Services (MSCS) (also known as MSCS or Microsoft Clustering Services),
their form of host failover clustering, and how it interacts with storage shared between its
cluster nodes.

I am not going to discuss MSCS itself here. Rather, only its effect on shared storage and
the types of SCSI reservations used.

MSCS SCSI-2 Reservations

Windows 2003 and earlier implemented MSCS to utilize SCSI-2–style reservations on
the quorum and shared data disks. The latter are mostly RDMs (Raw Device Mappings),
which I cover in Chapter 13. They can also be virtual disks if both cluster nodes reside on
the same ESXi host and will not be migrated onto separate hosts in the future (also known
as CIB or Cluster-in-a-Box). The active node of the MSCS cluster acquires a reservation
on the shared storage and does not release this reservation. That reservation is reset by one
of the passive nodes if the active node fails to send its heartbeat over the network as well
as onto the quorum disk. The process of releasing the reservation is done by the passive
node by sending a Device Reset SCSI command to the shared storage. This results in
the storage array releasing the reservation. The passive node then sends a SCSI reservation
request that gets granted since the active node is either offline or had received a “poison
pill” from the passive node if it is reachable over the network.

The activities are handled differently by the ESXi host depending on how the MSCS-
clustered VMs are configured—that is CAB (Cluster across Boxes) or CIB.

From the Library of raphael schitz

ptg7996124

Basic Locking 513

Note

The virtual SCSI HBA (Host Bus Adapter) used by the cluster nodes for the shared storage
must be LSI logic parallel, which is a parallel SCSI HBA supporting SCSI-2 standard.

Cluster-in-a-Box Shared Storage

In this configuration both nodes reside on the same ESXi host. This provides the vmkernel
visibility into what each node is doing to the shared storage. As a result, there is no need
to communicate via the shared storage in the form of SCSI reservation events. This means
that the shared storage can be in the form of either virtual disks or virtual mode RDM
(non-passthrough RDM). Concurrent access to such shared storage configurations is
arbitrated via file-level locks. In other words, the active node is granted a Read-Write lock
on the file until the passive node takes over the active role, at which time it sends a Device
Reset command to the shared storage. VMkernel translates this command to releasing
the lock acquired by the active node. When this is done, the lock on the file is granted to
the new active node. Note that I am referring to the shared storage “file” regardless of it
being a virtual disk or a virtual mode RDM because the latter is treated like a virtual disk
from the lock-handling perspective. If a VM on another host attempts to access the LUN
mapped by this RDM, it fails because the other host (with the CIB nodes) has a SCSI
reservation on it based on the lock granted to the active MSCS node.

Cluster-Across-Boxes Shared Storage

In this configuration each node in the cluster resides on a separate host. This means that
each host has no knowledge of what the VM on the alternate host is doing to the shared
storage and the only way for them to have such knowledge is via SCSI reservations. For
this to work correctly, the shared storage must be physical mode RDM (also known as
passthrough RDM). In this RDM mode, SCSI reservation requests are passed through to
the storage array. In other words, the active node of the MSCS cluster acquires SCSI-2
reservations on the shared storage (both quorum and data disks). If the passive node
attempts to write to the shared storage, it receives an error because it is reserved by the
active node.

When the active node fails to communicate its heartbeat, the passive node sends a Device
Reset command to the storage array. This results in releasing the reservation, and the
passive node sends a reservation request that is granted by the array.

MSCS SCSI-3 Reservations

MSCS on Windows 2008 uses PGR (Persistent Group Reservation), which is a SCSI-3.
This is the main reason why Windows Server 2008 VMs must be configured with LSI

From the Library of raphael schitz

ptg7996124

Chapter 14 Distributed Locks514

Logic SAS (Serial Attached SCSI) virtual SCSI HBA for the shared storage because that
virtual adapter supports the SCSI-3 standard required for supporting PGR.

Note

Regardless of which version of Windows you use for MSCS, virtual disks and virtual mode
RDMs are supported only with CIB configurations. Physical mode RDMs are the only
supported shared store for CAB configurations.

If your cluster nodes do not use shared storage—for example, Exchange CCR (Cluster
Continuous Replication) or DAG (Database Availability Group)—there is no effect on SCSI
reservations beyond what is used by non-clustered VMs.

Perennial Reservations
Having MSCS cluster nodes spread over several ESXi hosts necessitates the use of
passthrough RDMs, which are shared among all hosts on which a relevant cluster node
will run. As a result, each of these hosts have some RDMs reserved whereas the remaining
RDMs are reserved by the other hosts. At boot time, LUN discovery and Device Claiming
processes require a response from each LUN. Such a response takes much longer for
LUNs reserved by other hosts. This results in an excessively prolonged boot time of all
hosts with that configuration. The same issue might also affect the time it takes for a
rescan operation to complete.

vSphere 5 introduced the concept of perennial reservations, which is a device property that
makes it easier for an ESXi 5 host to recognize if a given LUN is reserved by another host
perennially. At boot time or upon rescanning, the host does not wait for a response from
a LUN in that state. This improves boot and rescan times on ESXi 5 hosts sharing MSCS
shared LUNs.

To identify if a LUN is perennially reserved, run this command:

esxcli storage core device list -d <device-ID>

You may also use the verbose version of this command:

esxcli storage core device list --device <device-ID>

Listing 14.1 is a sample output of a LUN that is not marked as reserved (the property is
highlighted in Listing 14.1).

From the Library of raphael schitz

ptg7996124

Basic Locking 515

Listing 14.1 Sample Output of a LUN That Is NOT Reserved

esxcli storage core device list -d naa.6006016055711d00cff95e65664ee011

naa.6006016055711d00cff95e65664ee011

 Display Name: DGC Fibre Channel Disk (naa.6006016055711d00cff95e65664
ee011)

 Has Settable Display Name: true

 Size: 10240

 Device Type: Direct-Access

 Multipath Plugin: NMP

 Devfs Path: /vmfs/devices/disks/naa.6006016055711d00cff95e65664ee011

 Vendor: DGC

 Model: RAID 5

 Revision: 0326

 SCSI Level: 4

 Is Pseudo: false

 Status: on

 Is RDM Capable: true

 Is Local: false

 Is Removable: false

 Is SSD: false

 Is Offline: false

 Is Perennially Reserved: false

 Thin Provisioning Status: unknown

 Attached Filters:

 VAAI Status: unknown

 Other UIDs: vml.02000100006006016055711d00cff95e65664ee011524149442035

You need to set this option manually for all LUNs mapped as RDMs for MSCS shared
storage on all ESXi 5 hosts sharing them. This setting is stored within the host’s configu-
ration (in /etc/vmware/esx.conf file). You enable this option using the following esxcli
command:

esxcli storage core device setconfig -d <ID> --perennially-reserved=true

Listing 14.2 shows an example of setting the perennially reserved option.

From the Library of raphael schitz

ptg7996124

Chapter 14 Distributed Locks516

Listing 14.2 Setting a Perennially Reserved Option

esxcli storage core device setconfig -d naa.6006016055711d00cff95e65664
ee011 --perennially-reserved=true

esxcli storage core device list -d naa.6006016055711d00cff95e65664ee011

naa.6006016055711d00cff95e65664ee011

 Display Name: DGC Fibre Channel Disk (naa.6006016055711d00cff95e65664
ee011)

 Has Settable Display Name: true

 Size: 10240

 Device Type: Direct-Access

 Multipath Plugin: NMP

 Devfs Path: /vmfs/devices/disks/naa.6006016055711d00cff95e65664ee011

 Vendor: DGC

 Model: RAID 5

 Revision: 0326

 SCSI Level: 4

 Is Pseudo: false

 Status: on

 Is RDM Capable: true

 Is Local: false

 Is Removable: false

 Is SSD: false

 Is Offline: false

 Is Perennially Reserved: true

 Thin Provisioning Status: unknown

 Attached Filters:

 VAAI Status: unknown

 Other UIDs: vml.02000100006006016055711d00cff95e65664ee011524149442035

The first command in Listing 14.2 sets the option to true, and the second command lists
the device properties of the LUN you just configured. Notice that the Is Perennially
Reserved value is now true.

Note

This property cannot be set via a host profile in this release. As a result, this configuration
cannot persist between reboots of Auto-Deployed ESXi hosts.

From the Library of raphael schitz

ptg7996124

Basic Locking 517

How to Locate the Device ID for a Mapped LUN

This topic is discussed in greater detail in Chapter 13, but I touch on it here for conve-
nience.

Procedure Using the CLI

Using the CLI logged on to the ESXi Shell either directly, via SSH, or via vMA 5.0, use
the following process:

 1. Use vmkfstools -q to identify the vml ID of the mapped LUN.

 The output of this command is shown in Listing 14.3.

Listing 14.3 Identifying the vml ID of a Mapped LUN

vmkfstools -q /vmfs/volumes/FC200/win2K3Enterprise/win2K3Enterprise.vmdk

Disk /vmfs/volumes/FC200/win2K3Enterprise/win2K3Enterprise.vmdk is a
Passthrough Raw Device Mapping

Maps to: vml.02000100006006016055711d00cff95e65664ee011524149442035

I highlighted the vml ID in the output.

 2. Use the vml ID with the esxcfg-scsidevs command to find the device ID of the
mapped LUN.

The output of this command is shown in Listing 14.4.

Listing 14.4 Identifying the RDM Device ID Using Its vml ID

esxcfg-scsidevs -l -d vml.02000100006006016055711d00cff95e65664
ee011524149442035

naa.6006016055711d00cff95e65664ee011

 Device Type: Direct-Access

 Size: 10240 MB

 Display Name: DGC Fibre Channel Disk (naa.6006016055711d00cff95e65664
ee011)

 Multipath Plugin: NMP

 Console Device: /vmfs/devices/disks/naa.6006016055711d00cff95e65664ee011

 Devfs Path: /vmfs/devices/disks/naa.6006016055711d00cff95e65664ee011

 Vendor: DGC Model: RAID 5 Revis: 0326

 SCSI Level: 4 Is Pseudo: false Status: on

 Is RDM Capable: true Is Removable: false

 Is Local: false Is SSD: false

From the Library of raphael schitz

ptg7996124

Chapter 14 Distributed Locks518

 Other Names:

 vml.02000100006006016055711d00cff95e65664ee011524149442035

 VAAI Status: unknown

I highlighted the device ID in the output.

Procedure Using the UI

To locate the device ID for a mapped LUN using the UI, follow this procedure:

 1. While logged on to the vCenter Server using vSphere 5 client as an administrator,
locate the MSCS cluster node VM in the inventory tree.

 2. Right-click the VM listing and then select Edit Settings.

You should see a dialog similar to Figure 14.3.

Figure 14.3 Virtual Machine Properties dialog

 3. Locate the device showing Mapped Raw LUN in the summary column and select it.

 4. Click the Manage Paths button on the lower-right corner of the dialog.

 5. The device ID is listed in the lower pane of the resulting dialog. The ID is right after
the last dash in the Name field (see Figure 14.4).

From the Library of raphael schitz

ptg7996124

Basic Locking 519

Figure 14.4 Listing the device ID of an FC device

In this example, the device ID is

naa.6006016055711d00cff95e65664ee011

tIP

If you look closer at the vml and NAA ID in this example, notice that the NAA ID is actu-
ally part of the VML ID or the other way around; the vml ID is based on the NAA ID of the
device.

vml.02000100006006016055711d00cff95e65664ee011524149442035

naa.6006016055711d00cff95e65664ee011

For example, the matching bytes are highlighted.

If the mapped LUN is an iSCSI device, the process is the same as the previous example
but the last step’s dialog looks like Figure 14.5.

Figure 14.5 Listing a device ID of an iSCSI device

Under the Hood of Distributed Locks
Most of the issue related to distributed locks can be identified by reading the vmkernel
logs. I share with you some normal and problematic logs along with explanations.

From the Library of raphael schitz

ptg7996124

Chapter 14 Distributed Locks520

Note

Log entries were cropped or wrapped for readability.

Heartbeat Corruption

There were some reported cases where the heartbeat record of a host got corrupt. As a
result, it could neither clear its heartbeat record nor acquire any locks that it requires for
its normal operation.

In this case, the vmkernel logs show an error like Listing 14.5:

Listing 14.5 Sample Log Entries of Corrupt Heartbeat

vmkernel: 25:21:39:57.861 cpu15:1047)FS3: 130: <START [file-name].vswp>

vmkernel: 25:21:39:57.861 cpu15:1047)Lock [type 10c00001 offset 52076544 v
69, hb offset 4017152

vmkernel: gen 109, mode 1, owner 4a15b3a2-fd2f4020-3625-001a64353e5c mtime
3420]

vmkernel: 25:21:39:57.861 cpu15:1047)Addr <4, 1011, 10>, gen 36, links 1,
type reg, flags 0x0, uid 0, gid 0, mode 600

vmkernel: 25:21:39:57.861 cpu15:1047)len 3221225472, nb 3072 tbz 0, zla 3,
bs 1048576

vmkernel: 25:21:39:57.861 cpu15:1047)FS3: 132: <END [file-name].vswp>

Listing 14.6 shows another example of a corrupt heartbeat:

Listing 14.6 Another Sample Log of a Corrupt Heartbeat

vmkernel: 0:00:20:51.964 cpu3:1085)WARNING: Swap: vm 1086: 2268: Failed
to open swap file ‘/volumes/<vol-UUID>/<vm-directory>/<file-name.vswp’:
Invalid metadata

vmkernel: 0:00:20:51.964 cpu3:1085)WARNING: Swap: vm 1086: 3586: Failed to
initialize swap file ‘/volumes/4730e995-faa64138-6e6f-001a640a8998/mule/
mule-560e1410.vswp’: Invalid metadata

You might need to contact VMware technical support for assistance. Be prepared with
a binary dump of the first 30MB or 1200MB of the device on which the VMFS volume
resides. Technical support will attempt to repair the heartbeat records for the affected
host.

From the Library of raphael schitz

ptg7996124

Basic Locking 521

File System Corruption

During the beta of ESXi 5, a file system corruption was reported by an internal user.
During the process of resignaturing a VMFS datastore, another host attempted the same
process. The following are the relevant log messages from this case.

Listing 14.7 shows log entries of VMFS corruption.

Listing 14.7 Sample Log Entries of Corrupt VMFs

cpu7:2128)FS3: ReportCorruption:379: VMFS volume snap-6787757b-datastore-
X/4cfed840-657ae77f-9555-0026b95121da on naa.600601601932280083528fe3c40
2e011:1 has been detected corrupted

cpu7:2128)FS3: ReportCorruption:381: While filing a PR, please report the
names of all hosts that attach to this LUN, tests that were running on
them,

cpu7:2128)FS3: ReportCorruption:383: and upload the dump by `dd if=/vmfs/
devices/disks/naa.600601601932280083528fe3c402e011:1 of=X bs=1M count=1200
conv=notrunc`,

cpu7:2128)FS3: ReportCorruption:384: where X is the dump file name on a
different volume

cpu15:2128)FS3: DescriptorVerify:323: Volume Descriptor mismatch

cpu15:2128)FS3: DescriptorVerify:325: (Check if volume is involved in a
Format/Upgrade/dd from other hosts)

cpu15:2128)FS3: DescriptorVerify:326: In Memory Descriptor:magic
0x2fabf15e, majorVer 12, minorVer 51 uuid 4cfed840-657ae77f-
9555-0026b95121da, label <snap-6787757b-datastore-X>creationTime
1291049806config 6, diskBlockSize 512, fileBlockSize 1048576

cpu15:2128)FS3: DescriptorVerify:328: On Disk Descriptor:magic 0x2fabf15e,
majorVer 12, minorVer 51 uuid 4cfed79c-94250e53-64b8-0026b9511d8d, label
<snap-2042dfa8-datastore-X>creationTime 1291049806config 6, diskBlockSize
512, fileBlockSize 1048576

The last two lines in this example show the file system’s UUID in memory is different
from that on disk. To identify which host is the offending one, the last segment of the
on-disk UUID is the MAC address of that host’s management port. In this case it is
00:26:b9:51:1d:8d. I believe that this was fixed in the final release build as we have not

From the Library of raphael schitz

ptg7996124

Chapter 14 Distributed Locks522

seen this issue reported outside the beta. Notice that the file system version is identified
as majorVer 12 and minorVer 51. This was a prerelease version. The released version is
majorVer 14 and minorVer 54, which translates to version 5.54.

Notice the new enhancement in the log message where it identifies the corruption and
provides you with the command line you need to use to collect the file system binary
dumps needed for repairing the corruption.

Marking the Heartbeat and Replaying Journal

In this example, the ESXi host attempts to clear or mark the heartbeat and replays the
journal.

Listing 14.8 shows an example of replaying the heartbeat journal.

Listing 14.8 Replaying the Heartbeat Journal

HBX: FS3_MarkOrClearHB:4752: Marking HB [HB state abcdef02 offset 3158016
gen 5 stampUS 3345493920478 uuid 4cc0d786-d2f90077-9479-0026b9516a0d jrnl
<FB 1800> drv 12.51] on vol ‘snap-6787757b-datastore-X’

HBX: FS3_MarkOrClearHB:4829: Marked HB [HB state abcdef04 offset 3158016
gen 5 stampUS 4064734308197 uuid 4cc0d786-d2f90077-9479-0026b9516a0d jrnl
<FB 1800> drv 12.51] on vol ‘snap-6787757b-datastore-X’

J3: ReplayJournal:2970: Replaying journal at <FB 1800>, gen 5

HBX: FS3PostReplayClearHB:3985: Cleared pulse on vol ‘snap-6787757b-
datastore-X’ for [HB state abcdef01 offset 3158016 gen 6 stampUS
4064734365500 uuid 00000000-00000000-0000-000000000000 jrnl <FB 0> drv
12.51]

The message prefix is HBX (Heartbeat). The first two messages are attempting to mark the
heartbeat first with HB state abcdef02, then with HB state abcdef04. After this is done,
it replays the journal, which in this case is at file block 1800. This message prefix was J3
(Journal).

The last message in the example is prefixed with HBX, and the code is FS3PostReplay-
ClearHB, which is the code that clears the Heartbeat after Journal has been replayed.
Notice the heartbeat UUID is all zeros.

From the Library of raphael schitz

ptg7996124

Basic Locking 523

Checking Whether a Lock Is Free

The following messages demonstrate the activities a host does to check whether a given
lock is free.

Listing 14.9 shows log entries of checking if a lock is free.

Listing 14.9 Checking Whether a Lock Is Free

cpu2:176604)DLX: FS3RecheckLock:3349: vol ‘datastore-X’, lock at 4327424:
Lock changed from:

cpu2:176604)[type 10c00001 offset 4327424 v 20, hb offset 3407872gen 29,
mode 1, owner 4e693687-57255600-7546-001ec933841c mtime 2568963num 0 gblnum
0 gblgen 0 gblbrk 0]

cpu2:176604)DLX: FS3RecheckLock:3350: vol ‘datastore-X’, lock at 4327424:
To:

cpu2:176604)[type 10c00001 offset 4327424 v 22, hb offset 3407872gen 29,
mode 1, owner 4e693687-57255600-7546-001ec933841c mtime 2662975num 0 gblnum
0 gblgen 0 gblbrk 0]

cpu2:176604)DLX: FS3LeaseWaitAndLock:4109: vol ‘datastore-X’: [Retry 0]
Lock at 4327424 is not free after change

cpu2:176604)DLX: FS3LeaseWaitOnLock:3565: vol ‘datastore-X’, lock at
4327424: [Req mode 1] Checking liveness:

cpu2:176604)[type 10c00001 offset 4327424 v 22, hb offset 3407872gen 29,
mode 1, owner 4e693687-57255600-7546-001ec933841c mtime 2662975num 0 gblnum
0 gblgen 0 gblbrk 0]

cpu2:176604)DLX: FS3CheckForDeadOwners:3279: HB on vol ‘datastore-X’
changed from [HB state abcdef02 offset 3407872 gen 29 stampUS 337574575701
uuid 4e693687-57255600-7546-001ec933841c jrnl <FB 22186800> drv 14.56]

cpu2:176604)DLX: FS3CheckForDeadOwners:3280: To [HB state abcdef02
offset 3407872 gen 29 stampUS 337580579826 uuid 4e693687-57255600-7546-
001ec933841c jrnl <FB 22186800> drv 14.56]

cpu2:176604)DLX: FS3LeaseWaitAndLock:4089: vol ‘datastore-X’, lock at
4327424: [Req mode: 1] Not free:

From the Library of raphael schitz

ptg7996124

Chapter 14 Distributed Locks524

 1. The first line in Listing 14.9 shows that the Disk-Lock code (DLX) is checking a
lock for the file system on a datastore named datastore-X. The lock location is at
4327424 offset. It reports that the lock has changed.

 2. The second line shows the lock info before it was changed, which is the following:

�� Lock type.

�� Lock offset.

�� Lock version.

�� Heartbeat offset.

�� Heartbeat generation.

�� Lock mode: This can be a value between 0 and 3. Table 14.1 lists the meaning
of each of these lock modes.

table 14.1 VMFS Lock Modes

Lock Mode Meaning Comments

0 Unlocked Lock is free.

1 Exclusive Lock This is the mode commonly used to lock
files frequently modified by one host—for
example, virtual disks, and VM Swap Files.

2 Read-Only Lock This is used mostly at VM power on to
allow the host to read the virtual machine
configuration files (*.vmx) and virtual disk
files (*.vmdk) in a linked clone configura-
tion. This is the type of lock used with opti-
mistic I/O, which uses Optimistic Locking.
Using ATS facilitates acquiring these locks
without reservations.

3 Multi-writer Lock It allows multiple hosts to write to shared
virtual disks concurrently. The arbitration of
who should write to these files is done by
the clustering software running within the
guest OS.

The following are some practical examples of lock mode uses.

Multi-writer locks are the most dangerous type of locks, and unless they’re used
with a qualified clustering solution —for example, Oracle RAC — they can lead
to corruption of files locked by this mode. This log entry shows the UUIDs

From the Library of raphael schitz

ptg7996124

Basic Locking 525

of the multiple lock owners. These owners are hosts sharing this file using this
mode. If you are familiar with VMware Workstation, this lock mode is similar to
what you achieve by using vmx option Disk.Locking = FALSE:

�� Lock owner UUID—The last segment of this ID is the MAC address of the
management port on the host that owns this lock.

�� Num—This is the number of hosts holding the lock. For Read-only and
Multi-writer locks, this value can be more than 1.

 3. The third and fourth lines show the lock record after it was changed. I highlighted
the changed values.

 4. The fifth line was generated by VMFS wait on lock code because it identified that
the lock is not free.

 5. The sixth line onward is the beginning of the process of checking for the liveness
of the lock owner. It does this by checking the heartbeat slot of the lock owner for a
change of the heartbeat region. If it is changed, it means that the lock owner is alive
and was able to write to its heartbeat. This is done by the check for dead owners
code.

taking over a Lock

The messages in Listing 14.10 are related to breaking a lock.

Listing 14.10 Breaking a Lock

cpu3:228427)DLX: FS3CheckForWrongOwners:3302: Clearing wrong owner for
lock at 184719360 with [HB state abcdef01 offset 3313664 gen 1076 stampUS
938008735 uuid 00000000-00000000-0000-000000000000 jrnl <FB 0> drv 14.58]

cpu2:228427)Resv: UndoRefCount:1386: Long reservation time on naa.60060160
55711d00cff95e65664ee011 for 1 reserve/release pairs (reservation held for
3965 msecs, total time from issue to release 4256 msecs).

cpu2:228427)Resv: UndoRefCount:1396: Performed 5 I/Os / 7 sectors in (8t 0q
0l 8i) msecs while under reservation

cpu2:228427)Resv: UndoRefCount:1404: (4 RSIOs/ 7 sectors),(0 FailedIOs / 0
sectors)

cpu2:228427)FS3Misc: FS3_ReleaseDevice:1465: Long VMFS rsv time on
‘datastore-X’ (held for 4297 msecs). # R: 3, # W: 1 bytesXfer: 7 sectors

From the Library of raphael schitz

ptg7996124

Chapter 14 Distributed Locks526

cpu3:228427)DLX: FS3LeaseWaitOnLock:3686: vol ‘datastore-X’, lock at
66318336: [Req mode 1] Checking liveness:

cpu3:228427)[type 10c00001 offset 66318336 v 2887, hb offset 3469312 gen
2763, mode 1, owner 4efb041c-235d1b95-f0cb-001e4f43718e mtime 27954 num 0
gblnum 0 gblgen 0 gblbrk 0]

 1. The first line has the following elements:

�� DLX—This refers to the vmkernel code that handles disk locks.

�� FS3CheckForWrongOwners—This is the part of the disk lock code that
checks for wrong owners of on-disk locks. It starts the process of clearing the
lock by first listing the current lock information. Such information includes

�� Lock location

�� Heartbeat state

�� Heartbeat offset

�� Heartbeat generation

�� Time stamp; listed here as stampUS

�� Host UUID that owns the lock; listed here as all zeros

�� Journal location

 2. The second line is a SCSI reservation and release pair showing the time it took
between both events. In this case it is a long reservation time as it held the reser-
vation for more than 3 seconds when normally it should not take more than a few
milliseconds. Notice the message begins with Resv, which is the code that handles
SCSI reservations. This reservation was held on the device whose ID is the NAA ID
I marked in bold italic.

 3. The third line shows how many I/Os are done on how many sectors while the device
was under reservation.

 4. The fourth line shows the count of reservation I/Os on how many sectors (four I/Os
on seven sectors) and that there were no failed I/Os.

 5. The fifth line shows the device release action.

 6. The sixth line shows that the host has requested a lock at sector 66318336 on the
volume named datastore-X.

From the Library of raphael schitz

ptg7996124

Basic Locking 527

 7. The final line shows that an exclusive lock (mode 1) at sector 66318336 is now
owned by host UUID 4efb041c-235d1b95-f0cb-001e4f43718e. This exclusive lock
is on that sector only. What this log does not show is that this lock protects a certain
File Descriptor Cluster that occupies a specific Resource. The log entry would have
looked like <FD c1 r21>. This translates to File Descriptor Cluster 1 Resource 21.

Summary

vSphere releases prior to 5.0 introduced enhancements in distributed lock handling. In
the absence of VAAI-capable storage arrays, these mechanisms are still used by vSphere 5.
A new device property in vSphere 5 is perennial device reservation, which helps improve
boot and rescan time for hosts with RDMs reserved by MSCS nodes on other ESXi hosts.
I discuss VAAI in Chapter 16.

From the Library of raphael schitz

ptg7996124

This page intentionally left blank

From the Library of raphael schitz

ptg7996124

Chapter 15

Snapshot Handling

Data is written to storage devices frequently in such a dynamic environment as vSphere 5.
Losing a few hours’ worth of data, for whatever reason, could translate to a large amount of
data loss. Storage arrays provide varying forms of Business Continuity/Disaster Recovery
(BC/DR) capability to help mitigate this risk. Examples of these capabilities are

�� Snapshots

�� Replicas

�� Mirrors

In this chapter, I cover details affecting VMFS (virtual machine file system) datastores.

From the Library of raphael schitz

ptg7996124

Chapter 15 Snapshot Handling530

What Is a Snapshot?
A storage snapshot is a static view of data at a certain point in time. It is commonly imple-
mented as pointers to unmodified blocks on the primary LUN as of the time of taking
the snapshot. If and when any of the blocks are to be modified, the unmodified block is
copied to the snapshot LUN (logical unit number), and then the modification is written to
the block on the primary LUN. The end result is two LUNs: the primary LUN with the
current state of data and the snapshot LUN with a combination of blocks copied before
being modified and pointers to unmodified blocks on the primary LUN. The snapshot
LUN coexists with the primary LUN on the same storage array. It is read-only but can be
configured for read-write operations and presented as a separate LUN.

What Is a Replica?
As the name indicates, a replica is a block-for-block copy of a storage device (LUN).
Depending on the type and frequency of replication—that is, synchronous (sync) or
asynchronous (async)—the replica (copy) LUN (R2) has identical content of the primary
LUN (R1) at any point in time (sync) or is missing the modified blocks of the R1 LUN
since the last replication took place.

The distance and latency of the connection between storage arrays hosting a pair of
replicas (R1 and R2) influences the design decision of choosing between sync and async
replication. For the topic at hand, I am only highlighting the relevant details to the effects
of replication on VMFS datastores. So, for now, a synchronous replica has identical
content while an asynchronous one (R2) lags behind the R1 content by the replication
period at the most. VMFS datastore signature is identical on R1 and R2 LUNs.

What Is a Mirror?
One of the types of RAID is RAID1, in which two devices are attached to the same storage
adapter and all write I/O (input/output) is sent to both devices concurrently, which results
in identical content. This is referred to as mirroring. RAID adapters have cache of ECC
RAM type or better. The cache can be read, write, or both read and write. Depending on
the presence of battery backup on the RAID adapter, the write cache can be write-back
(with battery backup) or write-through (without battery backup).

A similar concept is used by most storage arrays, which use a much larger cache and the
caching algorithm varies from one vendor to another. The bottom line is that storage
arrays can do more types of RAID. However, in the storage array’s case, RAID is done at

From the Library of raphael schitz

ptg7996124

VMFS Signature 531

a lower level where a set of disks are grouped together as disk pools. One or more RAID
types can be created on each pool. For example, one disk pool can host RAID1 and RAID5
concurrently or just RAID1 on one pool and RAID5 on another. Anyhow, the RAID set
can then be carved up into multiple LUNs protected by the underlying RAID set.

Such LUNs can be mirrored so that any write operation done on one gets done on the
mirror at the same time. I name the primary LUN M1 and the mirror M2. Both M1 and
M2 can be on the same storage array or on separate ones within synchronous distance
or closer—for example, two buildings in the same campus or across the river between
Manhattan and Brooklyn. The latter scenario is commonly referred to as a metro area
network (MAN).

A mirror pair has M1 read-write and M2 read-only or write-protected. When the need
arises to use M2 in the absence of M1, mirror can be broken and M2 is changed to
writable. When M1 becomes available, the you can change the mirroring roles so that
M2 syncs up with M1 and then write-protect M2 after M1 is back online. The VMFS
Datastore is identical between M1 and M2. Furthermore, for some arrays, both LUNs
may have the same device ID if the storage array firmware provides the option.

VMFS Signature
When a new VMFS3 or VMFS5 datastore is created, it is assigned a unique identifier
referred to as Volume UUID (universally unique identifier). This is stored in the logical
volume manager (LVM) Header along with the device ID, for example, NAA ID.

Here is a sample Volume UUID:

4d7bebaa-721eeef2-8c0a-001e4f1fbf2c

The Volume UUID is composed of four portions:

 1. System Time — System time at volume creation

 2. TSC Time — Internal time stamp counter kept by the CPU

 3. Random — A random number

 4. MAC — Management Port uplink (VMNIC) MAC address of the host used to
create or resignature the datastore

If the VMFS5 datastore is spanned across multiple LUNs, the LVM header also holds the
Spanned Device Table (see Chapter 12, “VMFS Architecture,” in the section “Spanned
Device Table”), which lists the device IDs of all volume extents.

From the Library of raphael schitz

ptg7996124

Chapter 15 Snapshot Handling532

Listing Datastores’ UUIDs via the Command-Line Interface
To list a datastore’s UUID via the command-line interface (CLI), you may run this
command:

esxcli storage filesystem list

The output looks like that shown in Figure 15.1.

Figure 15.1 Listing datastores’ UUID

I cropped the output to fit this page. The text I truncated was the size column and the free
column. What is displayed is the list of datastores under the Volume Name column, and
the rest is self explanatory.

Effects of Snapshots on VMFS Signature
If the device ID of a LUN, on which there is a VMFS3 or VMFS5 volume, is changed, the
following takes place:

 1. When the host rescans for new devices, it discovers the presented LUN.

 2. When the host rescans for datastores, the vmkernel compares the physical device ID
to that stored in the VMFS datastore LVM. It identifies a mismatch and does not
automatically mount the discovered datastore.

 3. If the snapshot LUN is an extent of a spanned VMFS datastore and the remaining
extents were not snapshot and presented to the host, the ESXi host refuses to resig-
nature or force-mount the volume.

You may check for this condition using this command:

esxcli storage vmfs snapshot list

Listing 15.1 shows the output of this command.

From the Library of raphael schitz

ptg7996124

How to Handle VMFS Datastore on Snapshot LUNs 533

Listing 15.1 Listing VMFS Snapshot of a Spanned Datastore

esxcli storage vmfs snapshot list

4faeba13-6bf41bdd-6dd0-001f29e04d52

 Volume Name: LHN-LUN

 VMFS UUID: 4faeba13-6bf41bdd-6dd0-001f29e04d52

 Can mount: false

 Reason for un-mountability: some extents missing

 Can resignature: false

 Reason for non-resignaturability: some extents missing

 Unresolved Extent Count: 1

Notice that the reasons for un-mountability and for non-resignaturability are
both some extents missing.

This protects accidental resignaturing of any of the extents of a spanned VMFS
volume.

How to Handle VMFS Datastore on Snapshot LUNs
For a snapshot LUN–based VMFS datastore to be mounted on an ESXi 5 host, it needs a
new Volume UUID written to it (resignature) or to be force-mounted with its signature
unmodified. The choice between both options depends on whether or not the primary
LUN from which the snapshot LUN was taken is presented to the same host. If the
primary and snapshot LUNs are not presented to the same host and will not be presented
to it at any time in the future, it would be safe to force-mount the datastore. Otherwise,
you must resignature the snapshot datastore before you mount it alongside its primary
LUN. If you do not resignature the snapshot datastore, you are guaranteed to corrupt the
datastore on both primary and snapshot LUNs accessed concurrently by the same host.

If you have multiple ESXi 5 hosts sharing a set of datastores, they all must access these
datastores uniformly—that is, do not force-mount a snapshot on one host in the cluster
while other hosts access the datastore on the primary LUN. vCenter Server has some
validation checks in place to prevent this from happening as long as you do not manage
any host in the cluster by logging in to it directly.

In ESX version 3.5 and older, there were LVM Advanced VMkernel options to resig-
nature snapshot datastore in bulk or to allow them to be mounted unmodified. These
options were LVM.EnableResignature and LVM.DisallowSnapshotLun, respectively. The
first option enables automatic resignature of the snapshot datastores. The second option
allows snapshot datastores to be mounted without resignature. These options are now

From the Library of raphael schitz

ptg7996124

Chapter 15 Snapshot Handling534

hidden from the UI as well as ESXCLI in vSphere 5 and 4.x, and they have been replaced
with per-datastore operations to provide better control and reduce accidental operations
that might result in data corruption.

Resignature
The process to resignature a VMFS datastore is the same for both VMFS3 and VMFS5. It
can be done via the user interface (UI) or ESXCLI.

Resignature a VMFS Datastore Using the UI
To resignature a VMFS Datastore using the UI, you may follow this procedure:

 1. Log on to vCenter Server as an Administrator or root user.

 2. In the inventory tree, select the ESXi host on which you will mount the datastore.

 3. Click the Configuration tab; then select Storage under the Hardware section.

 4. Click the Datastores button in the View pane and click the Add Storage link.

 5. Select the Disk/LUN radio button in the Select Storage Type dialog and then click
Next.

 6. Select the LUN representing the snapshot and then click Next. (See Figure 15.2.)

Figure 15.2 Select snapshot LUN

From the Library of raphael schitz

ptg7996124

Resignature 535

 7. Select the Assign a New Signature radio button in the Add Storage dialog and then
click Next. (See Figure 15.3.)

Figure 15.3 Selecting the resignature Option

 8. Review the summary and click Finish (see Figure 15.4).

Figure 15.4 Review selections

From the Library of raphael schitz

ptg7996124

Chapter 15 Snapshot Handling536

The VMFS datastore is now mounted and renamed according to the convention
snap-<random-number>-<original-volume-name> e.g. snap-1ba3c456-

Smallville. (See Figure 15.5.)

Figure 15.5 Snapshot datastore mounted

To use the VMs on this datastore, right-click the datastore, select the Browse Datastore
menu, navigate to each VM directory, locate its vmx file, right-click it, and then select the
Add to Inventory option.

Resignature a VMFS Datastore Using ESXCLI
Using ESXCLI to resignature VMFS datastores is a process done on all snapshot LUN–
based datastores accessible by the host. It uses a hidden option which will be deprecated in
future releases. This process is time consuming and takes longer, per datastore, than the
time it takes to resignature and then mount the same datastore via the UI. Although this is
a supported operation by VMware, it is not recommended for a large number of datastores
if your Recovery Time Objective (RTO) is shorter than the time it takes for this operation
to complete.

NotE

VMware Site Recovery Manager does this process programmatically on the recovery site in
a much shorter time compared to using ESXCLI. The reason behind the longer time expe-
rienced by ESXCLI is in how some of the APIs used by ESXCLI serialize certain operations
and wait for acknowledgement of each operation. This is to guarantee data integrity and
prevent race conditions.

Use the following steps to resignature and mount the datastore via ESXCLI:

 1. Log on to ESXi locally via SSH or use the vMA 5.0 appliance. If you have multiple
hosts on which to mount the resignatured VMFS datastores, it would be more
practical to use vMA 5.0 as I will show you in this example.

From the Library of raphael schitz

ptg7996124

Resignature 537

 2. Continuing with the example of using vMA, logged in as vi-admin user, run the
vifp listservers command to verify that the ESXi host was previously added to the
managed targets list (see Listing 15.2).

Listing 15.2 Listing vMA 5 Managed Targets

vifp listservers

wdc-tse-d98.wsl.vmware.com ESXi

prme-iox215.eng.vmware.com ESXi

wdc-tse-h56.wsl.vmware.com ESXi

wdc-tse-i83.wsl.vmware.com ESX

10.131.11.215 vCenter

In this example, I have four ESXi hosts and one vCenter server registered on this
vMA 5 appliance.

 3. If the host you want to manage is not on the return list, you may add it using the
vifp addserver option:

vifp addserver wdc-tse-i85.wsl.vmware.com --username root

You may also add a --password parameter. Otherwise, you get prompted for the
password. If the operation is successful, no message is provided.

 4. Set the target server to manage using vifptarget:

vi-admin@vma5:~> vifptarget --set wdc-tse-h56.wsl.vmware.com

vi-admin@vma5:~[wdc-tse-h56.wsl.vmware.com]>

Notice that the prompt now shows the name of the managed target host.

From this point on, the process is similar to that done via SSH or logged in
locally to the host.

 5. List the current setting of the /LVM/EnableResignature VSI node (see Listing 15.3).

Listing 15.3 Listing the Current EnableResignature Advanced System Setting

esxcli system settings advanced list --option /LVM/EnableResignature

 Path: /LVM/EnableResignature

 Type: integer

 Int Value: 0

 Default Int Value: 0

 Min Value: 0

From the Library of raphael schitz

ptg7996124

Chapter 15 Snapshot Handling538

 Max Value: 1

 String Value:

 Default String Value:

 Valid Characters:

 Description: Enable Volume Resignaturing. This option will be deprecated
in future releases.

I highlighted the current value, which is 0. This means that the default ESXi
host behavior is to not automatically resignature snapshot volumes.

Note that this parameter type is an integer. If you are logged in via SSH or
locally on the ESXi host and you want to see the corresponding VSI node, you
may run the command in Listing 15.4.

Listing 15.4 Listing EnableResignature VSI Node Content

vsish -e cat /config/LVM/intOpts/EnableResignature

Vmkernel Config Option {

 Default value:0

 Min value:0

 Max value:1

 Current value:0

 hidden config option:1

 Description:Enable Volume Resignaturing. This option will be deprecated
in future releases.

}

Note that because this is a configuration parameter, the root of its node is
/config. Similarly, because the parameter type is integer, the VSI node is
/config/LVM/intOpts/EnableResignature.

The highlighted text means Integer Options. If this node type were string,
the node would have been /config/LVM/strOpts/<parameter> instead. LVM
has no string type parameters. Also note from Listing 15.2 that the fields String
Value and Default String Value are blank because the parameter type is
Integer.

 6. Change the value of the parameter from 0 to 1. This enables the host to automati-
cally resignature snapshot datastores. To turn on the advanced setting /LVM/
EnableResignature, you may run:

esxcli system settings advanced set -o /LVM/EnableResignature -i 1

From the Library of raphael schitz

ptg7996124

Resignature 539

Or you may use the verbose option:

esxcli system settings advanced set --option /LVM/EnableResignature
--int-value 1

 7. The command does not return any messages if successful. To verify that the change
took place, you may run

esxcli system settings advanced list -o /LVM/EnableResignature

See Listing 15.5 for the output.

Listing 15.5 Verifying the Outcome of Changing the EnableResignature Setting

esxcli system settings advanced list -o /LVM/EnableResignature

 Path: /LVM/EnableResignature

 Type: integer

 Int Value: 1

 Default Int Value: 0

 Min Value: 0

 Max Value: 1

 String Value:

 Default String Value:

 Valid Characters:

 Description: Enable Volume Resignaturing. This option will be deprecated
in future releases.

 8. Rescan the host for datastore, which automatically resignatures the discovered
snapshot datastores (see Listing 15.6).

Listing 15.6 Rescanning for Datastores

vmkfstools -V

Rescanning for new Vmfs on host

Successfully Rescanned for new Vmfs on host

 9. Resignatured datastore should be mounted by now. To verify that, run

esxcli storage filesystem list |grep ‘UUID\|---\|snap’ |less -S

See Figure 15.6 for the output of this command.

From the Library of raphael schitz

ptg7996124

Chapter 15 Snapshot Handling540

Figure 15.6 Listing mounted snapshots

I truncated the output for readability. The missing columns are Mount Point,
Size, and Free. If you compare the UUID to the original VMFS volume, you
should notice the new one listed here.

To mount the snapshot LUNs on other hosts, repeat only Steps 4 and 8 if the other hosts
share the same datastores you just resignatured.

Force Mount
Force-mounting a snapshot datastore is simply mounting it without modifying its
signature. I reiterate that you must never do that on the same host that has the original
datastore mounted.

The process for force-mounting a datastore snapshot is similar to the earlier procedure
“Resignature a VMFS Datastore Using the UI” with the following differences:

 1. In Step 7, select the Keep the Existing Signature radio button (see Figure 15.7).

From the Library of raphael schitz

ptg7996124

Force Mount 541

Figure 15.7 Force-mounting a snapshot

 2. The VMFS datastore signature and name are retained.

Force-Mounting VMFS Snapshot Using ESXCLI
The process of force-mounting a VMFS snapshot using ESXCLI can be summarized
as the following: obtain a list of datastores identified as snapshots (also referred to as
unresolved volumes) and then mount each using the datastore name.

To do that, follow this procedure. You may adapt the sample script listed in the next
section to automate the process.

 1. Follow Steps 1–4 under the “Resignature VMFS Datastore Using ESXCLI” section
earlier in this chapter.

 2. To get a list of snapshot datastores, run

esxcli storage vmfs snapshot list

This returns a list of snapshot datastores (see Listing 15.7).

From the Library of raphael schitz

ptg7996124

Chapter 15 Snapshot Handling542

Listing 15.7 Listing Snapshot Datastores Using ESXCLI

esxcli storage vmfs snapshot list

4faeba13-6bf41bdd-6dd0-001f29e04d52

 Volume Name: LHN-LUN

 VMFS UUID: 4faeba13-6bf41bdd-6dd0-001f29e04d52

 Can mount: true

 Reason for un-mountability:

 Can resignature: true

 Reason for non-resignaturability:

 Unresolved Extent Count: 1

The output shows the original VMFS volume name and its original UUID
(signature). It also shows that the volume can be mounted because there is no
reason for un-mountability listed. In the same fashion, it shows that it can be
resignatured because there is no reason for non-resignaturability. The last line in
the output is the number of extents of this volume that will be resignatured.

If the original volume is still online, the volume will not be mounted until it is
resignatured. Again, this is to safeguard the mounted datastore from corruption
if the snapshot and the original datastore were both mounted.

To identify this case, you may run the previous command. Listing 15.8 shows
the output of this command in this case.

Listing 15.8 Listing Reasons for Un-mountability

esxcli storage vmfs snapshot list

4faeba13-6bf41bdd-6dd0-001f29e04d52

 Volume Name: LHN-LUN

 VMFS UUID: 4faeba13-6bf41bdd-6dd0-001f29e04d52

 Can mount: false

 Reason for un-mountability: the original volume is still online

 Can resignature: true

 Reason for non-resignaturability:

 Unresolved Extent Count: 1

In this example, there is a reason for un-mountability, which is that the original
volume is still online, and no reason for non-resignaturability.

Another case is where more than one snapshot of the original LUN extent or
extents are presented to the same host. You would get the output in Listing 15.9.

From the Library of raphael schitz

ptg7996124

Sample Script to Force-Mount All Snapshots on Hosts in a Cluster 543

Listing 15.9 Listing Duplicate Extent Case

4faeba13-6bf41bdd-6dd0-001f29e04d52

 Volume Name: LHN-LUN

 VMFS UUID: 4faeba13-6bf41bdd-6dd0-001f29e04d52

 Can mount: false

 Reason for un-mountability: duplicate extents found

 Can resignature: false

 Reason for non-resignaturability: duplicate extents found

 Unresolved Extent Count: 2

 3. Mount each datastore identified in Step 2 using

esxcli storage vmfs snapshot mount --volume-label=<volume-label>

or the shorthand version:

esxcli storage vmfs snapshot mount -l <volume-label>

You may also use the datastore’s UUID:

esxcli storage vmfs snapshot mount --volume-uuid=<volume-UUID>

or the shorthand version:

esxcli storage vmfs snapshot mount -u <volume-UUID>

 4. Verify that the datastores have been mounted by running

esxcli storage filesystem list |less -S

Sample Script to Force-Mount All Snapshots on Hosts in
a Cluster
The following script (Listing 15.10) is a sample PERL script that can be adapted to your
environment to force-mount all snapshots on hosts that are members of a specific cluster.
It was built based on examples shipped with vMA 5 appliance and are located in the
/opt/vmware/vma/samples/perl directory. This script is usable on vMA 5.0 only. You must
change the managed host to be the vCenter Server before running this script.

It does the following:

 1. Takes in the cluster name as an argument.

 2. Obtains the list of hosts in this cluster from vCenter Server.

From the Library of raphael schitz

ptg7996124

Chapter 15 Snapshot Handling544

 3. On each host on the list from Step 2, runs vmkfstools -V to scan for VMFS
datastores.

 4. On each host on the list from Step 2, gets a list of snapshot of volumes using

esxcli storage vmfs snapshot list

 5. On each host on the list from Step 2, persistently mounts the datastores from the list
in Step 4.

The syntax for using this script is

mountAllsnapshots.pl --cluster <cluster-name>

For example:

mountAllsnapshots.pl --cluster BookCluster

Listing 15.10 Sample PERL Script That Mounts All Snapshot Volumes on a List of Hosts in a
Cluster

#!/usr/bin/perl -w

mountAllsnapshots script

Copyright © VMware, Inc. All rights reserved.

You may modify this script as long as you maintain this

copyright notice.

This sample demonstrates how to get a list of all VMFS

snapshots # on a set of hosts that are members of a vCenter

cluster using “esxcli storage vmfs snapshot -l” command then

mount them using “esxcli storage vmfs snapshot mount -l”

command.

Use at your own risk! Test it first and often.

Make sure to not mount any VMFS volume and its snapshot on

the same host.

use strict;

use warnings;

use VMware::VIRuntime;

use VMware::VILib;

my %opts = (

 cluster => {

 type => “=s”,

 help => “Cluster name (case sensitive)”,

From the Library of raphael schitz

ptg7996124

Sample Script to Force-Mount All Snapshots on Hosts in a Cluster 545

 required => 1,

 },

);

Opts::add_options(%opts);

Opts::parse();

Opts::validate();

Util::connect();

Obtain all inventory objects of the specified type

my @lines;

my $cluster = Opts::get_option(‘cluster’);

my $clusters_view = Vim::find_entity_views(view_type => “ComputeResource”);

my $found = 0;

foreach my $cluster_view (@$clusters_view) {

 # Process the findings and output to the console

 if ($cluster_view->name eq $cluster) {

 print “Cluster $cluster found!\n”;

 my $hosts = Vim::find_entity_views(view_type => “HostSystem”,

 begin_entity => $cluster_view);

 foreach my $host_view (@$hosts) {

 my $host_name = $host_view->name;

 push(@lines, $host_name);

 }

 $found = 1;

 }

}

if ($found eq 0) {

 print STDERR “Cluster $cluster not found!\n”;

 exit 1;

}

Disconnect from the server

Util::disconnect();

if ((!defined $ENV{‘LD_PRELOAD’}) ||

 ($ENV{‘LD_PRELOAD’} !~ /\/opt\/vmware\/vma\/lib64\/libvircli.so/)) {

From the Library of raphael schitz

ptg7996124

Chapter 15 Snapshot Handling546

 print STDERR “Error: Required libraries not loaded. \n”;

 print STDERR “ Try mountAllsnapshots command after running “;

 print STDERR “\”vifptarget -s | --set <server>\” command.\n”;

 exit 1;

}

my $command;

my $err_out = “”;

my @out;

my $TERM_MSG = “\nERROR: Terminating\n\n”;

foreach my $line (@lines){

 if($err_out eq $TERM_MSG) {

 print STDERR $err_out;

 last;

 }

 if($line) {

 print “Mounting all snapshot volumes on “. $line .”\n”;

 #step1: perform rescan

 $command = “vmkfstools”;

 $command = $command . “ --server “ . $line . “ “ . “-V”;

 $err_out = `$command 2>&1`;

 #step2: list all snapshots

 $command = “esxcli”;

 $command = $command . “ --server “ . $line . “ “ . “storage vmfs
snapshot -l”;

 @out = `$command`;

 #step3: mount all listed snapshots.

 foreach my $ol (@out) {

 if ($ol =~ /([0-9a-f]{8}-[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{12})/) {

 $command = “esxcli”;

 $command = $command . “ --server “ . $line . “ “ . “storage
vmfs snapshot mount -l $1”;

 $err_out = `$command 2>&1`;

From the Library of raphael schitz

ptg7996124

Sample Script to Force-Mount All Snapshots on Hosts in a Cluster 547

 }

 }

 if ($?) {

 if ($!) {

 print STDERR “: “.$!;

 $err_out = $TERM_MSG;

 } else {

 print STDERR $err_out.”\n”;

 if ($err_out =~ /Common VI options:/) {

 $err_out = $TERM_MSG;

 }

 }

 } else {

 print STDOUT $err_out.”\n”;

 }

 print “\n”;

 }

}

exit 0;

Summary

This chapter covered an overview of storage snapshots, replication, and mirroring. I
explained the effect of these storage features on VMFS datastore signature and how
vSphere handles them. I also included a sample PERL script to force-mount all snapshot
datastores on hosts that are members of the same cluster.

From the Library of raphael schitz

ptg7996124

This page intentionally left blank

From the Library of raphael schitz

ptg7996124

Chapter 16

VAAI

As vSphere 5 environments get larger and larger, the amount of data it handles gets even
larger. This can have a negative effect on input/output (I/O) throughput and bandwidth
as several operations done frequently by ESXi servers demand processing cycles and erode
into valuable bandwidth. VMware designed a set of application programming interfaces
(APIs) to offload most of the storage processing and bandwidth to the storage arrays,
which frees up precious central processing unit (CPU) cycles and storage area network
(SAN) /data local area network (LAN) bandwidth and allocates it to where it is needed.

This set of APIs is referred to VMware vStorage APIs for Array Integration (VAAI) . They
utilize the T10 standard set of commands defined in SCSI Block Commands-3 (SBC-3).

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI550

What Is VAAI?
VAAI is a set of VMware vStorage APIs and new Small Computer System Interface (SCSI)
commands designed to provide an efficient protocol between ESXi hosts and storage
arrays that implement specific T10 standard commands. This is in addition to a set of
fundamental storage operations (also known as primitives) that ESXi uses to speed up I/O
operations that are more efficiently accomplished by the storage hardware. The ESXi
host utilizes these primitives to improve performance of data transfer (also known as data
mover) via standard T10 VAAI functions built in to the VMkernel and, for some primi-
tives, via VAAI plug-ins installed on the ESXi host. The storage array must implement the
VAAI T10 standard commands in its firmware in order to support some or all of the VAAI
primitives.

In comparison, VAAI was implemented on ESX and ESXi 4.1 mainly via VAAI plug-ins
built by VMware as well as some of the storage vendors that certified their arrays with
that release for VAAI. Those that did not develop a plug-in were able to use the VMware-
provided standard T10 plug-in named VMW_VAAIP_T10, which supported only the
block zeroing primitive.

VAAI Primitives
vSphere 5 supports two groups of APIs: hardware acceleration and array thin provisioning
APIs.

Hardware Acceleration APIs
Hardware acceleration APIs enable ESXi 5 hosts to offload the following primitives to the
storage hardware:

�� Block storage devices that support the following primitives:

�� Full Copy (also known as XCOPY)

�� Block zeroing (also known as WRITE_SAME)

�� Hardware assisted locking using Atomic Test and Set (ATS)

�� NAS devices that support the following primitives:

�� Full file clone

�� Lazy file clone

�� Reserve space

�� Extended file statistics

From the Library of raphael schitz

ptg7996124

Full Copy Primitive (XCOPY) 551

More detail is provided later in this chapter.

Thin Provisioning APIs
Block devices have no visibility into the virtual machine file system (VMFS) structure
or file allocation. For a VMFS volume that resides on a thin provisioned logical unit
number (LUN), ESXi 5 has no way of identifying when the LUN is unable to grow on the
storage array due to lack of disk space. In the reverse direction, the ESXi host has no way
of informing the storage array of deleted blocks on the VMFS volume. This means that
because the storage array is unaware of freed blocks on the thin LUN, it cannot reclaim
them to make room for this or other LUNs’ growth.

vSphere 5 introduced thin provisioning APIs to bridge the gap between the ESXi host and
block device–based storage arrays.

These APIs provide the following primitives:

 1. Dead space reclamation (also known as UNMAP)

 2. Used space monitoring to avoid running out of space for LUN growth

More detail is provided later in this chapter.

Full Copy Primitive (XCOPY)
One of the most taxing operations on VMFS datastores is cloning or copying virtual
disks. This is also known as full clone. It involves reading the virtual disks’ blocks and then
sending the copied blocks over the network (Fibre Channel (FC) Fabric, Internet Small
Computer System Interface (iSCSI), or Fibre Channel over Ethernet (FCoE) network);
then the array allocates the needed blocks and writes to them. This process, which uses
the software DataMover, requires compute resources on the host, network bandwidth, as
well as storage array port and LUN queues. DataMover is the VMkernel component that
handles the block copy process in the absence of VAAI hardware acceleration.

The full copy primitive eliminates most of these operations by doing the following:

 1. The host identifies the range of blocks to be copied and sends the block addresses to
the array as part of the XCOPY command.

 2. The array starts the copy process on its end.

 3. When done, the array informs the host that the operation is done.

This offloads the processing to the storage array, which reduces the host’s overhead as well
as network traffic.

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI552

Figure 16.1 shows a storage array processor and total bandwidth utilization from an EMC
CLARiiON without VAAI and with VAAI.

Figure 16.1 Comparing storage array performance with and without VAAI

It is clear from Figure 16.1 that the total bandwidth is significantly lower (close to zero)
when VAAI is used. The storage processor utilization is slightly lower. The host CPU
utilization overhead, which is not shown in this diagram, when VAAI is used is almost
zero.

Block Zeroing Primitive (WRITE_SAME)
Zeroed thick is the default virtual disk format, which means that all the virtual disk blocks
are preallocated but are not zeroed out at creation time. As the virtual machine (VM)
writes to these blocks, zero pattern is written to them before writing the data. In the
absence of VAAI, this process utilizes host CPU, storage processor, and bandwidth.

When you create an EagerZeroedThick virtual disk to avoid this, without VAAI it takes a
long time for the file creation to complete. This is due to the fact that the host is writing
zeros to all blocks. The larger the file, the longer it takes to complete the creation process.
For additional details about virtual disk types, refer to Chapter 13, “Virtual Disks and
RDMs.”

From the Library of raphael schitz

ptg7996124

Hardware Accelerated Locking Primitive (ATS) 553

Another example is the process of cloning a virtual disk and opting to use
EagerZeroedThick as the target format. This operation is a combination of full clone and
block zeroing. Without VAAI, the overhead is the combination of both operations.

With VAAI, the host sends the WRITE_SAME SCSI command to the array along
with the range of blocks to be zeroed and the array writes the same pattern (zero) to all
specified blocks. Some storage arrays have native features to accelerate this operation even
more. Regardless, offloading the block zeroing operation to the storage array significantly
reduces the host’s CPU, memory, and network load from such operation.

Hardware Accelerated Locking Primitive (ATS)
The ATS primitive negates the need for SCSI-2 reservations during on-disk lock acqui-
sition (see Chapter 14, “Distributed Locks”). The way ATS works is as follows:

 1. The ESXi host needs to acquire an on-disk lock for a specific VMFS resource or
resources.

 2. It reads the block address on which it needs to write the lock record on the array.

 3. If the lock is free, it atomically writes the lock record.

 4. If the host receives an error—because another host may have beaten it to the lock—it
retries the operation.

 5. If the array returns an error, the host falls back to using a standard VMFS-locking
mechanism using SCSI-2 reservations.

ATS Enhancements on VMFS5
When a VMFS5 volume is created on a LUN located on a storage array that supports
ATS primitive, after an ATS operation is attempted successfully, the ATS Only attribute is
written to the volume. From that point on, any host sharing this volume always uses ATS.

If, for whatever reason, the storage array no longer supports ATS—for example, firmware
downgrade—all VMFS5 volumes configured with ATS Only will not be mounted and
cannot be mounted. The only way to mount such volumes is either to upgrade the storage
array firmware to a version that supports VAAI or disable the ATS Only attribute on the
volume. To do the latter you may use the vmkfstools hidden option --configATSOnly.

vmkfstools --configATSOnly 0 /vmfs/devices/disks/<device-ID>:<Partition>

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI554

For example:

vmkfstools --configATSOnly 0 /vmfs/devices/disks/naa.6006016055711d00cff95e
65664ee011:1

You may re-enable the option by repeating this command using 1 instead of 0. If you
attempt to enable this on an upgraded VMFS5 volume, it fails with an error:

Only newly formatted VMFS-5 can be configured as ATS only

Error: Operation not supported

Thin Provisioned APIs
To better utilize thin provisioned block devices, vSphere 5 introduced vStorage APIs
specific to such devices. These APIs are the UNMAP and Used Space Monitoring
primitives:

�� UNMAP — Deleted block reclamation primitive enables ESXi 5 hosts to report the
list of deleted blocks on a VMFS datastore to the storage array. The latter can then
reclaim these blocks from the thin provisioned LUN, which effectively reduces the
thin LUN’s used size to the actual used blocks.

�� Used Space Monitoring — This primitive implements SCSI Additional Sense Code
(ASC) and Additional Sense Code Qualifier (ASCQ) on the storage array’s firmware
that get sent to the hosts when a soft threshold and a hard threshold are reached.
For example, the storage array is configured with a soft threshold of 20% of free
space available for growing thin provisioned LUNs and a hard threshold of 10% of
free space available. When the soft threshold is reached, the host receives a Check
Condition with a sense key 0x6, an ASC of 0x38, and an ASCQ of 0x7. The host may
then move the virtual disks to another datastore with sufficient space using storage
DRS (Distributed Resource Scheduler). Otherwise, the host is allowed to continue
to write to the LUN until the hard threshold is reached. This is reported to the host
as a Check Condition with a sense key 0x7, an ASC 0x27, and an ASCQ 0x7. When
that happens, the offending VM that wrote the last block that triggered the alarm is
paused until free space is added or files moved out of the datastore.

�� Used Space Monitoring enables the ESXi host to monitor the available space on
which the thin provisioned LUN can grow. This is done in-band by receiving the
status via the VAAI primitive. The host can then alert the administrator to plan to
request adding space to the LUN or move files to another datastore before the LUN
runs out of blocks on which the storage array can grow the thin provisioned LUN.
Most storage vendors have opted to not use this primitive and instead use VASA-
based reporting.

From the Library of raphael schitz

ptg7996124

Enabling and Disabling Primitives 555

NAS VAAI Primitives
Another set of VAAI enhancements introduced in vSphere 5 are the Network Attach
Storage (NAS) VAAI primitives. These primitives attempt to bring parity between NFS
datastores and VMFS on block devices’ VAAI capability.

The NAS VAAI primitives are Full file Clone and Reserve Space.

�� Full File Clone — Equivalent to Block Device Clone Primitive (XCOPY). This
allows offline virtual disks to be cloned by the NFS server.

�� Reserve Space — This is equivalent to creating a thick virtual disk (preallocated) on
NFS datastores. Typically, when you create a virtual disk on an NFS datastore, the
NAS server determines the allocation policy. The default allocation policy on most
NAS servers does not guarantee backing storage to the file. However, the reserve
space operation can instruct the NAS device to use vendor-specific mechanisms to
reserve space for a virtual disk of non-zero logical size.

If either of these two primitives fails, the host falls back to using the software DataMover
as if VAAI is not supported. There is no ATS equivalent for NFS datastores.

�� Extended File Stats Primitive —This allows the NAS filer to report accurate file
stats to the host. This helps with reporting accurately thin provisioned virtual disks
size as they grow.

Table 16.1 shows a comparison between NAS and block device primitives.

Table 16.1 Comparing NAS and Block Device Primitives

Use Case NAS Primitives Block Device Primitives

Create thick (pre-allocated) virtual disks Reserve Space No primitive is required.
Native to the file system.

Hardware-assisted cloning (offline for
NAS) of virtual disks (for example, cold
migration, clone from a template)

Full File Clone XCOPY and WRITE_SAME
(full copy and block zeroing).

Hardware Accelerated Locking N/A ATS

Enabling and Disabling Primitives
Block VAAI primitives are enabled by default. However, you may need to disable one or
more of the supported primitives as with the case of the UNMAP primitive. The latter
was reported to have performance issues with implementation on some if not most of

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI556

the supported storage arrays. As a result, VMware resorted to automatically disabling the
UNMAP primitive upon installing ESXi 5 Patch 1 as well as Update 1.

NAS VAAI primitives are enabled by installing the vendor-specific NAS plug-ins. They
are available as vSphere Installation Bundles (VIBs), which you can install using Update
Manager or the following command on the ESXi host directly. To obtain the VIB, check
the VMware HCL listing for the device, which includes a link to the storage vendor’s
download and installation instructions. (See the “Locating Supported VAAI-Capable NAS
Devices” section for HCL (Hardware Compatibility List) details).

To install the VIB, first go through a dry run using the following:

esxcli software vib install -d /<path-vib-file>/<VIB-file-name> --dry-run

Example:

esxcli software vib install -d /vmfs/volumes/LHN-LUN/VMW-ESX-5.0.0-
NetAppNasPlugin-1.0-offline_bundle-710073.zip --dry-run

You may also use the verbose option --depot instead of --d.

This goes through the process of installing the VIB without actually installing it. I always
prefer to do that to see if I run into any errors and to also identify if the host needs
rebooting. The output of the dry run command is shown in Listing 16.1.

Listing 16.1 VIB Installation Dry Run

esxcli software vib install -d /vmfs/volumes/LHN-LUN/VMW-ESX-5.0.0-
NetAppNasPlugin-1.0-offline_bundle-710073.zip --dry-run

Installation Result

 Message: Dryrun only, host not changed. The following installers will be
applied: [BootBankInstaller]

 Reboot Required: true

 VIBs Installed: NetApp_bootbank_NetAppNasPlugin_1.0-018

 VIBs Removed:

 VIBs Skipped:

From the Library of raphael schitz

ptg7996124

Enabling and Disabling Primitives 557

From this output, I can conclude that there are no errors and that the host requires
rebooting. So, I have to plan a downtime for the installation.

When ready, run the same command without the --dry-run option to install the VIB (see
Listing 16.2).

Listing 16.2 Installing the NAS VAAI Plug-in VIB

esxcli software vib install -d /vmfs/volumes/LHN-LUN/VMW-ESX-5.0.0-
NetAppNasPlugin-1.0-offline_bundle-710073.zip

Installation Result

 Message: The update completed successfully, but the system needs to be
rebooted for the changes to be effective.

 Reboot Required: true

 VIBs Installed: NetApp_bootbank_NetAppNasPlugin_1.0-018

 VIBs Removed:

 VIBs Skipped:

You can disable the block device primitives using the user interface (UI) or the command-
line interface (CLI).

Disabling Block Device Primitives Using the UI
You can configure VAAI block device primitives’ settings via the Advanced VMkernel
Configuration option as follows:

 1. Log on to vCenter Server as an Administrator or root user

 2. In the inventory tree, select the ESXi host on which you will mount the datastore.

 3. Click the Configuration tab.

 4. Select Advanced Settings under the Software section.

 5. Click the VMFS3 node in the left pane. You should see the dialog in Figure 16.2.

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI558

Step 3

Step 4

Step 5

Step 6

Figure 16.2 Modifying ATS VAAI primitives

 6. Modify the value in the VMFS3.HardwareAcceleratedLocking field from 1 to 0.

 7. Click the DataMover node in the left pane.

 8. Modify the value of both listed fields from 1 to 0 and then click OK. (See
Figure 16.3.)

From the Library of raphael schitz

ptg7996124

Enabling and Disabling Primitives 559

Step 7

Figure 16.3 Modifying XCOPY and WRITE_SAME block device VAAI primitives

Disabling Block Device VAAI Primitives Using the CLI
If you have a large number of hosts you want to reconfigure to disable one or more of the
VAAI block device primitives, you may use this procedure:

 1. Log on to vMA appliance as vi-admin.

 2. Run the vifp listservers command to verify that the ESXi hosts you want to
modify were previously added to the managed targets list (see Listing 16.3).

Listing 16.3 Listing vMA 5 Managed Targets

vifp listservers

wdc-tse-d98.wsl.vmware.com ESXi

prme-iox215.wsl.vmware.com ESXi

wdc-tse-h56.wsl.vmware.com ESXi

wdc-tse-i83.wsl.vmware.com ESX

10.131.11.215 vCenter

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI560

In this example, I have four ESXi hosts and one vCenter server registered on this
vMA 5 appliance.

 3. If the host you want to manage is not on the returned list, you may add it using the
vifp addserver option:

vifp addserver wdc-tse-i85.wsl.vmware.com --username root

You may also add the--password parameter. Otherwise, you are prompted for
the password. If the operation is successful, no message is provided.

 4. Set the target server to manage using vifptarget:

vi-admin@vma5:~> vifptarget --set wdc-tse-h56.wsl.vmware.com

vi-admin@vma5:~[wdc-tse-h56.wsl.vmware.com]>

Notice that the prompt now shows the name of the managed target host.

From this point on, the process is similar to that done via SSH or logged in
locally to the host.

 5. List the current setting of the VAAI primitives’ configuration (see Listing 16.4).

Listing 16.4 Listing Current VAAI Primitives Advanced System Setting

esxcli system settings advanced list -o /DataMover/HardwareAcceleratedMove

 Path: /DataMover/HardwareAcceleratedMove

 Type: integer

 Int Value: 1

 Default Int Value: 1

 Min Value: 0

 Max Value: 1

 String Value:

 Default String Value:

 Valid Characters:

 Description: Enable hardware accelerated VMFS data movement (requires
compliant hardware)

esxcli system settings advanced list -o /DataMover/HardwareAcceleratedInit

 Path: /DataMover/HardwareAcceleratedInit

 Type: integer

 Int Value: 1

 Default Int Value: 1

 Min Value: 0

 Max Value: 1

From the Library of raphael schitz

ptg7996124

Enabling and Disabling Primitives 561

 String Value:

 Default String Value:

 Valid Characters:

 Description: Enable hardware accelerated VMFS data initialization
(requires compliant hardware)

esxcli system settings advanced list -o /VMFS3/HardwareAcceleratedLocking

 Path: /VMFS3/HardwareAcceleratedLocking

 Type: integer

 Int Value: 1

 Default Int Value: 1

 Min Value: 0

 Max Value: 1

 String Value:

 Default String Value:

 Valid Characters:

 Description: Enable hardware accelerated VMFS locking (requires
compliant hardware)

I highlighted the current value for each of the three primitives, which is 1.

Note that this parameter type is an integer (this is what int means).

 6. Change the value of each of the parameters from 1 to 0 using the following
command:

esxcli system settings advanced set -o /<node>/<parameter> -i 0

For example:

esxcli system settings advanced set -o /DataMover/
HardwareAcceleratedMove -i 0

esxcli system settings advanced set -o /DataMover/
HardwareAcceleratedinit -i 0

esxcli system settings advanced set -o /VMFS3/
HardwareAcceleratedLocking -i 0

This disables the corresponding primitive.

 7. The command does not return any messages if successful. To verify that the change
took place, repeat Step 5, which should return the value of 0 for each primitive.

 8. Repeat Steps 4 –7 for each ESXi host.

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI562

Disabling the UNMAP Primitive Using the CLI
To disable the UNMAP primitive using the CLI, you may follow the previous procedure
using this command in Step 5:

esxcli system settings advanced list -o /VMFS3/EnableBlockDelete

See Listing 16.5 for the output.

Listing 16.5 Verifying the Outcome of Changing the EnableResignature Setting

esxcli system settings advanced list -o /VMFS3/EnableBlockDelete

 Path: /VMFS3/EnableBlockDelete

 Type: integer

 Int Value: 1

 Default Int Value: 1

 Min Value: 0

 Max Value: 1

 String Value:

 Default String Value:

 Valid Characters:

 Description: Enable VMFS block delete

Replace Step 6 with this command:

esxcli system settings advanced set -o /VMFS3/EnableBlockDelete -i 0

You may also use the verbose version of this command as follows:

esxcli system settings advanced set --option /VMFS3/EnableBlockDelete
--int-value 0

Disabling NAS VAAI Primitives
NAS VAAI primitives cannot be disabled using specific configuration parameters like
block device primitives do. The only way to disable them is by uninstalling the storage
array vendor provided by VIB for the NAS primitives’ support. You need to reboot the
host to complete the removal process, so plan a downtime for that.

To uninstall a VIB, follow this procedure:

 1. List the installed VIBs whose acceptance level is VMwareAccepted by using this
command:

esxcli software vib list |grep ‘Name\|---\|Accepted’

From the Library of raphael schitz

ptg7996124

Enabling and Disabling Primitives 563

Figure 16.4 shows a sample output.

Figure 16.4 Listing installed partners’ VIBs

 2. If more than one VIB is listed in the output, identify which one is related to the NAS
device (in this example, it is NetAppNasPlugin) and remove it using this command:

esxcli software vib remove -n <VIB Name>

Example:

esxcli software vib remove -n NetAppNasPlugin

It would be a good idea to try it first using the --dry-run option to determine
what the removal results will be.

The output of these commands is shown in Listing 16.6.

Listing 16.6 Removing NASS VAAI Plug-in VIB

esxcli software vib remove -n NetAppNasPlugin --dry-run

Removal Result

 Message: Dryrun only, host not changed. The following installers will be
applied: [BootBankInstaller]

 Reboot Required: true

 VIBs Installed:

 VIBs Removed: NetApp_bootbank_NetAppNasPlugin_1.0-018

 VIBs Skipped:

~ # esxcli software vib remove -n NetAppNasPlugin

Removal Result

 Message: The update completed successfully, but the system needs to be
rebooted for the changes to be effective.

 Reboot Required: true

 VIBs Installed:

 VIBs Removed: NetApp_bootbank_NetAppNasPlugin_1.0-018

 VIBs Skipped:

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI564

 3. Reboot the host when done.

You may also use the verbose option --vibname instead of -n with this command.

VAAI Plug-ins and VAAI Filter
VAAI is handled on the host’s end by PSA core plug-ins which are the following:

�� VAAI Filter—VAAI Filter is a single plug-in installed by default on ESXi 5 hosts.
It plugs into Pluggable Storage Architecture (PSA) framework side-by-side with
Native Multipathing Plugins (NMP) and Multipathing Plugins (MPPs) (see Figure
16.5). All devices supporting VAAI get claimed first by the VAAI filter followed by
VMkernel T10.

VMkernel Storage Stack
Pluggable Storage Architecture

St
or

ag
e

A
rr

ay
Ty

pe
 P

lu
gi

n
(S

AT
P)

Pa
th

 S
el

ec
tio

n
Pl

ug
in

(P
SP

)

3rd
 P

ar
ty

 S
AT

P

3rd
 P

ar
ty

 P
SP

VA
A

I F
ilt

er

3rd
 P

ar
ty

 M
PP

3rd
 P

ar
ty

 M
PP

VA
A

I P
lu

gi
ns

Native Multi-Pathing (NMP)

Figure 16.5 PSA showing VAAI Plug-ins and Filter

�� VAAI plug-ins—Storage arrays that do not fully implement the T10 standard
commands can be supported with VAAI when the storage vendor creates and
certifies a VAAI plug-in specific to their storage. Other storage arrays that support
T10 do not require this plug-in because vmkernel in ESXi 5 integrates what used to
be T10 Plugin in ESXi 4.1.

These VAAI plug-ins sit along side the VAAI filter on top of a PSA framework.
(See Figure 16.5.)

You may ask, how do I know if my storage array requires a VAAI plug-in?

From the Library of raphael schitz

ptg7996124

VAAI Plug-ins and VAAI Filter 565

This is easily answered by looking up the storage array on VMware HCL (also known as
VMware Compatibility Guide or VCG), and the device details list the VAAI support status
and whether or not plug-ins are required.

Locating Supported VAAI-Capable Block Devices
You may follow this procedure to look up the HCL:

 1. Go to http://www.vmware.com/go/hcl.

 2. Select Storage/SAN from the pull-down list in the What Are You Looking For
field.

 3. Select ESXi 5.0 and/or ESXi 5.0 U1 in the Product Release Version field.

 4. Select VAAI-Block in the Features Category field.

 5. Select the partner’s name in the Partner Name field.

 6. Click the Update and View Results button. (See Figure 16.6.)

Step 2

Step 3
Step 4

Step 5

Step 6

Figure 16.6 VAAI block device HCL search criteria

 7. Scroll down to view the search results. Locate your storage array in the results and
click the link with your ESXi release—for example, 5.0 or 5.0 U1 (see Figure 16.7).

From the Library of raphael schitz

http://www.vmware.com/go/hcl

ptg7996124

Chapter 16 VAAI566

Click

Figure 16.7 Locating a certified VAAI-capable device on HCL

�� The array details are displayed. There you first click View under the Features
column. This expands the array details to display the list of features including VAAI.
Figure 16.8 shows a sample device that supports block zero, full copy, and HW
assisted locking. However, the plug-in is blank. This means that the array imple-
ments T10 standard commands and does not require a special VAAI plug-in.

1. Click here2. This section expands

3. Locate Plugin here

Figure 16.8 Displaying device details to locate VAAI plug-ins

�� If a VAAI plug-in were required, check the prefix of the listed plug-in name. If it is
VMW, the plug-in is preinstalled on ESXi5 and no further configuration is required.
(See Figure 16.9.) Otherwise, you may obtain the plug-in from the storage vendor
and install it following the storage vendor’s directions. In this example, 3PAR (now
HP) storage arrays with 2.3.1 MU2 or higher firmware are certified for VAAI on
vSphere 5.0 using the 3PAR_vaaip_inServ VAAI plug-in. The link to HP download
portal is listed in the footnote. However, the same array with firmware version 3.1

From the Library of raphael schitz

ptg7996124

VAAI Plug-ins and VAAI Filter 567

does not require a specialized plug-in. This means that it supports T10 standard
commands.

Figure 16.9 Listing device details showing no plug-in is required

Locating Supported VAAI-Capable NAS Devices
To locate a list of NAS devices that support NAS VAAI primitives, you may follow this
procedure:

 1. Go to http://www.vmware.com/go/hcl.

 2. Select Storage/SAN from the pull-down list in the What Are You Looking
For field.

 3. Select ESXi 5.0 and/or ESXi 5.0 U1 in the Product Release Version field.

 4. Select VAAI-NAS in the Feature Category field.

 5. Select the partner’s name in the Partner Name field.

 6. Click the Update and View Results button. (See Figure 16.10.)

From the Library of raphael schitz

http://www.vmware.com/go/hcl

ptg7996124

Chapter 16 VAAI568

Figure 16.10 NAS VAAI HCL search criteria

 7. Scroll down to view the search results. Locate your storage array in the results and
click the link with your ESXi release (for example, 5.0 or 5.0 U1).

 8. The array details are displayed. There, you first click View under the Features
column. This expands the array details to display the list of features including VAAI.
There you also find a footnote with instructions on how to obtain the plug-in VIB
(see Figure 16.11).

Figure 16.11 Device details showing NAS plug-in HCL

After downloading the plug-in VIB, follow the vendor’s directions for installing it. This
may require a host reboot, so plan a downtime for doing that. See the “Enabling VAAI
Primitives” section earlier in this chapter for an example.

From the Library of raphael schitz

ptg7996124

Listing Registered Filter and VAAI Plug-ins 569

Listing Registered Filter and VAAI Plug-ins
Preinstalled and newly installed VAAI Filter and VAAI plug-ins are actually vmkernel
modules that get registered with the PSA framework. You may list the registered plug-ins
using

esxcli storage core plugin registration list |grep ‘Module\|---\|VAAI’

Figure 16.12 shows the output.

Figure 16.12 Listing VAAI plug-in registration

In this example, I have VAAI Filter registered along with VAAI plug-ins for symm, netapp,
lhn, hds, eql, and cx. They are the plug-ins for EMC Symmetrix, NetApp, LeftHand
Network (now HP), HDS, EQL (now Dell), and CLARiiON CX family, respectively.
There is also vmw_vaaip_mask plug-in. This is used for masking devices from being
claimed by VAAI. I discuss all these plug-ins in the next section.

NOTE

If you observe the Plugin Name column, you should notice that it is blank for the
vmw_vaaip_emc module. The values in the Dependencies column show that the
vmw_vaaip_symm module has a dependency on vmw_vaaip_emc. The same is true for
vmw_vaaip_cx, which is also dependent on the vmw_satp_lib_cx library module.

In this example, the dependency is on a common library used by EMC storage–specific
VAAI plug-ins. These types of libraries are installed by the VAAI plug-in installer or are
already installed for VAAI plug-ins included with ESXi standard image.

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI570

Listing VAAI Filters and Plug-ins Configuration
For a device to be claimed by a VAAI plug-in, it must be first claimed by the VAAI Filter
plug-in as shown in the output of

esxcli storage core claimrule list --claimrule-class=Filter

Or the shorthand version

esxcli storage core claimrule list -c Filter

The parameter Filter must use an uppercase F. Figure 16.13 shows the output of this
command.

Figure 16.13 Listing VAAI Filter claim rules

To verify if a VAAI plug-in has been installed, you can list the VAAI claim rules using this
command:

esxcli storage core claimrule list --claimrule-class=VAAI

Or the shorthand version

esxcli storage core claimrule list -c VAAI

Note that the parameter VAAI must be all uppercase. Also, the long-hand version of the
option --claimrule-class can be used with or without the equal sign. vSphere 4.1
required the equal sign. The shorthand version is documented without the equal sign.
However, it accepts it if used. In other words, both the long-hand and shorthand versions
of the command can be used with or without the equal sign.

Figure 16.14 show the output of this command.

From the Library of raphael schitz

ptg7996124

Listing VAAI Filters and Plug-ins Configuration 571

Figure 16.14 Listing VAAI plug-in claim rules

In this example, only in-box plug-ins have been preinstalled on this host. The claim rules
have a similar structure to the NMP claim rules discussed in Chapter 5, “VMware
Pluggable Storage Architecture (PSA),” in the “MP Claim Rules” section. To recap, when
a device is discovered by the PSA framework, the rule is matched to its corresponding
VAAI plug-in by the Vendor and Model strings identified from the response to the
INQUIRY command.

For example, in this output an HP P4000 is a LeftHand Network storage array
that returns a Vendor string LEFTHAND and any model will be claimed by the
VMW_VAAIP_LHN plug-in.

TIP

One of the plug-ins listed in Figure 16.14 is VMW_VAAIP_MASK. If you have a family of
storage arrays that share the same Vendor and Model strings and you want to prevent the
ESXi5 host from using VAAI with it, you may add a claim rule for VMW_VAAIP_MASK
with a number smaller than 65429.

An example of adding a VAAI MASK claim rule is

esxcli storage core claimrule add --rule=65428 --type=vendor --plugin VMW_
VAAIP_MASK --vendor=EMC --claimrule-class=VAAI

Or the shorthand version:

esxcli storage core claimrule add -r 65428 -t vendor -P VMW_VAAIP_MASK -V
EMC -c VAAI

This adds a VAAI claim rule for the VMW_VAAIP_MASK plug-in to claim all devices
whose Vendor string is EMC. Because that device already has a filter claim rule in place,
you only need to add the VAAI claim rule.

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI572

The command does not return any feedback unless there is an error. To verify that the
rule was added successfully, run this command:

esxcli storage core claimrule list -c VAAI

The output is shown in Figure 16.15.

Figure 16.15 Result of adding a VAAIP_MASK claim rule

Because rule number 65428 is lower than the existing VAAI claim rule number 65430 for
the EMC devices, the MASK claim rule claims all EMC devices instead of being claimed
by the VMW_VAAIP_SYMM.

The only remaining step is to load the claim rule for it to take effect. To do that, run this
command:

esxcli storage core claimrule load --claimrule-class=VAAI

Or you may use the shorthand version:

esxcli storage core claimrule load -c VAAI

The command does not return any feedback unless there is an error.

To verify the outcome, run:

esxcli storage core claimrule list -c VAAI

The output is shown in Figure 16.16.

From the Library of raphael schitz

ptg7996124

Listing VAAI vmkernel Modules 573

Figure 16.16 VAAI MASK claim rule loaded

Similar to MP claim rules, the class column of the output of loaded VAAI claim rules
shows runtime as well as file.

Listing VAAI vmkernel Modules
As I mentioned earlier, VAAI plug-ins and the VAAI Filter plug-in are vmkernel modules.
To list these modules you may run:

esxcli system module list |grep ‘Name\|---\|vaaip’

Listing 16.7 shows the output.

Listing 16.7 Listing VAAI vmkernel Modules

esxcli system module list |grep ‘Name\|---\|vaai’

Name Is Loaded Is Enabled

------------------- --------- ----------

vaai_filter true true

vmw_vaaip_mask true true

vmw_vaaip_emc true true

vmw_vaaip_cx true true

vmw_vaaip_netapp true true

vmw_vaaip_lhn true true

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI574

NOTE

The output in Listing 16.7 shows only the modules related to devices connected to this
ESXi host as well as the mask and filter plug-ins. In other words, the VAAI plug-in modules
are loaded on demand.

Identifying VAAI Primitives Supported by a Device
When a device is first discovered, its support for VAAI primitives is unknown. Periodi-
cally, the ESXi host checks the device for support of each VAAI primitive. If the device
supports a given primitive, it is identified as supported. Otherwise, it is identified as not
supported.

You may list the current VAAI support status of one or more devices using the CLI and
the UI.

Listing Block Device VAAI Support Status Using the CLI
VAAI is one of the name spaces of ESXCLI, which is

esxcli storage core device vaai

The only available option for this command is status with a suboption of get.

So, the full command would be

esxcli storage core device vaai status get

Listing 16.8 shows the output of this command.

Listing 16.8 Listing VAAI Support Status

esxcli storage core device vaai status get

naa.60a98000572d54724a346a643979466f

 VAAI Plugin Name: VMW_VAAIP_NETAPP

 ATS Status: supported

 Clone Status: supported

 Zero Status: supported

 Delete Status: supported

mpx.vmhba1:C0:T0:L0

From the Library of raphael schitz

ptg7996124

Identifying VAAI Primitives Supported by a Device 575

 VAAI Plugin Name:

 ATS Status: unsupported

 Clone Status: unsupported

 Zero Status: unsupported

 Delete Status: unsupported

naa.6001405497cd5c9b43f416e93da4a632

 VAAI Plugin Name:

 ATS Status: unsupported

 Clone Status: unsupported

 Zero Status: supported

 Delete Status: unsupported

If you want to limit the output to a single device, you may use the --device or -d option
along with the device ID.

An example is shown in Listing 16.9.

Listing 16.9 Listing a Single-Device VAAI Support

esxcli storage core device vaai status get -d naa.60a98000572d5472
4a34695755335033

naa.60a98000572d54724a34695755335033

 VAAI Plugin Name: VMW_VAAIP_NETAPP

 ATS Status: supported

 Clone Status: supported

 Zero Status: supported

 Delete Status: supported

Listing 16.9 shows three devices:

 1. Device ID naa.60a98000572d54724a346a643979466f was claimed by the
VMW_VAAIP_NETAPP plug-in and shows that four VAAI primitives are
supported, which are ATS, Clone, Zero, and Delete. These correspond to hardware
assisted locking, full copy, block zeroing, and dead space reclamation, respectively.

 2. Device ID mpx.vmhba1:C0:T0:L0 was not claimed by a specific VAAI plug-in and
shows none of the VAAI primitives as supported. This device is locally attached
to the host, which is why its ID is prefixed with mpx. This means a Generic (X)
Multipathing (MP).

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI576

 3. Device ID naa.6001405497cd5c9b43f416e93da4a632 was not claimed by a
specific VAAI plug-in. However, it shows that it supports only the ATS primitive.
This simply means that the device supports hardware assisted locking, but it does not
have a specific VAAI plug-in installed on the host. How did the ATS support show
up then? The reason is that on ESXi 5, vmkernel already includes support for T10
VAAI standard commands. This used to be provided via the VMW_VAAIP_T10
plug-in on ESXi 4.1. When it attempted all primitives, only ATS was successful.

You can list individual device properties, which include VAAI-related information. Listing
16.10 shows an example.

Listing 16.10 Listing Device Properties

esxcli storage core device list -d naa.60a9800042574b6a372441582d6b5937

naa.60a9800042574b6a372441582d6b5937

 Display Name: NETAPP iSCSI Disk (naa.60a9800042574b6a372441582d6b5937)

 Has Settable Display Name: true

 Size: 10240

 Device Type: Direct-Access

 Multipath Plugin: NMP

 Devfs Path: /vmfs/devices/disks/naa.60a9800042574b6a372441582d6b5937

 Vendor: NETAPP

 Model: LUN

 Revision: 810a

 SCSI Level: 4

 Is Pseudo: false

 Status: degraded

 Is RDM Capable: true

 Is Local: false

 Is Removable: false

 Is SSD: false

 Is Offline: false

 Is Perennially Reserved: false

 Thin Provisioning Status: yes

 Attached Filters: VAAI_FILTER

 VAAI Status: supported

 Other UIDs: vml.020001000060a9800042574b6a372441582d6b59374c554e202020

From the Library of raphael schitz

ptg7996124

Identifying VAAI Primitives Supported by a Device 577

The highlighted three lines show that the LUN is thin provisioned, VAAI Filter has
claimed it, and that it supports VAAI, respectively. However, this does not show which
primitives are supported.

Listing NAS Device VAAI Support Status
NAS devices, support for VAAI can be listed using this command:

esxcli storage nfs list

Figure 16.17 shows a sample output of this command.

Figure 16.17 Listing NAS device VAAI support

In this output, the support status is listed under the hardware acceleration column.

Listing VAAI Support Status Using the UI
To list the devices, support status via the UI, use this procedure:

 1. Log in to vCenter Server as an administrator user (for example, Administrator or
root).

 2. Navigate to and select the ESXi host in the inventory tree.

 3. Select the Configuration tab and then select Storage under the Hardware pane.

 4. If not already selected, click the Datastores button (see Figure 16.18).

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI578

Figure 16.18 Listing block and NAS devices, VAAI support

Figure 16.18 shows a combined list of NFS and VMFS datastores. The VAAI support
status is listed under the Hardware Acceleration column. In this example, I have some
devices showing status as Unknown and others showing Not Supported or Supported. If
the block device on which VMFS datastore reside, supports all three of the block device
VAAI primitives, the status is listed as Supported. Otherwise, if it supports fewer than the
three block device primitives, it is listed as Unknown. If it supports none, it is listed as not
supported. Table 16.2 shows a grid of support decisions.

If the NAS device exporting the NFS datastore supports VAAI and its corresponding
plug-in is installed on the ESXi host, the Hardware Acceleration column would show a
Supported status. Otherwise, it would show Not Supported.

NOTE

The Hardware Acceleration column is the last one in the list that would be outside the
viewing pane in the resolution I used to take the screenshot of Figure 16.18. I moved it to
the left by clicking on the column header and dragging it to the desired position.

Table 16.2 VAAI Support Status Decision

Support Status ATS Clone Zero

Supported Supported Supported Supported

Unknown Not Supported Supported Supported

Unknown Not Supported Not Supported Supported

Unknown Supported Not Supported Supported

Not Supported Not Supported Not Supported Not Supported

From the Library of raphael schitz

ptg7996124

Displaying Block Device VAAI I/O Stats Using ESXTOP 579

NOTE

I have not seen arrays that support ATS and/or Clone that do not support block zeroing.
This is why I did not list the case where Zero is Not Supported other than in the last row
where all three are not supported.

Displaying Block Device VAAI I/O Stats Using ESXTOP
To display I/O statistics, you may use esxtop directly on the ESXi host, via SSH, or using
resxtop on vMA 5.0.

To display these stats, follow this procedure:

 1. At the command prompt, type esxtop.

 2. Press the letter u, which switches the view to Device Stats.

 3. Press the letter f, which displays the list of column headers.

 4. To toggle a column selection, press its corresponding letter (upper- or lowercase).
When a column is selected, an asterisk (*) is displayed next to the column’s letter. By
default, A, B, F, G, and I are selected (see Listing 16.11).

Listing 16.11 Selecting Device I/O Stats Columns to Display in ESXTOP

Current Field order: ABcdeFGhIjklmnop

* A: DEVICE = Device Name

* B: ID = Path/World/Partition Id

 C: NUM = Num of Objects

 D: SHARES = Shares

 E: BLKSZ = Block Size (bytes)

* F: QSTATS = Queue Stats

* G: IOSTATS = I/O Stats

 H: RESVSTATS = Reserve Stats

* I: LATSTATS/cmd = Overall Latency Stats (ms)

 J: LATSTATS/rd = Read Latency Stats (ms)

 K: LATSTATS/wr = Write Latency Stats (ms)

 L: ERRSTATS/s = Error Stats

 M: PAESTATS/s = PAE Stats

 N: SPLTSTATS/s = SPLIT Stats

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI580

 O: VAAISTATS= VAAI Stats

 P: VAAILATSTATS/cmd = VAAI Latency Stats (ms)

Toggle fields with a-p, any other key to return:

 5. Press the letters B, F, G, and I to deselect their corresponding columns (to save on
display space).

 6. Press the letter O to select the VAAI Stats column. If you want to display the latency
stats, press the letter P as well. However, if your display is not wide enough for
displaying all columns related to these two selections, I recommend selecting one at a
time. So, for now, let’s just select O only.

 7. Press Enter to return to the stats display. Figure 16.19 shows the outcome.

Figure 16.19 Listing VAAI block device primitives stats in ESXTOP

NOTE

I had to reduce the device name column size to be able to display all the stats in the
screenshot. I did that by entering L and then the size of the field. In this case, I set it to 10
characters. To reset it, repeat the same process using the size 0.

The columns listed in this view are

�� CLONE_RD—Block clone (XCOPY) reads

�� CLONE_WR—Block clone writes

�� CLONE_F—Number of failed XCOPY commands

�� MBC_RD/s—Megabytes of cloned data read per second

�� MBC_WR/s—Megabytes of cloned data written per second

From the Library of raphael schitz

ptg7996124

Displaying Block Device VAAI I/O Stats Using ESXTOP 581

�� ATS—Number of ATS successful commands

�� ATSF—Number of failed ATS commands

�� ZERO—Number of successful block zeroing (WRITE_SAME) commands

�� ZERO_F—Number of failed block zeroing commands

�� MBZERO/s—Megabytes zeroed per second

�� DELETE—Number of successful deleted block reclamation commands

�� DELETE_F—Number of failed deleted block reclamation commands

�� MBDEL/S—Megabytes of deleted blocks reclaimed per second

If you had selected P in Step 6 to display the VAAI Latency Stats, the result would look
similar to Figure 19.20.

Figure 16.20 Listing block device VAAI latency in ESXTOP

The latency stats are self-explanatory. The following are the average times to complete a
command measured in milliseconds:

�� CAVG/suc—Successful clone average

�� CAVG/f—Failed clone average

�� AAVG/suc—Successful ATS average

�� AAVG/f—Failed ATS average

�� AVG/suc—This is actually ZAVG/suc, which is the latency of successful zero
commands

�� ZAVG/f—Failed zero command average

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI582

In general, you want a lower average for the successful commands (lower latency) and
higher number of successful commands. Ideally, there should be no failed commands
unless there is contention with a large number of hosts that can result in falling back
to using software DataMover. If you see this scenario, you need to optimize your
environment by spreading the load over more datastores—for example, using storage DRS
with datastore clusters.

The VAAI T10 Standard Commands
I referenced VAAI T10 Standard SCSI commands throughout this chapter. If you would
like to locate the T10 documentation, refer to the following links:

The ATS command (Atomic Compare and Write) is at

http://www.t10.org/cgi-bin/ac.pl?t=d&f=09-100r5.pdf

The Standard VAAI commands are specified in the SCSI Primary Commands-4 (SPC-4)
document on T10 site at

http://www.t10.org/cgi-bin/ac.pl?t=f&f=spc4r35c.pdf

The remaining commands are OP-Codes (SCSI Operations Codes), which are in
Table E.2 page 857 of the same SPC-4 document.

The WRITE_SAME op-code is 41h (0x41).

The UNMAP op-code is 42h (0x42).

A sample vmkernel log showing one of these commands is

cpu40:8232)ScsiDeviceIO: 2305: Cmd(0x41248092e240) 0x42, CmdSN 0x13bb23 to
dev “naa.60000970000292602427533030304536” failed H:0x0 D:0x2

The highlighted value represents the op-code, which means that the failed command was
UNMAP.

Thin Provision Sense Codes appear in Table 56 in the SPC4 document (part 15 of 17).

These sense codes are for Out of Space (OOS) Warning and Out of Space (OOS) Error
which are

�� ASC 38h ASCQ 07h

�� ASC 27h ASCQ 07h

respectively. (See the next section, “Troubleshooting VAAI Primitives,” for some
examples.)

From the Library of raphael schitz

http://www.t10.org/cgi-bin/ac.pl?t=d&f=09-100r5.pdf
http://www.t10.org/cgi-bin/ac.pl?t=f&f=spc4r35c.pdf

ptg7996124

Troubleshooting VAAI Primitives 583

This means thin provisioning soft threshold has been reached. This is the condition when
a thin provisioned LUN on which a VMFS datastore resides reaches the preset soft
threshold of available LUN expansion space on the array. The LUN may run out of space
soon, and the vSphere administrator needs to take action to either free some space on the
datastore and reclaim the deleted blocks or move some file to another datastore. This can
be accomplished via storage DRS or manually via Storage vMotion.

Troubleshooting VAAI Primitives
One of the issues seen by the VMware Support Team is slow UNMAP performance.

Poor performance was reported to VMware when using the UNMAP primitive to reclaim
deleted blocks. VMware identified that some implementation changes need to be done
on most storage array vendors’ firmware along with some changes on the ESXi side.
Meanwhile, VMware released ESXi 5 Update 1 as well as Patch 1, which upon installation
disables the UNMAP primitive. To reclaim the deleted blocks manually, you need to
schedule a downtime to place the host in maintenance mode and then run this command:

cd/ vmfs/volume/<volume-name-to reclaim>

vmkfstools -y 70

This changes the current directory to the VMFS datastore on which you want to reclaim
the deleted blocks. Then the vmkfstools -y command is run with the percentage of the
deleted blocks you want to reclaim. In this example, I am reclaiming 70% of the deleted
blocks. So, if I have 100GB of deleted block to reclaim, I reclaim 70GB of that space using
the listed example.

This creates temporary files on the datastore and signals the storage array to reclaim the
blocks. The temporary files get deleted after the operation is completed.

Sample Log Entries Related to VAAI

I mentioned the OOS warning in “Thin Provision APIs” section earlier in this chapter,.

An example /var/log/vmkernel.log message of an OOS warning is shown in Listing 16.12.

Listing 16.12 A Sample Log Entry Message of an Out of Space Warning

cpu4:2052)NMP: nmp_ThrottleLogForDevice:2318: Cmd 0x2a (0x41240079e0c0)
to dev “naa.6006016055711d00cff95e65664ee011” on path “vmhba35:C0:T24:L0”
Failed: H:0x0 D:0x2 P:0x0 Valid sense data: 0x6 0x38 0x7.Act:NONE

cpu4:2052)WARNING: ScsiDeviceIO: 2114: Space utilization on thin-
provisioned device naa.6006016055711d00cff95e65664ee011 exceeded configured
threshold

From the Library of raphael schitz

ptg7996124

Chapter 16 VAAI584

cpu4:2052)ScsiDeviceIO: 2304: Cmd(0x41240079e0c0) 0x2a, CmdSN 0x3724 to dev
“naa.6006016055711d00cff95e65664ee011” failed H:0x0 D:0x2 P:0x7 Possible
sense data: 0x6 0x38 0x7.

I highlighted the relevant entries, which are the following:

�� First Line reported by NMP—A SCSI WRITE command (0x2a) failed with a check
condition (D:0x2) and a sense key/ASC/ASCQ combination that means Out of Space
Warning.

�� Second line reported by SCSI device I/O vmkernel component—This line
provides an explanation of the event, which is Space Utilization on the device
exceeded the configure threshold.

�� Third line also reported by SCSI device I/O—The WRITE command (0x2a) failed
due to the same reason reported by NMP on the first line.

An example /var/log/vmkernel.log of an OOS error is shown in Listing 16.13.

Listing 16.13 Out of Space Error Sample Log Entries

cpu1:2049)NMP: nmp_ThrottleLogForDevice:2318: Cmd 0x2a (0x412400726c40)
to dev “naa.6006016055711d00cff95e65664ee011” on path “vmhba35:C0:T24:L0”
Failed: H:0x0 D:0x2 P:0x0 Valid sense data: 0x7 0x27 0x7.Act:NONE

cpu1:2049)ScsiDeviceIO: 2315: Cmd(0x412400726c40) 0x2a, CmdSN 0x8f6d to dev
“naa.6006016055711d00cff95e65664ee011” failed H:0x0 D:0x2 P:0x8 Possible
sense data: 0x7 0x27 0x7.

cpu7:37308)FS3DM: 1787: status No space left on device copying 1 extents
between two files, bytesTransferred = 0 extentsTransferred: 0

The messages in this log are related to an OOS error compared to a warning. It is reported
when a VM using thin provisioned virtual disks attempts to write to a thin provisioned
LUN that exceeds the hard threshold set by the array.

I highlighted the relevant entries, which are the following:

�� First line reported by NMP—WRITE command (0x2a) failed with sense key and
ASC/ASCQ combination that means Out of Space Error.

�� Second line reported by SCSI device I/O—WRITE command (0x2a) failed with the
same sense key and ASC/ASCQ combination.

�� Third line reported by VMFS3 DataMover (FS3DM)—A copy operation failed
between two files.

From the Library of raphael schitz

ptg7996124

Troubleshooting VAAI Primitives 585

Summary

This chapter provided details about VAAI, which provides block device primitives, thin
provision primitives, as well as NAS primitives. The latter two are new to vSphere 5. It
also covered the details of how to enable and disable VAAI primitives as well as how to
identify the various devices, support for each primitive.

From the Library of raphael schitz

ptg7996124

This page intentionally left blank

From the Library of raphael schitz

ptg7996124

Symbols

10GigE pipeline, 59-60
802.1p tag, Ethernet frames, 60-61
/var/log/syslog.log Listing of addinc vmnic

as an FCoE Adapter, 78
/var/log/syslog.log Snippet Showing Device

and Path Claiming Events listing, 79

A

AAS (Asymmetric Access States), 170
ALUA (Asymmetric Logical Unit

Access), 229-231
accelerated locking primitive, 553
access, SSH (secure shell) hosts, enabling,

17-19
active/active arrays, 175, 227
active/passive arrays, 175, 227
active path state (I/O), 176, 255-257, 274
adapters

FCoE, 51-56

Hardware (HW) FCoE Adapters, 62
Software (SW) FCoE Adapters,

62-63, 68-73
iSCSI parameters, 153-162

Additional Sense Code (ASC), 269, 554
Additional Sense Code Qualifier (ASCQ),

269, 554
addresses, iSCSI initiators, 96

aliases, 98
double indirect, VMFS (Virtual

Machine File System), 397
EUI, 98
IQN, 96-101
NAA IDs, 98

address spaces, remapping, SVDs, 370
Advanced Settings, VMkernel, 265-267
aliases, iSCSI initiators, 98
All Paths Down (APD), 280

unmounting VMFS datastores, 281-286
Alternative Method for Listing iSCSI

Target Portals—HW Initiators, 95

Index

From the Library of raphael schitz

ptg7996124

Alternative Method for Listing iSCSI Target Portals—SW Initiators listing588

Alternative Method for Listing iSCSI
Target Portals—SW Initiators
listing, 95

ALUA (Asymmetric Logical Unit Access),
227-228, 247

AAS (Asymmetric Access State), 229-231
array (I/O), 170, 175
claim rules, 237-238
common implementations, 232
followover, 232-237
identifying device configuration, 237-243
identifying device path states, 246-247
management modes, 231-232
path ranking, 291-293
TPG (Target Port Group), 228-229
troubleshooting, 243-245

Another Sample Log of Corrupt Heartbeat
listing, 520

APD (All Paths Down), 280
unmounting VMFS datastores, 281-286

APIs (application programming interfaces),
VAAI (vStorage APIs for Array
Integration), 549-550

ATS (Accelerated Locking Primitive),
553-554

block zeroing primitive, 552-553
full copy primitive, 551-552
hardware accelerated locking primitive,

553
hardware acceleration APIs, 550-551
NAS (Network Attach Storage), 555
primitives, 550-551
thin provisioning APIs, 551, 554

architecture, SVDs, 371-372
arrays, 227

active/active, 227
active/passive, 227

ALUA (Asymmetric Logical Unit
Access)

AAS (Asymmetric Access State),
229-231

followover, 232-237
identifying device configuration,

237-243
identifying device path states, 246-247
management modes, 231-232
path ranking, 292-293
TPG (Target Port Group), 228-229
troubleshooting, 243-245

EMC VNX, 240-241
I/O, 175-176
non-ALUA arrays, path ranking, 293-295
pseudo-active/active, 227
VAAI (vStorage APIs for Array

Integration), 549-550
ATS (Accelerated Locking Primitive),

553-554
block zeroing primitive, 552-553
full copy primitive, 551-552
hardware accelerated locking

primitive, 553
hardware acceleration APIs, 550-551
NAS (Network Attach Storage)

primitives, 555
primitives, 550-551
thin provision APIs, 551, 554

array-specific functions, NMP (Native
Multipathing), 174

ASC (Additional Sense Code), 269
ASCQ (Additional Sense Code Qualifier),

269
Asymmetric Access States (AAS), 170
Asymmetric Active/Active array (I/O), 175

From the Library of raphael schitz

ptg7996124

589CLI (command line interface)

C

cable unplugged from HBA port path state,
274

cable unplugged from SP port path state,
274

calculating partition offset, 403
claim rules

ALUA (Asymmetric Logical Unit
Access), identifying, 237-238

VAAI Filter, listing, 570
CEE (Converged Enhanced Ethernet) port,

78
certified storage, VMware HCL, locating,

326, 327
Checking Whether a Lock Is Free code

listing, 523
CIB (Cluster-in-a-Box), 512
claimed devices, listing with PowerPath

VE, 311-312
claim rules

creating, 212
MP, 193-196
PSA, 192-193

adding, 206-215
deleting, 215-217

SATPs, 197-201
VAAI plug-ins, listing, 570

Class field (claim rules), 194
CLI (command line interface), 17

block device VAAI, listing support,
574-577

current path, identifying, 255
detaching devices, 290-291
disabling block device primitives,

559-561
disabling UNMAP primitives, 562
EMC PowerPath/VE 5.7, installing,

304-306
ESXCLI, namespace, 205-206

Asymmetric Logical Unit Access (ALUA).
See ALUA (Asymmetric Logical
Unit Access)

ATA (AT Attachment), 5
ATS (Accelerated Locking Primitive),

553-554

B

back-end storage, SVDs, migrating to, 373
bad connection path state, 274
bandwidth

LANs (local area networks), 549
measuring, 8
SANs (storage area networks), 549
SVDs, 376-377

BC/DR (Business Continuity/Disaster
Recovery), 41, 410, 529

best practices, heterogeneous storage, 342
binary data, 1
BIOS (Basic Input Output System),

HBAs, configuring hardware iSCSI
initiators, 109-112

bits, 1, 7
block device primitives

disabling with CLI, 559-561
disabling with UI, 557-558

block devices, 8
VAAI-capable, locating supported,

565-566
I/O stats, displaying, 579-582
listing support, 574-577

block zeroing primitive, VAAI, 552-553
Breaking a Lock listing, 525
breaking distributed locks, 525-527
Business Continuity/Disaster Recovery

(BC/DR), 41, 529
bytes, 1, 7

From the Library of raphael schitz

ptg7996124

590 CLI (command line interface)

Content of a Sparse Disk Descriptor
File, 457

Content of a Virtual Mode RDM
Descriptor File, 467

Content of Second Snapshot’s Delta Disk
Descriptor File, 486

Count of Blocks Used by a Sparse
Disk, 458

Count of Blocks Used by Thick Virtual
Disk, 455

Count of Blocks Used by Thin Virtual
Disk, 455

Delta Disk Descriptor File Content, 481
Dry Run of Installing PowerPath/VE

Offline Bundle, 305
Entering Maintenance Mode, 313
Exiting Maintenance Mode, 314
Identifying Device ID Using vml

ID, 470
Identifying NAA ID using the device

vml ID, 208
Identifying RDM Device ID Using Its

vml ID, 517
Identifying RDMIs Logical Device

Name Using the RDM
Filename, 207

Identifying the LUN Number Based on
Device ID, 470

Identifying vml ID of a Mapped
LUN, 517

Installing PowerPath/VE Offline
Bundle, 306

Installing the NAS VAAI Plug-in
VIB, 557

iSCSI Portal Parameters to Identify the
iSCSI Logical Network, 150

Listing Active iSCSI Sessions with a
Specific Target Using esxli, 91-92

Listing a Single-Device VAAI
Support, 575

Listing Current EnableResignature
Advanced System Setting, 537

listing datastore UUIDs, 532
listing iSCSI initiators, 103-105
LUNs, listing paths to, 183-186
modifying PSP assignments, 324-325
PSA configurations, modifying, 204-206
PSP assignments, changing, 220-225
RDMs, creating, 465
Software (SW) FCoE Adapters,

removing, 72-73
unmounting VMFS datastores, 285-286

clones
full, 551
linked, 501-503

cloning virtual disks, vmkfstools, 456-459
cluster groups, file systems, 388
Cluster-in-a-Box (CIB), 512
clusters, hosts, force-mounting snapshots

on, 543-547
CNA (Converged Network Adapter), 54
code listings

Alternative Method for Listing iSCSI
Target Portals—HW Initiators,
95

Alternative Method for Listing iSCSI
Target Portals—SW Initiators,
95

Another Sample Log of Corrupt
Heartbeat, 520

Breaking a Lock, 525
Checking Whether a Lock Is Free, 523
Commands Run by 5nmp_hti_satp_

hdlm-rules.jsonn Jumpstart
Script, 322

Commands Run by PowerPath Jumpstart
Scripts, 320

Commands Run by psa-powerpath-pre-
claim-config.jsonp Script, 311

Content of a Physical Mode RDM
Descriptor File, 468

From the Library of raphael schitz

ptg7996124

591code listings

Locating the LVM Header Offset Using
hexdump, 403

Locating the RDM Filename, 207
Measuring Time to Create Eager Zeroed

Thick Virtual Disk, 453
Out of Space Error Sample Log

Entries, 584
Output of Commands Listing RDM

Pointers Block Count, 467
Output of Creating Eager Zeroed Thick

Virtual Disk, 453
PCI Passthru Entries in vmx File, 358
RDM LUNOs paths, 209
Removing NASS VAAI Plug-in VIB, 563
Replaying the Heartbeat Journal, 522
Rescanning for Datastores, 539
Sample Listing of PCI Device ID

Info, 365
Sample Log Entries of Corrupt

Heartbeat, 520
Sample Log Entries of Corrupt

VMFs, 521
Sample Log Entry Message of an Out of

Space Warning, 583
Sample Output of a LUN That Is NOT

Reserved, 515
Sample PERL Script That Mounts All

Snapshot Volumes on a List of
Hosts, 544-547

Sample Virtual Disk Descriptor File, 439
Selecting Device I/O Stats Columns to

Display in ESXTOP, 579
Setting a Perennially Reserved

Option, 516
Snapshot Parent Disks After

Consolidation, 497
Snapshot Parent Disks Before

Consolidation, 497
Sparse Files Created by Cloning

Option, 457
Uninstalling PowerPath, 314

Listing Current VAAI Primitives
Advanced System Setting,
560-561

Listing Device ID and Its Paths, 221
Listing Device Properties, 576
Listing Device’s Vendor and Model

Strings, 222
Listing Duplicate Extent Case, 543
Listing EnableResignature VSI Node

Content, 538
Listing Extents’ Device ID, 393
Listing iSCSI Sessions, 87, 88
Listing iSCSI Session’s Connection

Information, 92-93
Listing iSCSI Sessions with a Specific

Target Using vmkiscsi-tool,
90-91

Listing iSCSI Target Portals—HW
Initiators, 94

Listing iSCSI Target Portals—SW
Initiators, 95

Listing PowerPath VIB Profile, 313
Listing Reason for Un-mountability, 542
Listing SATP Claim Rules List, 223
Listing Snapshot Datastores Using

ESXCLI, 542
Listing VAAI Support Status, 574
Listing VAAI vmkernel Modules, 573
Listing vMA 5 Managed Targets, 537
Listing VM Files, 466
Listing VMFS5 Properties, 395
Listing VMFS Snapshot of a Spanned

Datastore, 533
Listing Volume Extents Device ID, 395
Locating NAA ID in Inquiry

Response, 264
Locating Snapshot Prefix of the Crashed

App X Snapshot, 502
Locating the Delta Virtual Disk Used by

a Snapshot, 502

From the Library of raphael schitz

ptg7996124

592 code listings

REPORT TARGET PORT GROUPS
(REPORT TPGs), 231

SET TARGET PORT GROUPS (SET
TPGs), 231

VAAI T10 Standard SCSI, 582, 583
vifp, 23
vifptarget, 23
WRITE_SAME SCSI, 553
XCOPY, 551

Commands Run by Cnmp_hti_satp_hdlm-
rules.jsonn Jumpstart Script
listing, 322

Commands Run by PowerPath Jumpstart
Scripts listing, 320

Commands Run by Cpsa-powerpath-pre-
claim-config.jsonp Script listing, 311

common library (IMA), 160
communication (NMP)

SATPs, 167
PSPs, 170
PSA, 166

communication flow, iSCSI, 163-164
configuration

FCoE network connections, 64-68
iSCSI

hardware, 152-153
initiators, 109-144
software, 146-152

plug-ins, VAAI, 570-573
PSA

modifying with CLI, 204-206
modifying with UI, 201-204

ranked paths, 295
VAAI Filter, listing, 570-573
VMDirectPath I/O, 349-357

configuration files, VMs (virtual machines),
VMDirectPath, 358

connections, FCoE, configuring, 64-68

Using vmkfstools to List RDM
Properties, 469

/var/log/syslog.log Listing of addinc
vmnic As an FCoE Adapter, 78

/var/log/syslog.log Snippet Showing
Device and Path Claiming
Events, 79

Verifying the Outcome of Changing the
EnableResignature Setting,
539, 562

VIB Installation Dry Run, 556
Virtual Disk Descriptors After

Consolidation, 497
Virtual Disk Descriptors Before

Consolidation, 496
Virtual Disks Association with

Snapshots After
Consolidation, 498

Virtual Disks Association with
Snapshots Before
Consolidation, 498

Virtual Machine Files Before Taking
Snapshot, 478

Virtual Machine Snapshot Dictionary
File Content, 483

VM Directory Content After Creating
Second Snapshot (Powered
On), 485

VM Directory Listing After First
Snapshot Created, 480

vmkfstools Command to Create a
Virtual Mode RDM, 465

vmkfstools Command to Create Physical
Mode RDM, 466

vmkfstools Options, 451
vmsd File Content, 487

command line interface (CLI). See CLI
(command line interface)

commands
get, 296
INQUIRY, 231
list, 74

From the Library of raphael schitz

ptg7996124

593DCBX (Data Center Bridging Exchange)

D

daemons
DCBD (Datacenter Bridging Daemon),

59
iSCSI, 159-160
storage vendor, 161

DAEs (Disk Array Enclosures), 4, 9
databases, iSCSI, 159
Datacenter Bridging Daemon (DCBD), 59
Data Center Bridging Exchange (DCBX),

58-59
Data General Corporation, 2
DataMover, 551
data storage, 1

PATA (Parallel ATA), 5-7
permanent, 2-4

media, 8-9
SATA (Serial ATA), 5-7
SCSI (Small Computer System

Interface), 4-7
volatile data storage, 2

datastores
extents, 402
recovered, mounting, 404
signatures, resignature, 534-540
snapshots, 529-540

force-mounting, 540-547
LUNs, 533-534
VMFS signatures, 532-533

VMFS
growing, 424
spanning, 416-424
re-creating lost partition tables for,

399-409
unmounting, 281-286

DCBD (Datacenter Bridging Daemon), 59
DCBX (Data Center Bridging Exchange),

58-59

connectivity, iSCSI (Internet Small
Computer System Interface), 86-109

initiators, 96-153
portals, 93-95
sessions, 86-93
targets, 144-145

consolidating VM snapshot operations,
494-499

constraints, SVDs, 372
Content of a Physical Mode RDM

Descriptor File listing, 468
Content of a Sparse Disk Descriptor File

listing, 457
Content of a Virtual Mode RDM

Descriptor File listing, 467
Content of Second Snapshot’s Delta Disk

Descriptor File listing, 486
Continuation of /var/log/syslog.log

listing, 81
Converged Enhanced Ethernet (CEE)

port, 78
Converged Network Adapter (CNA), 54
core namespace, 206
correlating iSCSI initiators, 88-89
corrupted file systems, recovering, 410-416
corruption

file systems, distributed locks, 521-522
heartbeat, distributed locks, 520

corrupt partition tables, repairing, 401-404
Count of Blocks Used by a Sparse Disk

listing, 458
Count of Blocks Used by Thick Virtual

Disk listing, 455
Count of Blocks Used by Thin Virtual Disk

listing, 455
current path, identifying, 255-257

From the Library of raphael schitz

ptg7996124

594 dead path state

RDMs (Raw Device Mappings), 4
37-438, 459

creating with CLI, 465
listing properties, 466-472
physical mode, 459, 464
virtual mode, 459-463

sharing, VMDirectPath I/O, 365-367
SVDs (Storage Virtualization Devices),

369-371
address space remapping, 370
metadata, 370

VAAI-capable block devices, 565-566
VAAI-capable NAS devices, 567-568
VAAI primitives, support, 574-579
VMDirectPath I/O, 364
VMDirectPath support, 346-348

device tables, spanned, VMFS, 393-394
direct block addressing, VMFS3, 389
directors, 9
disabling

path state (I/O), 176
VAAI primitives, 555-564

discovering LUNs, 258-260
log entries, 261-264

Disk Array Enclosures (DAEs), 4
Disk Database fields, 441
Disk DescriptorFile fields, 439
disk layout

GPT (GUID Partition Table), 405-407
VMFS3, 384-390
VMFS5, 391-396

Disk.MaxLUN setting (VMkernel), 265
Disk Operating System (DOS), 3
Disk.PathEvalTime configuration option,

274-275
Disk.SupportSparseLUN setting

(VMkernel), 265
Disk.UseReportLUN setting

(VMkernel), 266

dead path state, 274
dead path state (I/O), 176
decoding EMC Symmetrix/DMX

WWPNs, 25-26
default PSPs, changing, 277-280, 325-326
defective switch port path state, 274
deleting

claim rules, 215-217
PowerPath VE, 313-315
VM snapshot operations, 492-494

Dell EqualLogic PSP, 327-328
installing, 329-331
uninstalling, 331-332

DELL_PSP_EQL_ROUTED, 172
Delta Disk Descriptor File Content

listing, 481
dependent hardware iSCSI initiators, 96

communication flow, 163-164
dependent iSCSI initiator modules, 161-162
dependent virtual disk mode, 444
design guidelines, SANs (Storage Area

Networks), 41-47
design scenarios, VMs (virtual machines),

VMDirectPath, 358-360
detaching devices, unmounted datastores,

286-291
device configuration

identifying
device path states

identifying, 246, 247
devices

claimed, PowerPath/VE, 311, 312
detaching, unmounted datastores,

286-291
identifying, ALUA (Asymmetric Logical

Unit Access), 237-243
PDL (Permanent Device Loss), 280

unmounting VMFS datastores,
281-286

From the Library of raphael schitz

ptg7996124

595Ethernet

enabling VAAI primitives, 555-557
encapsulation, FCoE (Fiber Channel over

Ethernet), 49-50
endpoints, FCoE, 51-52
Enhanced Transmission Selection

(ETS), 58
ENodes, 51-53
Entering Maintenance Mode listing, 313
enumeration, paths, 258-260

log entries, 261-264
EqualLogic Host Connection Manager

(EHCM), 327-328
EqualLogic PSP, 327-328

installing, 329-331
uninstalling, 331-332

error codes (NMP), 174
ESXCLI, 91

FCoE namespace, 73-74
force-mounting VMFS snapshots,

541-543
namespace, 205-206
VMFS datastores, resignature, 536-540

ESXi hosts
changes to, HDLM (Hitachi Dynamic

Link Manager), 319-322
PSPs, listing on, 170-171
SATPs, listing on, 168-169
SW FCoE, 62-63

ESXTOP, block device VAAI I/O stats,
displaying, 579-582

Ethernet
FCoE (Fiber Channel over Ethernet),

49-51
10GigE pipeline, 59-60
configuring, 64-68
encapsulation, 49-50
FIP (FCoE Initialization Protocol),

51-53
flow control, 57

displaying block device VAAI I/O stats,
ESXTOP, 579-582

distributed locks, 505-507, 519-527
breaking, 525-527
file system corruption, 521-522
free, 523-525
heartbeat corruption, 520
replaying heartbeat journal, 522

Distributed Resource Scheduler (DRS), 8
documentation

EqualLogic, 328
PowerPath VE, downloading, 300-302

double indirect addressing, VMFS (Virtual
Machine File System), 397

Driver claim rules, 193
drivers, QLogic FC HBA, 275-276
DRS (Distributed Resource Scheduler), 8
Dry Run of Installing PowerPath/VE

Offline Bundle listing, 305
dynamic resource allocation, 509

E

eager zeroed thick virtual disks, 442
creating with vmkfstools, 452-453

EHCM (EqualLogic Host Connection
Manager), 327-328

EMC CLARiiON CX arrays, 238
EMC PowerPath/VE 5.7, 298-300

downloading documentations, 300-302
installing, 302-311
licensing modes, 302
listing claimed devices, 311-312
managing, 312-313
uninstalling, 313-315

EMC Symmetrix/DMX WWPNs,
decoding, 25-26

EMC VNX array, 240-241

From the Library of raphael schitz

ptg7996124

596 Ethernet

initiators, 15
layers, 30
name services, 35
nodes, 15-20
ports, 31-32
Registered State Change Notification

(RSCN), 36
targets, 23-25
topologies, 32-33
zoning, 37-41

FC-AL (Arbitrated Loop) topology, 33
FCF (FCoE Forwarders), 51-53
FCoE (Fiber Channel over Ethernet), 11,

49-51, 82-83
10GigE pipeline, 59-60
adapters, 54-56
Adapters, 51-53
configuring connections, 64-68
encapsulation, 49-50
endpoints, 51-52
FCF (FCoE Forwarders), 51-53
FIP (FCoE Initialization Protocol),

51-53
flow control, 57
frame architecture, 51
Hardware (HW) FCoE Adapters, 62
heterogeneous storage rules, 336
initiators, 54-56
logs, 76-81
overcoming Ethernet limitations, 56-57
required protocols, 57-60
Software (SW) FCoE Adapters, 62-63

enabling, 68-71
removing, 71-73

troubleshooting, 73-81
FCP (Fibre Channel Protocol), 12-14
FC Point-to-Point topology, 32-33

frame architecture, 51
Hardware (HW) FCoE Adapters, 62
initiators, 54-56
overcoming Ethernet limitations,

56-57
required protocols, 57-60
Software (SW) FCoE Adapters, 62-73
troubleshooting, 73-81

frames, 802.1p tag, 60-61
ETS (Enhanced Transmission

Selection), 58
EUI naming format, iSCSI initiators, 98
exabytes, 7
exchanges, FC networks, 14
Exiting Maintenance Mode listing, 314
Extent Description, fields, 440
extents, datastores, 402

F

Fabric-Device Management Interface
(FDMI), 36

Fabric Login (FLOGI), 37
failover, 296

NMP (Native Multipathing), 174
PSPs (Path Selection Plugins), 276-280
ranked paths, 294-295
triggers, 267-273

fbb (File Block Bitmap), 390
FC (Fibre Channel), 11, 30, 85, 333

exchanges, 14
Fabric-Device Management Interface

(FDMI), 36
Fabric Login (FLOGI), 37
Fabric switches, 35-37
frames, 12-14
heterogeneous storage rules, 336
identifying path states, 186-187, 192

From the Library of raphael schitz

ptg7996124

597growing VMFS datastores and volumes

spanning datastores, 416-424
upgrading to VMFS5, 430-436
VMFS1, 382
VMFS2, 382
VMFS3, 383-384
VMFS5, 384-396

filters, VAAI, 564-568
configuring, 570-573
registering, 569

FIP (FCoE Initialization Protocol), 51-53
FLOGI (Fabric Login), 37
floppy disks and drives, 3
flow control, FCoE (Fibre Channel over

Ethernet), 57
FLR (Function Level Reset), 347-348
followover, ALUA (Asymmetric Logical

Unit Access), 232-237
force-mounting, datastore snapshots,

540-547
Forwarders, FCoE, 51-53
frames

Ethernet 802.1p tag, 60-61
FC (Fibre Channel), 12-14
FCoE (Fiber Channel over Ethernet), 51

free distributed locks, 523-525
full clones, 551
full copy primitive, VAAI, 551-552
Function Level Reset (FLR), 347-348

G

get command, 296
gigabytes, 7
GPT (GUID Partition Table), disk layout,

405-407
Group State field, 247
growing VMFS datastores and volumes,

424-430

FC Ports, 15
locating HBAls in, 16-20

FDCs (File Descriptor Clusters), 388, 507
fdisk, re-creating partition tables, 404
FDMI (Fabric-Device Management

Interface), 36
Fiber Channel over Ethernet (FCoE). See

FCoE (Fibre Channel over Ethernet)
Fibre Channel (FC). See FC (Fibre

Channel)
Fibre Channel over Ethernet (FCoE). See

FCoE (Fiber Channel over Ethernet)
Fibre Channel path state, 274-275
Fibre Channel Protocol (FCP), 12-14
fields

Disk Database, 441
Disk DescriptorFile, 439
Extent description, 440

file allocation, VMFS, 395-396
File Block Bitmap (fbb), 390
File Descriptor Clusters (FDCs), 388, 507
file extensions, VMs (virtual machines), 478
file systems

cluster groups, 388
corruption, distributed locks, 521-522
namespace, 206
recovering corrupted, 410-416
usage, listing with thin virtual disks,

454-456
VMFS, 382

double indirect addressing, 397
growing datastores and volumes,

424-430
lock modes, 524
partition table problems, 398-399
recovering corrupted, 410-416
re-creating lost partition tables,

399-409
signatures, 531

From the Library of raphael schitz

ptg7996124

598 HA (High Availability)

heterogeneous storage
best practices, 342
target numbers, 338-341

High Availability (HA), 8
Hitachi Dynamic Link Manager (HDLM).

See HDLM (Hitachi Dynamic Link
Manager)

hosts
ESXi 5

listing PSPs on, 170-171
listing SATPs on, 168-169

force-mounting snapshots on, 543-547
SSH (secure shell), enabling access, 17-19
VMDirectPath supported, locating,

348-349
host SCSI status codes, 268
HTI_SATP_HDLM, 172
HW (Hardware) FCoE Adapters, 62
HW iSCSI initiators. See hardware iSCSI

initiators

I

IDE (Integrated Device Electronics), 5
identifiers, FC nodes and ports, 15-16
Identifying Device ID Using vml ID

listing, 470
Identifying NAA ID using the device vml

ID listing, 208
Identifying RDM Device ID Using Its vml

ID listing, 517
Identifying RDMIs Logical Device Name

Using the RDM Filename listing,
207

Identifying the LUN Number Based on
Device ID listing, 470

Identifying vml ID of a Mapped LUN
listing, 517

IEC (International Electrotechnical
Commission), 7

H

HA (High Availability), 8
hard disks, 4
hardware accelerated locking primitive, 553
hardware acceleration APIs, 550-551
hardware ATS (Accelerated Locking

Primitive), 553-554
Hardware Compatibility Lists (HCLs), 8
hardware FCoE adapters, 54-56, 62
hardware iSCSI initiators, 96, 105

configuring, 109-119, 137-139, 152-153
dependent, 96

communication flow, 163-164
independent, 96

communication flow, 164
listing, 96-99

hard zoning, 39-40
HBAs (host bust adapters)

BIOS, configuring hardware iSCSI
initiators, 109-112

iSCSI, independent modules, 162
HCLs (Hardware Compatibility Lists), 8

VMDirectPath, host support, 348-349
HDLM (Hitachi Dynamic Link

Manager), 315
installing, 317-322
modifying PSP assignments, 322-326
obtaining installation files, 316-317
VMware HCL, locating certified

storage, 326-327
heartbeat corruption, distributed locks, 520
heartbeat journal, replaying, 522
heterogeneous storage, 333-343

naming conventions, 336-337, 343
rules, 335-336
scenarios, 334-335
target enumeration, 340

From the Library of raphael schitz

ptg7996124

599I/O (input/output)

installation files
EqualLogic PSP, 328
HDLM (Hitachi Dynamic Link

Manager), obtaining, 316-317
Installing PowerPath/VE Offline Bundle

listing, 306
Installing the NAS VAAI Plug-in VIB

listing, 557
Integrated Device Electronics (IDE), 5
International Electrotechnical Commission

(IEC), 7
Internet Engineering Task Force

(IETF), 85
Internet protocol (IP). See IP (Internet

Protocol)
Internet Small Computer System Interface

(iSCSI). See iSCSI (Internet Small
Computer

interrupt handling, VMDirectPath I/O,
364-365

I/O (input/output), 227
arrays, 175-176
flow, 174-179
MPIO (Multipathing and I/O), 249, 297

EqualLogic PSP, 327-332
formats, 297-298
HDLM (Hitachi Dynamic Link

Manager), 315-327
PowerPath/VE 5.7, 298-315

MPIO (Multipathing Input/Output), 249
optimistic, 511
paths, 176-178, 250-255
redirection, SVDs, 370
VMDirectPath, 345, 367

configuration, 349-357
device sharing, 365-367
device support, 346-348
host support, 348-349
interrupt handling, 364-365
IRQ sharing, 364-365

IETF (Internet Engineering Task
Force), 85

IMA (iSCSI API), 160
independent hardware iSCSI initiators, 96

communication flow, 164
configuring, 109

independent iSCSI HBA modules, 162
independent virtual disk mode, 444
indirect block addressing, VMFS3, 389
information summary, partition tables,

manually collecting, 413-415
information units, 14
initiator records, SVDs, 377
initiators

FC (Fibre Channel), 15
FCoE (Fibre Channel over Ethernet),

54-56
iSCSI (Internet Small Computer System

Interface), 86-87, 96
communication flow, 163-164
configuring, 109-144
correlating, 88-89
dependent hardware, 96
dependent modules, 161-162
hardware, 94-96
independent hardware, 96
listing, 96-109
names and addresses, 96-101
software, 95-96

INQUIRY command, 231
inquiry responses, NAA IDs, locating, 264
installation

EQL MEM, 329-331
HDLM (Hitachi Dynamic Link

Manager), 317-322
PowerPath VE, 302-304

CLI, 304-306
verification, 307-311
vMA 5.0, 306-307

From the Library of raphael schitz

ptg7996124

600 I/O (input/output)

iSCSI Portal Parameters to Identify the
iSCSI Logical Network listing, 150

K-L

kilobytes, 7
Kroll-Ontrack recovery service, 410

LANs (local area networks), bandwidth, 549
layers, FC (Fibre Channel), 30
layout

VMFS3, 384-390
VMFS5, 391-396

LBA (Logical Block Addressing), 4
Legacy-MP, 169
legacy multipathing, 249
licensing modes, PowerPath VE, 302
linked clones, 501-503
links, virtual, establishing, 53
Linux vCLI, listing iSCSI initiators,

108-109
list command, 74
listing

claimed devices, PowerPath VE, 311-312
datastore UUIDs, 532
iSCSI

initiators, 96-109
portals, 94-95
sessions, 87-93

paths, iSCSI-attached devices, 187-191
paths to LUNs

CLI, 183-186
UIs, 179-183

plug-ins, VAAI, 570-573
PSPs on ESXi 5 hosts, 170-171
SATPs on ESXi 5 hosts, 168-169
storage devices, 180
VAAI Filter, 570-573

second generation, 360-364
supported devices, 364
troubleshooting, 364-367
VM configuration file, 358
VM design scenarios, 358-360

IOMMU (I/O Memory Management
Unit), 345

IP (Internet protocol), 85
IQN naming scheme, iSCSI initiators,

96-101
IRQ sharing, VMDirectPath I/O, 364-365
iSCSI (Internet Small Computer System

Interface), 11, 85, 164, 333
adapters, parameters, 153-162
communication flow, 163-164
connectivity, 86-100

portals, 93-95
sessions, 86-93

daemon, 159-160
database, 159
HBAs, independent modules, 162
heterogeneous storage, rules, 336
IMA (iSCSI API), 160
initiators, 86-87, 94-96

configuring, 109-153
correlating, 88-89
dependent modules, 161-162
hardware, 96
listing, 96-109
names and addresses, 96-101
software, 96

portals, 93-95
protocol module, 161
sessions, 86-93
targets, 144-145
transport module, 161

iSCSI-attached devices, listing paths to,
187-191

From the Library of raphael schitz

ptg7996124

601listings

Breaking a Lock, 525
Checking Whether a Lock Is Free, 523
Commands Run by 9nmp_hti_satp_

hdlm-rules.jsonn Jumpstart
Script, 322

Commands Run by PowerPath Jumpstart
Scripts, 320

Commands Run by 3psa-powerpath-pre-
claim-config.jsonp Script, 311

Content of a Physical Mode RDM
Descriptor File, 468

Content of a Sparse Disk Descriptor
File, 457

Content of a Virtual Mode RDM
Descriptor File, 467

Content of Second Snapshot s Delta Disk
Descriptor File, 486

Continuation of /var/log/syslog.log, 81
Count of Blocks Used by a Sparse

Disk, 458
Count of Blocks Used by Thick Virtual

Disk, 455
Count of Blocks Used by Thin Virtual

Disk, 455
Delta Disk Descriptor File Content, 481
Dry Run of Installing PowerPath/VE

Offline Bundle, 305
Entering Maintenance Mode, 313
Exiting Maintenance Mode, 314
Identifying Device ID Using vml ID,

470
Identifying NAA ID using the device

vml ID, 208
Identifying RDM Device ID Using Its

vml ID, 517
Identifying RDM2s Logical Device

Name Using the RDM Filename,
207

Identifying the LUN Number Based on
Device ID, 470

Identifying vml ID of a Mapped
LUN, 517

VAAI vmkernel modules, 573-574
Listing Active iSCSI Sessions with a

Specific Target listing, 91-92
Listing a Single-Device VAAI Support

listing, 575
Listing Current EnableResignature

Advanced System Setting listing, 537
Listing Current VAAI Primitives Advanced

System Setting listing, 560-561
Listing Device ID and Its Paths, 221
Listing Device Properties listing, 576
Listing Devices Vendor and Model

Strings, 222
Listing Duplicate Extent Case listing, 543
Listing EnableResignature VSI Node

Content listing, 538
Listing Extents Device ID, 393
Listing iSCSI Sessions, 87-88
Listing iSCSI Session s Connection

Information, 92-93
Listing iSCSI Sessions with a Specific

Target Using vmkiscsi-tool, 90-91
Listing iSCSI Target Portals—HW

Initiators, 94
Listing iSCSI Target Portals—SW

Initiators, 95
Listing PowerPath VIB Profile listing, 313
listing properties, RDMs, 466-469

UI, 470-472
vmkfstools, 469-470

Listing Reason for Un-mountability
listing, 542

listings
Alternative Method for Listing iSCSI

Target Portals—HW Initiators,
95

Alternative Method for Listing iSCSI
Target Portals—SW Initiators,
95

Another Sample Log of Corrupt
Heartbeat, 520

From the Library of raphael schitz

ptg7996124

602 listings

Listing VM Files, 466
Listing VMFS5 Properties, 395
Listing VMFS Snapshot of a Spanned

Datastore, 533
Listing Volume Extent4s Device ID, 395
Locating NAA ID in Inquiry Response,

264
Locating Snapshot Prefix of the Crashed

App X Snapshot, 502
Locating the Delta Virtual Disk Used by

a Snapshot, 502
Locating the LVM Header Offset Using

hexdump, 403
Locating the RDM Filename, 207
Measuring Time to Create Eager Zeroed

Thick Virtual Disk, 453
Out of Space Error Sample Log Entries,

584
Output of Commands Listing RDM

Pointers Block Count, 467
Output of Creating Eager Zeroed Thick

Virtual Disk, 453
PCI Passthru Entries in vmx File, 358
RDM LUNOs paths, 209
Removing NASS VAAI Plug-in VIB, 563
Replaying the Heartbeat Journal, 522
Rescanning for Datastores, 539
Sample Listing of PCI Device ID Info,

365
Sample Log Entries of Corrupt

Heartbeat, 520
Sample Log Entries of Corrupt VMFs,

521
Sample Log Entry Message of an Out of

Space Warning, 583
Sample Output of a LUN That Is NOT

Reserved, 515
Sample PERL Script That Mounts All

Snapshot Volumes on a List of
Hosts, 544-547

Sample Virtual Disk Descriptor File, 439

Installing PowerPath/VE Offline
Bundle, 306

Installing the NAS VAAI Plug-in
VIB, 557

iSCSI Portal Parameters to Identify the
iSCSI Logical Network, 150

Listing Active iSCSI Sessions with a
Specific Target, 91-92

Listing a Single-Device VAAI
Support, 575

Listing Current EnableResignature
Advanced System Setting, 537

Listing Current VAAI Primitives
Advanced System Setting,
560-561

Listing Device ID and Its Paths, 221
Listing Device Properties, 576
Listing DeviceLs Vendor and Model

Strings, 222
Listing Duplicate Extent Case, 543
Listing EnableResignature VSI Node

Content, 538
Listing Extents5 Device ID, 393
Listing iSCSI Sessions, 87-88
Listing iSCSI Sessions Connection

Information, 92-93
Listing iSCSI Sessions with a Specific

Target Using vmkiscsi-tool,
90-91

Listing iSCSI Target Portals—HW
Initiators, 94

Listing iSCSI Target Portals—SW
Initiators, 95

Listing PowerPath VIB Profile, 313
Listing Reason for Un-mountability, 542
Listing SATP Claim Rules List, 223
Listing Snapshot Datastores Using

ESXCLI, 542
Listing VAAI Support Status, 574
Listing VAAI vmkernel Modules, 573
Listing vMA 5 Managed Targets, 537

From the Library of raphael schitz

ptg7996124

603locks, distributed

vmkfstools Command to Create a
Virtual Mode RDM, 465

vmkfstools Command to Create Physical
Mode RDM, 466

vmkfstools Options, 451
vmsd File Content, 487

Listing SATP Claim Rules List listing, 223
Listing Snapshot Datastores Using ESXCLI

listing, 542
Listing VAAI Support Status listing, 574
Listing VAAI vmkernel Modules listing,

573
Listing vMA 5 Managed Targets listing,

537-559
Listing VM Files listing, 466
Listing VMFS5 Properties, 395
Listing VMFS Snapshot of a Spanned

Datastore listing, 533
Listing Volume Extent4s Device ID, 395
lists, partition tables, maintaining, 410-412
local area networks (LANs), bandwidth, 549
local storage media, supported, 8
Locating NAA ID in Inquiry Response

listing, 264
Locating Snapshot Prefix of the Crashed

App X Snapshot listing, 502
Locating the Delta Virtual Disk Used by a

Snapshot listing, 502
Locating the LVM Header Offset Using

hexdump listing, 403
Locating the RDM Filename listing, 207
locking, optimistic, 508
lock modes, VMFS, 524
locks, distributed, 505-507, 519-520, 527

breaking, 525-527
file system corruption, 521-522
free, 523-525
heartbeat corruption, 520
replaying heartbeat journal, 522

Selecting Device I/O Stats Columns to
Display in ESXTOP, 579

Setting a Perennially Reserved
Option, 516

Snapshot Parent Disks After
Consolidation, 497

Snapshot Parent Disks Before
Consolidation, 497

Sparse Files Created by Cloning
Option, 457

Uninstalling PowerPath, 314
Using vmkfstools to List RDM

Properties, 469
/var/log/syslog.log Listing of addinc

vmnic as an FCoE Adapter, 78
/var/log/syslog.log Snippet Showing

Device and Path Claiming
Events, 79

Verifying the Outcome of Changing
the EnableResignature Setting,
539-562

VIB Installation Dry Run, 556
Virtual Disk Descriptors After

Consolidation, 497
Virtual Disk Descriptors Before

Consolidation, 496
Virtual Disks Association with

Snapshots After Consolidation,
498

Virtual Disks Association with
Snapshots Before Consolidation,
498

Virtual Machine Files before Taking
Snapshot, 478

Virtual Machine Snapshot Dictionary
File Content, 483

VM Directory Content After Creating
Second Snapshot (Powered On),
485

VM Directory Listing After First
Snapshot Created, 480

From the Library of raphael schitz

ptg7996124

604 log entries

M

MAC portion (Volume UUID), 531
magnetic tapes, 2
managed targets, vMA 5, 559
management modes, ALUA (Asymmetric

Logical Unit Access), 231-232
managing PowerPath VE, 312-313
MANs (metro area networks), 531
manually collecting partition table

information, 413-415
mapping LUNs, 460-461
Matches field (claim rules), 194
Measuring Time to Create Eager Zeroed

Thick Virtual Disk listing, 453
megabytes, 7
memory, RAM (Random Access

Memory), 2
metadata, 385

SVDs, 370
metadata binary dumps, maintaining,

415-416
metro area networks (MANs), 531
Microsoft Clustering Services (MSCS).

See MSCS (Microsoft Clustering
Services)

migration, SVDs, 379-380
back-end storage, 373

mirroring, RAID, 530, 531
Model string claim rules, 193
modes, virtual disks, 444
modules, VAAI, listing vmkernel, 573-574
mounting

datastore snapshots, 540-547
recovered datastores, 404

MP (Multipath) claim rules, 193-196
MPIO (Multipathing Input/Output), 249,

297, 332
EqualLogic PSP, 327-328

log entries
path enumeration, 261-265
upgrading, 432-433

Logical Block Addressing (LBA), 4
Logical Unit Numbers (LUNs). See LUNs

(Logical Unit Numbers)
Logical Volume Manager (LVM), 383
Logical Volume Manager (LVM) Header,

385, 403
logs

FCoE (Fibre Channel over Ethernet),
76-81

REDO, 477
lossless-ness, emulating, 58
lost partition tables

re-creating for VMFS3 datastores,
399-404

re-creating for VMFS5 datastores,
404-409

repairing, 401-404
LUNs (Logical Unit Numbers), 227, 250,

333-334, 373, 383, 505
discovering, 258-260

log entries, 261-264
heterogeneous storage, 337
listing paths to, 181

CLI, 183-186
UIs, 179-183

mapping, 460-461
masking paths to, 217-219
paths, 177
RDM paths, 208
replicas, 530
snapshots, VMFS datastores, 533-534
SVDs, 377
unmasking, 219, 220

LVM (Logical Volume Manager), 383
LVM (Logical Volume Manager) Header,

385, 403

From the Library of raphael schitz

ptg7996124

605networks

functions, 166
MPPs (Multipathing Plugins),

172-173
PSPs (Path Selection Plugins),

166-171
SATPs (Storage Array Type Plugins),

166-169
third-party plug-ins, 171-172

Multipathing Input/Output (MPIO). See
MPIO (Multipathing Input/Output)

Multipathing Plugins (MPPs), 165, 172-173,
297, 564

N

NAA IDs
identifying, 208
iSCSI initiators, 98
locating, 264

names, iSCSI initiators, 96
aliases, 98
EUI, 98
IQN, 96-101
NAA IDs, 98

namespaces
ESXCLI, 205-206
storage, 206

naming conventions, heterogeneous
storage, 336-337, 343

NAS (Network Attached Storage), 8, 333
disabling, 562-564
primitives, 555
VAAI-capable, locating supported,

567-568
Native Multipathing (NMP). See NMP

(Native Multipathing)
networks

LANs (local area networks),
bandwidth, 549

installing, 329-331
uninstalling, 331-332

formats, 297-298
HDLM (Hitachi Dynamic Link

Manager), 315
installing, 317-322
locating certified storage, 326-327
modifying PSP assignments, 322-326
obtaining installation files, 316-317

PowerPath/VE 5.7, 298-300
downloading documentations,

300-302
installing, 302-311
licensing modes, 302
listing claimed devices, 311-312
managing, 312-313
uninstalling, 313-315

MPPs (Multipathing Plugins), 165, 172-173,
297, 564

MSCS (Microsoft Clustering Services), 202,
277, 459

reservations, 512-514
perennial, 514-519

multi-initiator zoning, 40-41
multipathing, 165, 296

factors affecting, 265-267
failover triggers, 270-273
legacy, 169, 249
listing details, 179-186
MPIO (Multipathing Input/Output),

249, 297
EqualLogic PSP, 327-332
formats, 297-298
HDLM (Hitachi Dynamic Link

Manager), 315-327
PowerPath/VE 5.7, 298-315

NMP (Native Multipathing), 165-166,
249

communication, 166

From the Library of raphael schitz

ptg7996124

606 networks

O

on path state, 274
operations, VM snapshots, 488-492

consolidating, 494-499
deleting, 492-494

optimistic I/O, 511
optimistic locking, 508
Out-of-Space errors, 444, 584
Out of Space Error Sample Log Entries

listing, 584
Out of Space Warnings, 444
Output of Commands Listing RDM

Pointers Block Count listing, 467
Output of Creating Eager Zeroed Thick

Virtual Disk listing, 453

P

Parallel ATA (PATA), 5-7
parameters, iSCSI adapters, 153-162
paravirtualization, 475
Paravirtual SCSI Controller (PVSCSI).

See PVSCSI (Paravirtual SCSI
Controller)

partition offset, calculating, 403
partitions, GPT (GUID Partition Table),

disk layout, 405-407
partition tables, 399-400

maintaining lists, 410-412
manually collecting information

summary, 413-415
problems, common causes, 398-399
re-creating, 399-409
repairing, 401-404

Partner Verified and Supported Products
(PVSP) program, 346

passthrough, physical tape devices, 360

MANs (metro area networks), 531
SANs (Storage Area Networks)

bandwidth, 549
topology, 30, 31, 32, 33, 35

nfs namespace, 206
NMP (Native Multipathing), 166, 249, 564

array-specific functions, 174
claim rules, 192-193
communication, 166
error codes, 174
failover, 174
functions, 166
I/O flow, 174-179
listing multipathing details, 179-186
MPPs (Multipathing Plugins), 165,

172-173
PSPs (Path Selection Plugins), 166, 169

communications, 170
listing on ESXi 5 hosts, 170-171
operations, 170

SATPs (Storage Array Type Plugins),
166

communication, 167
examples, 168
listing on ESXi 5 hosts, 168-169
operations, 167

nmp namespace, 206
nodes, FC (fibre channel), 15-16
non-ALUA arrays, path ranking, 293, 294,

295
non-pass-through RDMs. See virtual mode

RDMs
non-persistent independent disk mode, 444
Nova 1200 Mini Computer, 2

From the Library of raphael schitz

ptg7996124

607plugins

PCI (Peripheral Component Interconnect),
345

PDL (Permanent Device Loss), 280-281
unmounting VMFS datastores, 281-286

perennial SCSI reservations, 514-519
Peripheral Component Interconnect

(PCI), 345
permanent data storage, 2
Permanent Device Loss (PDL), 280-281

unmounting VMFS datastores, 281-286
permanent storage, 4

media, 8-9
persistent independent disk mode, 444
petabytes, 7
PFC (Priority-based Flow Control), 57-58
physical mode RDMs, 459

creating with CLI, 465
creating with UI, 464
listing properties, 466-469

UI, 470-472
vmkfstools, 469-470

physical tape devices, passthrough, 360
Pluggable Storage Architecture (PSA).

See PSA (Pluggable Storage
Architecture)

Plugin field (claim rules), 194
plug-ins

ESX plug-in, 160
Multipathing Plugins (MPPs), 564
registration, 196-197
third-party, 171-172
VAAI, 564-568

listing, 569-573
vendor IMA plug-ins, 160

plugins
MPPs (Multipathing Plugins), 172-173,

297
PSPs (Path Selection Plugins), 169, 298

communications, 170

pass-through RDMs. See physical mode
RDMs

passthru.map, file listing, 346
PATA (Parallel ATA), 5-7
path ranks, setting, 295-296
paths, 250-255

see also multipathing
active, 255-257
APD (All Paths Down), 280-281

unmounting VMFS datastores,
281-286

enumeration, 258-260
log entries, 261-264

failover
PSPs, 276-280
triggers, 270-273

identifying current, 255-257
I/O, 176-178
listing, iSCSI-attached devices, 187-191
LUNs, 177

masking to, 217-219
maximum usable, 265
multipathing, factors affecting, 265-267
ranked, configuring, 295
ranking, 291-295
RDM LUNs, 208
states, 273-274

factors affecting, 274-276
thrashing, 232-234

Path Selection Plugin (PSP). See PSP (Path
Selection Plugin)

path states
Fibre Channel, 274-275
identifying, FC (Fibre Channel),

186-187, 192
I/O, 176-178

pbc (Pointer Block Cluster), 389
PCI Passthru Entries in vmx File

listing, 358

From the Library of raphael schitz

ptg7996124

608 plugins

protocols
FCoE (Fibre Channel over Ethernet),

49-51, 57-60, 82-83
10GigE pipeline, 59-60
configuring network connections,

64-68
DCBX (Data Center Bridging

Exchange), 58-59
ETS (Enhanced Transmission

Selection), 58
FIP (FCoE Initialization Protocol),

51-53
flow control, 57-58
hardware FCoE adapters, 54-55
Hardware (HW) FCoE Adapters, 62
initiators, 54
software FCoE adapters, 55-56
Software (SW) FCoE Adapters, 62-73
troubleshooting, 73-81

FCP (Fibre Channel Protocol), 12-14
FIP (FCoE Initialization Protocol),

51-53
IP (Internet Protocol), 85
iSCSI (Internet Small Computer System

Interface), 85, 164
adapter parameter, 153-162
communication flow, 163-164
configuring, 146-153
connectivity, 86-100
daemon, 159-160
database, 159
HBAs, 162
IMA (iSCSI API), 160
initiators, 86-162
portals, 93-95
protocol module, 161
sessions, 86-93
targets, 144-145
transport module, 161

failover, 276-280
listing on ESXi 5 hosts, 170-171
operations, 170

SATPs (Storage Array Type Plug-Ins),
167

communications, 167
examples, 168
listing on ESXi 5 hosts, 168-169
operations, 167

Pointer Block Cluster (pbc), 389
portals, iSCSI (Internet Small Computer

System Interface), 93-95
ports, FC (Fibre Channel), 15-16, 31-32
PowerPath/VE 5.7, 298-300

downloading documentations, 300-302
installing, 302-311
licensing modes, 302
listing claimed devices, 311-312
managing, 312-313
uninstalling, 313-315

preferred path settings, I/O, 176-178
primitives

block zeroing, 552-553
full copy, 551-552
hardware accelerated locking, 553
VAAI, 550-551

disabling, 555-564
enabling, 555-557
identifying supported devices,

574-579
NAS (Network Attach Storage), 555
troubleshooting, 583-584

Priority-based Flow Control (PFC), 57-58
priority levels, QoS, 61
properties, RDMs

listing, 466-472
viewing, 464

protocol module, iSCSI, 161

From the Library of raphael schitz

ptg7996124

609redirection, I/O, SVDs

third-party, 171-172
VMW_PSP_FIXED, 276
VMW_PSP_MRU, 277
VMW_PSP_RR PSP, 277

PVSCSI (Paravirtual SCSI Controller),
475-476

PVSP (Partner Verified and Supported
Products) program, 346

Q-R

QLogic FC HBA driver, 275, 276
QoS (Quality of Service), priority levels, 61

RAID, mirroring, 530-531
RAM (Random Access Memory), 2
Random portion (Volume UUID), 531
ranked paths, configuring, 295
ranking paths, 291-295

ALUA arrays, 291-293
non-ALUA arrays, 293-295

Raw Device Mappings (RDMs). See RDMs
(Raw Device Mappings)

RDM LUNRs paths listing, 209
RDMs (Raw Device Mappings), 202,

437-438, 459, 503
creating with CLI, 465
filenames, locating, 207
LUN paths, 208
physical mode, 459

creating with UI, 464
properties, listing, 466-472
SVDs, 378
viewing properties, 464
virtual mode, 459

creating with UI, 459-463
recovered datastores, mounting, 404
redirection, I/O, SVDs, 370

SVDs, 374-377
TCP (Transmission Control Protocol),

86
PSA (Pluggable Storage Architecture), 80,

165, 225, 233, 297, 564
claim rules, 192-196

adding, 206-215
deleting, 215-217

components, 173-174
I/O flow, 174-176
LUNs, 217-219
modifying configurations, 201-206
NMP (Native Multipathing), 166

communication, 166
functions, 166
listing multipath details, 179-186
MPPs (Multipathing Plugins),

172-173
PSPs (Path Selection Plugins),

166-171
SATPs (Storage Array Type Plugins),

166-169
third-party plug-ins, 171-172

plug-in registration, 196-197
PSPs, changing assignments, 220-225
SATPs, claim rules, 197-201

pseudo-active/active arrays, 227
PSPs (Path Selection Plugins), 166, 169, 298

assignments, changing, 220-225
changing default, 277-280, 325-326
communications, 170
EqualLogic, 327-332
failover, 276-280
listing ESXi 5 hosts, listing on, 170-171
modifying assignments, HDLM

(Hitachi Dynamic Link
Manager), 322-326

operations, 170
Round Robin, 277

From the Library of raphael schitz

ptg7996124

610 REDO logs

S

Sample Listing of PCI Device ID Info
listing, 365

Sample Log Entries of Corrupt Heartbeat
listing, 520

Sample Log Entries of Corrupt VMFs
listing, 521

Sample Log Entry Message of an Out of
Space Warning listing, 583

Sample Output of a LUN That Is NOT
Reserved listing, 515

Sample PERL Script That Mounts All
Snapshot Volumes on a List of Hosts
in a Cluster listing, 544-547

Sample Virtual Disk Descriptor File listing,
439

SAN Aware Retries, 509-510
SANs (Storage Area Networks)

bandwidth, 549
design guidelines, 41-47
topology, 30-35

SAS (serially attached SCSI), 4
SATA (Serial ATA), 5-7
SATPs (Storage Array Type Plugins),

166-167, 298
claim rules, 197-201
communication, 167
ESXi 5 hosts, listing on, 168-169
examples, 168
operations, 167
third-party, 171-172

SBC-3 (SCSI Block Commands-3), 549
sbc (Sub-Block Cluster), 388
scenarios, heterogeneous storage, 334-335
SCSI (Small Computer System Interface),

4-7
Bus Sharing, virtual, 476-477
PVSCSI (Paravirtual SCSI Controller),

475-476

REDO logs, 477
Registered State Change Notification

(RSCN), 36
registering VAAI filters and plug-ins, 569
Removing NASS VAAI Plug-in VIB listing,

563
repairing partition tables, 401-404
Replaying the Heartbeat Journal listing,

522
replicas, LUNs, 530
Request for Product Qualification

(RPQ), 360
Rescanning for Datastores listing, 539
reservations, SCSI, 511

MSCS (Microsoft Clustering Services),
512-514

perennial, 514-519
resignature

VMFS datastores, 534-540
VMFS volumes, 372

resource allocation, dynamic, 509
resource clusters, VMFS3, 387
reverting to VM snapshots, 499-501
Round Robin PSPs, 277
RPQ (Request for Product Qualification),

360
RSCN (Registered State Change

Notification), 36
RTP_id field, 247
Rule Class field (claim rules), 194
rules

claim
PSA, 206-217
rules, creating, 212

heterogeneous storage, 335-336

From the Library of raphael schitz

ptg7996124

611storage arrays

VMs (virtual machines), 477-478
creating while powered off, 478-484
creating while powered on, 484-488
linked clones, 501-503
operations, 488-499
reverting to, 499-501

software FCoE adapters, 55-56
software initiators. See iSCSI initiators
Software (SW) FCoE Adapters, 62-63

enabling, 68-71
removing, 71-73

soft zoning, 38-39
spanned device tables, 393-394
spanning VMFS datastores, 416-424
Sparse Files Created by Cloning Option

listing, 457
sprawl, storage, 334
SPs (Storage Processors), 9, 175
SR-IOV, 361-363
SSH (secure shell) hosts, 17

enabling access, 17-19
HBAHs, locating, 19-21
listing iSCSI initiators, 102-103

standards, SCSI, 11-12
standby path state, 274
standby path state (I/O), 176
states, paths, 273-276
storage area networks (SANs). See SANs

(storage area networks)
storage arrays, 227

active/active, 227
active/passive, 227
ALUA

AAS (Asymmetric Access State),
229-231

followover, 232-237
identifying device configuration,

237-243

reservations, 511
MSCS (Microsoft Clustering

Services), 512-514
perennial, 514-519

sense codes, 267-270
sense keys, 269
standards, 11-12

SCSI Block Commands-3 (SBC-3), 549
Seagate recovery service, 410
Selecting Device I/O Stats Columns to

Display in ESXTOP listing, 579
sense codes, SCSI, 267-270
sense keys, SCSI, 269
Serial ATA (SATA), 5-7
serially attached SCSI (SAS), 4
setup script, EqualLogic PSP, 328
sessions, iSCSI (Internet Small Computer

System Interface), 86-93
SET TARGET PORT GROUPS (SET

TPGs) command, 231
Setting a Perennially Reserved Option

listing, 516
shared storage devices, 8-9
signatures, VMFS, 531

resignature, 534-540
snapshots, 532-533

single initiator zoning, 40-41
Site Recovery Manager, 536
Small Computer System Interface (SCSI).

See SCSI (Small Computer System
Interface)

Snapshot Parent Disks After Consolidation
listing, 497

Snapshot Parent Disks Before
Consolidation listing, 497

snapshots, 530
VMFS datastores, 529-540

force-mounting, 540-547
LUNs, 533-534
signatures, 532-533

From the Library of raphael schitz

ptg7996124

612 storage arrays

initiator records, 377
I/O redirection, 370
LUNs, 377
metadata, 370
migration, 379-380
migration to, back-end storage, 373
protocols, 374-377
RDMs (RAW Device Mapping), 378

Switched Fabric configuration, 34
switches, Fabric, 35-37
SW (Software) FCoE Adapters, 62-63

enabling, 68-71
removing, 71-73

System Time portion (Volume UUID), 531

T

T10 Technical Committee, 11
Tag Control Information (TCI), 61
Tag Protocol Identifier (TPID), 61
tape devices, passthrough, 360
target enumeration, heterogeneous storage,

338-341
targets

FC (Fibre Channel), 23, 24, 25
iSCSI, 144-145
WWNNs, locating, 27-30
WWPNs, locating, 27-30

TCI (Tag Control Information), 61
TCP (Transmission Control Protocol), 86
terabytes, 7
thin provisioning APIs, 554

VAAI, 551
thin virtual disks, 442-444

creating with vmkfstools, 454
listing file system usage, 454-456

third-party plug-ins, 171-172
thrashing paths, 232-234

identifying device path states, 246-247
management modes, 231-232
path rankings, 292-293
TPG (Target Port Group), 228-229
troubleshooting, 243-245

non-ALUA, path rankings, 293-295
pseudo-active/active, 227

Storage Array Type Path Config field, 247
storage capacity, units, 7-8
storage devices

listing, 180
selecting, 9
shared, 8-9

Storage DRS, 8
Storage Layered Applications, 459
storage namespaces, 206
storage processors (SPs), 9, 175
storage. See data storage
storage snapshots. See snapshots
storage sprawl, 334
storage vendor daemons, 161
storage virtualization, 334
Storage Virtualization Devices (SVDs).

See SVDs (Storage Virtualization
Devices)

Storage vMotion, 8
Sub-Block Cluster (sbc), 388
supported devices, VAAI primitives,

identifying, 574-579
SVDs (Storage Virtualization Devices),

369-371, 380
address space remapping, 370
architecture, 371-372
bandwidth, 376-377
benefits, 378-379
choosing, 373-380
constraints, 372
disadvantages, 379

From the Library of raphael schitz

ptg7996124

613VAAI (vStorage APIs for Array Integration)

VAAI support status, listing, 577-579
virtual disks, creating, 445-450
virtual mode RDMs, creating, 459-463
VMFS datastores, resignature, 534-536

uninstalling
EQL MEM, 331-332
PowerPath VE, 313-315

Uninstalling PowerPath listing, 314
units, storage capacity, 7-8
unknown path state (I/O), 176
UNMAP primitives, 554

disabling with CLI, 562
unmasking LUNs, 219, 220
unmounting VMFS datastores, 281-286
upgrading

log entries, 432-433
VMFS5, 430-436

Used Space Monitoring primitives, 554
Using vmkfstools to List RDM Properties

listing, 469
UUIDs (universally unique identifiers),

531-532

V

VAAI (vStorage APIs for Array
Integration), 8, 549-550, 585

filters, 564-568
listing configuration, 570-573
registering, 569

plug-ins, 564-568
listing, 569-573

primitives, 550-551
ATS (Accelerated Locking Primitive),

553-554
block zeroing, 552-553
disabling, 555-564
enabling, 555-557

topologies
FC (Fibre Channel), 32-33
SANs (Storage Area Networks), 30-35

TPG_id field, 247
TPG_state field, 247
TPG (Target Port Group), ALUA

(Asymmetric Logical Unit Access),
228-229

TPID (Tag Protocol Identifier), 61
Transmission Control Protocol (TCP), 86
Transport claim rules, 193
transport module, iSCSI, 161
triggers, failover, 267-270

multipathing, 270-273
troubleshooting

ALUA (Asymmetric Logical Unit
Access), 243-245

FCoE (Fibre Channel over Ethernet),
73-81

VAAI primitives, 583-584
VMDirectPath I/O, 364-367

TSC Time portion (Volume UUID), 531
Type field (claim rules), 194

U

UI (user interface)
current path, identifying, 256, 257
disabling block device primitives,

557-558
listing iSCSI initiators, 99-101
listing RDM properties, 470-472
LUNs, listing paths to, 179-183
modifying PSP assignments, 323
physical mode RDMs, creating, 464
PSA configurations, modifying, 201-204
Software (SW) FCoE Adapters,

removing, 71-72
unmounting VMFS datastores, 281-284

From the Library of raphael schitz

ptg7996124

614 VAAI (vStorage APIs for Array Integration)

creating, 454
listing file system usage, 454-456

zeroed thick, 441-442
creating, 452

Virtual Disks Association with Snapshots
After Consolidation listing, 498

Virtual Disks Association with Snapshots
Before Consolidation listing, 498

virtualization
paravirtualization, PVSCSI, 475-476
SVDs (Storage Virtualization Devices),

369-371, 380
address space remapping, 370
architecture, 371-372
bandwidth, 376-377
benefits, 378-379
choosing, 373-380
constraints, 372
disadvantages, 379
initiator records, 377
I/O redirection, 370
LUNs, 377
metadata, 370
migration, 373-380
protocols, 374-377
RDMs (RAW Device Mapping), 378

virtualization, storage, 334
virtual links, establishing, 53
Virtual Machine Fabric Extender

(VM-FEX), 364
Virtual Machine Files before Taking

Snapshot listing, 478
Virtual Machine File System (VMFS).

See VMFS (Virtual Machine File
System)

Virtual Machine Snapshot Dictionary File
Content listing, 483

virtual mode RDMs, 459
creating with CLI, 465

full copy, 551-552
hardware accelerated locking, 553
hardware acceleration APIs, 550-551
identifying supported devices,

574-579
NAS (Network Attach Storage), 555
thin provisioning APIs, 551, 554
troubleshooting, 583-584

vmkernel modules, listing, 573-574
VAAI T10 Standard SCSI commands,

582-583
VASA (vStorage APIs for Storage

Awareness), 8
vCLI, 17, 23
Vendor string claim rules, 193
verification, PowerPath VE installation,

307-311
Verifying the Outcome of Changing the

EnableResignature Setting listing,
539-562

vh (Volume Header), 385
VIB Installation Dry Run listing, 556
VIBs (vSphere Installation Bundles), 556
vifp command, 23
vifptarget command, 23
Virtual Disk Descriptors After

Consolidation listing, 497
Virtual Disk Descriptors Before

Consolidation listing, 496
virtual disks, 438-443

cloning with vmkfstools, 456-459
creating after VM creation, 448-450
creating during VM creation, 445-448
creating with UI, 445-450
creating with vmkfstools, 450-456
eager zeroed thick, 442-453
modes, 444
thin, 442-444

From the Library of raphael schitz

ptg7996124

615VMFS (Virtual Machine File System)

partition tables, 399-400
maintaining lists, 410-412
problems, 398-399
re-creating lost, 399-409

recovering corrupted, 410-416
signatures, 531

resignature, 534-540
VMFS1, 382
VMFS2, 382-383
VMFS3, 383

datastores, 416-424
direct block addressing, 389
disk layout, 384-390
file allocation, 395-396
indirect block addressing, 389
partition offset, 385
partition tables, re-creating lost,

399-404
resource clusters, 387
spanned device tables, 393-394
upgrading to VMFS5, 430-436
volumes, growing, 425-430

VMFS5, 384, 436
ATS primitive, 553-554
datastores, 416-424
disk layout, 391-396
double indirect addressing, 397
file allocation, 395-396
partition tables, 398-409
recovering corrupted, 410-416
spanned device tables, 393-394
upgrading to, 430-436

unmounting datastores, 281-286
volumes

force mount, 372
growing, 425-430
resignature, 372

creating with UI, 459-463
listing properties, 466-469

UI, 470-472
vmkfstools, 469-470

virtual SCSI Bus Sharing, 476-477
virtual storage adapters, 472-473
vMA (vSphere Management Assistant) 5.0,

17, 21-22
listing iSCSI initiators, 105-108
managed targets, 559
PowerPath/VE 5.7, installing, 306, 307

VM Directory Content After Creating
Second Snapshot (Powered On)
listing, 485

VM Directory Listing After First Snapshot
Created listing, 480

VMDirectPath, 345, 367
device sharing, 365-367
host support, 348-349
interrupt handling, 364-365
I/O configuration, 349-357
I/O device support, 346-348
IRQ sharing, 364-365
second generation, 360-364
supported devices, 364
troubleshooting, 364-367
VMs (virtual machines), 358-360

VM-FEX (Virtual Machine Fabric
Extender), 364

VMFS (Virtual Machine File System),
381-382, 436, 505

datastores
growing, 424
listing UUIDs, 532
snapshots, 529-547
spanning, 416-424

double indirect addressing, 397
file allocation, 395-396
lock modes, 524

From the Library of raphael schitz

ptg7996124

616 VMkernel

VMFS (Virtual Machine File System),
381-382

double indirect addressing, 397
growing datastores, 424
growing volumes, 425-430
partition table problems, 398-399
re-creating lost partition tables,

399-409
spanning datastores, 416-424
upgrading to VMFS5, 430-436
VMFS1, 382
VMFS2, 382-383
VMFS3, 383-390
VMFS5, 384-396

vmsd File Content listing, 487
VMware, NMP (Native Multipathing), 165
VMware HCL, certified storage, locating,

326, 327
VMware vStorage APIs for Array

Integration (VAAI). See VAAI
(VMware vStorage APIs for Array
Integration)

VMW_PSP_FIXED plug-in, 198, 276
VMW_PSP_MRU plug-in, 277
VMW_PSP_RR PSP plug-in, 277
VMW_SATP_ALUA_CX plug-in, 198
VOBs (vSphere Observations), 444
VoIP (Voice over IP), 60
volatile data storage, 2
volatile memory, 2
Volume Header (vh), 385
volumes, VMFS, growing, 425-430
Volume UUIDs (universally unique

identifiers), 531
VPD (Vital Product Data), 174
vSphere Installation Bundles (VIBs), 556
vSphere Management Assistant (vMA), 17
vSphere Observations (VOBs), 444

VMkernel, 249
advanced options, accessing, 266-267
Advanced Settings, 265-267
modules, VAAI, listing, 573-574
namespaces, 206

vmkfstools
listing RDM properties, 469-470
virtual disks

cloning, 456-459
creating, 450-456

RDMs, creating, 465-466
vmkfstools Command to Create a Virtual

Mode RDM listing, 465
vmkfstools Command to Create Physical

Mode RDM listing, 466
vmkfstools Options listing, 451
vmkiscsi-tool, 90
vmklinux, 161
vmkstools, 430
vMotion, 8
VMs (virtual machines)

configuration files, VMDirectPath
I/O, 358

configuring for PVSCSI (Paravirtual
SCSI Controller), 475-476

creating virtual disks after creation,
448-450

creating virtual disks during creation,
445-448

design scenarios, VMDirectPath I/O,
358-360

file extensions, 478
snapshots, 477-478

creating while powered off, 478-484
creating while powered on, 484-488
linked clones, 501-503
operations, 488-499
reverting to, 499-501

From the Library of raphael schitz

ptg7996124

617zoning, FC (Fibre Channel)

vStorage APIs for Array Integration
(VAAI), 8

vStorage APIs for Storage Awareness
(VASA), 8

W-Z

Watchdog, 77
WRITE_SAME SCSI command, 553
WWNNs (World Wide Node Names), 15

locating HBAls in, 16-20
locating targets, 27-30

WWPNs (World Wide Port Names), 15
EMC Symmetrix/DMX WWPNs,

decoding, 25-26
locating HBAs in, 16-20
locating targets, 27-30

XCOPY command, 551

zeroed thick virtual disks, 441-442
creating with vmkfstools, 452

zoning, FC (Fibre Channel), 37-41

From the Library of raphael schitz

ptg7996124

This page intentionally left blank

From the Library of raphael schitz

ptg7996124

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

Informit_7_00x9_125_bw_ad.indd 1 5/27/10 10:43 AM

* Available to new subscribers only. Discount applies to the Safari Library and is valid for fi rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

sec_Safari_15FT_7x9_125_cm.indd 1 6/28/12 2:19 PM

From the Library of raphael schitz

ptg7996124

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

Informit_7_00x9_125_bw_ad.indd 1 5/27/10 10:43 AM

* Available to new subscribers only. Discount applies to the Safari Library and is valid for fi rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

sec_Safari_15FT_7x9_125_cm.indd 1 6/28/12 2:19 PM

From the Library of raphael schitz

ptg7996124

Activate your FREE Online Edition at
informit.com/safarifree

STEP 1: Enter the coupon code: FRAVFWH

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

Your purchase of Storage Implementation in vSphere 5.0 includes access to a free online
edition for 45 days through the Safari Books Online subscription service. Nearly every
VMware Press book is available online through Safari Books Online, along with thousands
of books and videos from publishers such as Addison-Wesley Professional, Cisco Press, Exam
Cram, IBM Press, O’Reilly Media, Prentice Hall, Que, Sams.

Safari Books Online is a digital library providing searchable, on-demand access to thousands
of technology, digital media, and professional development books and videos from leading
publishers. With one monthly or yearly subscription price, you get unlimited access to learning
tools and information on topics including mobile app and software development, tips and tricks
on using your favorite gadgets, networking, project management, graphic design, and much
more.

FREE
Online Edition

Safari_OnEd_4c_7x9_125.indd 1 8/6/12 1:29 PM

From the Library of raphael schitz

	Contents
	Part I: Storage Protocols and Block Devices
	Chapter 1 Storage Types
	History of Storage

	Chapter 2 Fibre Channel Storage Connectivity
	SCSI Standards and Protocols

	Chapter 3 FCoE Storage Connectivity
	FCoE (Fibre Channel over Ethernet)
	FCoE Initialization Protocol
	FCoE Initiators
	Overcoming Ethernet limitations
	Protocols Required for FCoE
	802.1p Tag
	Hardware FCoE Adapters
	How SW FCoE Is Implemented in ESXi 5
	Configuring FCoE Network Connections
	Enabling Software FCoE Adapter
	Removing or Disabling a Software FCoE Adapter
	Troubleshooting FCoE
	Parting Tips

	Chapter 4 iSCSI Storage Connectivity
	iSCSI Protocol

	Chapter 5 vSphere Pluggable Storage Architecture (PSA)
	Native Multipathing
	Storage Array Type Plug-in (SATP)
	Path Selection Plugin (PSP)
	Third-Party Plug-ins
	Multipathing Plugins (MPPs)
	Anatomy of PSA Components
	I/O Flow Through PSA and NMP
	listing Multipath Details
	Claim Rules
	MP Claim Rules
	Plug-in Registration
	SATP Claim Rules
	Modifying PSA Plug-in Configurations Using the UI
	Modifying PSA Plug-ins Using the CLI

	Chapter 6 ALUA
	AlUA Definition

	Chapter 7 Multipathing and Failover
	What Is a Path?
	Where Is the Active Path?
	LUN Discovery and Path Enumeration
	Sample LUN Discovery and Path Enumeration Log Entries
	Factors Affecting Multipathing
	Failover Triggers
	Path States
	Path Selection Plug-ins
	When and How to Change the Default PSP
	PDL and APD
	Path Ranking

	Chapter 8 Third-Party Multipathing I/O Plug-ins
	MPIO Implementations on vSphere 5
	EMC PowerPath/VE 5.7
	Hitachi Dynamic link Manager (HDLM)
	Dell Equallogic PSP Routed

	Chapter 9 Using Heterogeneous Storage Configurations
	What Is a “Heterogeneous” Storage Environment?
	Scenarios of Heterogeneous Storage
	ESXi 5 View of Heterogeneous Storage

	Chapter 10 Using VMDirectPath I/O
	What Is VMDirectPath?
	Which I/O Devices Are Supported?
	VMDirectPath I/O Configuration
	Practical Examples of VM Design Scenarios Utilizing VMDirectPath I/O
	What About vmDirectPath Gen. 2?
	Troubleshooting VMDirectPath I/O

	Chapter 11 Storage Virtualization Devices (SVDs)
	SVD Concept

	Part II: File Systems
	Chapter 12 VMFS Architecture
	History of VMFS

	Chapter 13 Virtual Disks and RDMs
	The Big Picture
	Virtual Disks
	Creating Virtual Disks Using the UI
	Creating Virtual Disks Using vmkfstools
	Raw Device Mappings
	Listing RDM Properties
	Virtual Storage Adapters
	Virtual Machine Snapshots
	Snapshot Operations
	Reverting to Snapshot
	Linked Clones

	Chapter 14 Distributed Locks
	Basic Locking

	Chapter 15 Snapshot Handling
	What Is a Snapshot?
	What Is a Replica?
	What Is a Mirror?
	VMFS Signature
	Effects of Snapshots on VMFS Signature
	How to Handle VMFS Datastore on Snapshot LUns
	Resignature
	Force Mount
	Sample Script to Force-Mount All Snapshots on Hosts in a Cluster

	Chapter 16 VAAI
	What Is VAAI?
	VAAI Primitives
	Full Copy Primitive (XCOPY
	Block Zeroing Primitive (WRITE_SAME)
	Hardware Accelerated Locking Primitive (ATS)
	Thin Provisioned APIs
	NAS VAAI Primitives
	Enabling and Disabling Primitives
	VAAI Plug-ins and VAAI Filter
	Listing Registered Filter and VAAI Plug-ins
	Listing VAAI Filters and Plug-ins Configuration
	Listing VAAI vmkernel Modules
	Identifying VAAI Primitives Supported by a Device
	Displaying Block Device VAAI I/O Stats Using ESXTOP
	The VAAI T10 Standard Commands
	Troubleshooting VAAI Primitives

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-Z

