
High Performance SQL Server

Troubleshooting SQL Server
A Guide for the Accidental DBA

Jonathan Kehayias and Ted Krueger

Foreword by Paul Randal

Technical review by Gail Shaw

ISBN: 978-1-906434-77-9

Troubleshooting SQL Server

A Guide for the Accidental DBA

By Jonathan Kehayias and Ted Krueger

With a Foreword from Paul S. Randal

First published by Simple Talk Publishing September 2011

Copyright Jonathan Kehayias and Ted Krueger 2011

ISBN 978-1-906434-77-9

The right of Jonathan Kehayias and Ted Krueger to be identified as the authors of this work has been

asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval

system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or

otherwise) without the prior written consent of the publisher. Any person who does any unauthorized act

in relation to this publication may be liable to criminal prosecution and civil claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold,

hired out, or otherwise circulated without the publisher's prior consent in any form other than which it is

published and without a similar condition including this condition being imposed on the subsequent

publisher.

Edited by Tony Davis

Technical Review and Additional Material: Gail Shaw

Cover Image by Andy Martin

Typeset & Designed by Matthew Tye & Gower Associates

Table of Contents

Introduction ... 16
Who is this book for? ... 17
Code Examples ... 18

Chapter 1: A Performance Troubleshooting Methodology 19
Defining a Troubleshooting Methodology .. 20
Wait Statistics: the Basis for Troubleshooting .. 23
Virtual File Statistics ..28
Performance Counters ..30
Plan Cache Usage ...38
Summary ... 40

Chapter 2: Disk I/O Configuration ..42
Disk Configuration: Basic Considerations ...43

Disk size vs. disk throughput ... 44
Random versus sequential I/O ..45

Choosing the Right RAID Level .. 46
A brief overview of RAID configurations ... 48
Disk size and throughput considerations ...54
Workload considerations ...57

Direct Attached Storage vs. Storage Area Networks ... 61
Direct Attached Storage ...61
Storage Area Networks .. 62

Diagnosing Disk I/O Issues ..65
Common Disk I/O Problems ..65

Sizing for capacity instead of I/O performance .. 66
Incorrect workload isolation .. 67
Incorrect partition alignment .. 68
Incorrect bandwidth using SAN configurations ... 70

Summary .. 71

Chapter 3: High CPU Utilization .. 73
Investigating CPU Pressure ..74

Performance Monitor .. 74
SQL Trace .. 76
Dynamic Management Views ...77

Common Causes of High CPU Usage ...85
Missing indexes .. 86
Outdated statistics ... 88
Non-SARGable predicates ... 89
Implicit conversions ..93
Parameter sniffing .. 95
Ad hoc non-parameterized queries ..103
Inappropriate parallelism .. 108
TokenAndPermUserStore .. 117
Windows Server and BIOS power saving options ...120

Summary .. 122
Additional Resources ... 122

Chapter 4: Memory Management ... 126
The Self-Tuning Database Engine ... 127
How SQL Server Allocates Memory .. 127

32-bit Virtual Address Space limitations...131
Using 64-bit SQL Server ... 140
Memory configuration options with 64-bit SQL Server .. 143

Diagnosing Memory Pressure ..149
Memory-related counters ..150
Memory-related DMVs ... 154

Common Memory-Related Problems ..155
The SQL Server memory leak myth ... 155
Paging problems .. 155
OS instability due to Lock Pages in Memory
plus unlimited max server memory ... 156
App Domain is marked for unload due to memory pressure 157

Error 701 and FAILED_VIRTUAL_RESERVE .. 158
Over-provisioned virtual machines .. 159
Memory settings for multiple instances ... 160

Summary .. 161

Chapter 5: Missing Indexes ... 163
Index Selection and Design ..164

Index key column order ... 165
Use of included columns..169
Index width .. 172

Identifying Missing Indexes ... 172
Workload analysis with the Database Engine Tuning Advisor 173
Missing index feature .. 180
Missing indexes on foreign keys ...188

Identifying Unused Indexes ..189
Identifying Duplicate Indexes .. 191
Summary .. 192

Chapter 6: Blocking ... 193
Locks and Concurrency (a Brief Review) ..194

Lock modes ..194
Lock types ...196
Lock escalation ..197
Concurrency and the transaction isolation levels ...198
Latches and latch contention ... 203

Monitoring Blocking ... 204
Using sysprocesses (SQL Server 2000 and later) .. 205
Cumulative wait statistics with DBCC SQLPERF (waitstats)208
Dynamic Management Views ..208
Performance Monitor ...216

Automated Detection and Notification of Blocking .. 217
The Sp_blocker_pss80 process ...218
SQL Trace ...218
Event notifications ..223

Extended Events ... 226
Resolving Blocking ...228

Bad database design ... 229
Inappropriate isolation level ... 229
Poorly written queries ... 230
Missing indexes ... 231
Poor application design .. 231
Outdated hardware ...232

Hints, Trace Flags and Other Last Resorts ... 233
Locking hints ... 233

Summary ..236

Chapter 7: Handling Deadlocks .. 237
The Lock Monitor ..238
Capturing Deadlock Graphs ...238

Trace Flag 1204 ..239
Trace Flag 1222 ...241
SQL Profiler XML Deadlock Graph event ...241
Service Broker event notifications ..243
WMI Provider for server events ..245
Extended Events ... 246

Reading Deadlock Graphs .. 249
Interpreting Trace Flag 1204 deadlock graphs .. 249
Interpreting Trace Flag 1222 deadlock graphs ..254
Interpreting XML deadlock graphs ..257

Common types of deadlock and how to eliminate them ..259
Bookmark lookup deadlock ..260
Range scans caused by SERIALIZABLE isolation ... 262
Cascading constraint deadlocks .. 264
Intra-query parallelism deadlocks ..265
Accessing objects in different orders .. 266

Handling Deadlocks to Prevent Errors ...267
T-SQL TRY…CATCH blocks .. 268

Handling ADO.NET SqlExceptions in .NET code ... 270
Controlling Deadlock Behavior with Deadlock Priority .. 271
Summary ..272

Chapter 8: Large or Full Transaction Log 273
How the Transaction Log Works ...274

How SQL Server writes to the transaction log ... 276
Understanding log truncation ..277
Sizing and growing the log ... 278

Diagnosing a Runaway Transaction Log ... 280
Excessive logging: index maintenance operations ..281
Lack of log space reuse ...285
Other possible causes of log growth ... 295

Handling a "Transaction Log Full" Error ... 299
Mismanagement or What Not To Do ...302

Detach database, delete log file .. 302
Forcing log file truncation ...303
Scheduled shrinking of the transaction log ... 304

Proper Log Management ..305
Summary ..307

Chapter 9: Truncated Tables, Dropped Objects and Other
Accidents Waiting to Happen ...308

Example Case: The Missing Sales Order Data .. 309
Recovering Lost Data ... 310

Recovering from backup ..310
Recovering without a backup ... 320

Finding the Culprit ..324
Prevention is Better than Cure ..326

Plan for recovery from all data losses ...327
Implement a change control process ...329
Implement an appropriate security model ...330
Access control measures ...331

Summary .. 338

Appendix: What to Do When All Else Fails340
Microsoft Customer Support Services ... 340
Online Resources ...342

Articles ..343
Blogs ..343
Forums ... 344

Hiring a Consultant ...346

x

Foreword from Paul Randal

For most people, troubleshooting performance, corruption, or other problems with SQL
Server is a necessity rather than a preference. Unless you're an advanced DBA or consultant
with many years of troubleshooting experience, the first question you often ask yourself is:
where do I start? There are quite a few books on SQL Server internals, SQL Server trouble-
shooting, or both – but they're all organized from the perspective of SQL Server architecture
or internals.

With the burgeoning number of non-DBAs dealing with SQL Server, what these people really
need is a book that's organized by problem area – and that's where this book differs from the
other troubleshooting books out there. If you're an accidental or involuntary DBA, you've
been asked to look after a SQL Server, and you're struggling with how to figure out a problem,
this book is for you. On the other hand, if you're a seasoned DBA or consultant and you want
a fresh way of thinking through SQL Server problem solving, this book will be immensely
useful to you as well.

The book covers many of what I consider to be the most common problems that people
encounter when dealing with SQL Server. For each problem it gives a brief overview of the
underlying technical details before getting into the "How do I work towards solving the
problem" details that are the most important for a time-constrained IT professional to know.
There's also a liberal sprinkling of links to background articles and blog posts for the more
intrepid readers to explore.

Jonathan, Ted, and Gail are all highly-respected SQL Server MVPs, prolific bloggers (going into
great depth with their blog posts), and spend large amounts of time responding to inquisitive
and in-need people from around the world on a variety of Internet forums and Twitter. Their
writing is clear and precise, which is of paramount importance when imparting trouble-
shooting details to people who may be unfamiliar with the topics being described.

I have personally learned from all three of these talented SQL Server experts, and I encourage
you to do so too.

Paul S. Randal, CEO – SQLskills.com
Redmond, WA – October 2011

xi

About the Authors

Jonathan Kehayias

Jonathan is currently employed as a Principal Consultant and Trainer for SQLskills, one
of the best-known and most respected SQL Server training and consulting companies in
the world. Jonathan is a SQL Server MVP and one of the few Microsoft Certified Masters
for SQL Server 2008, outside of Microsoft. Jonathan frequently blogs about SQL Server,
presents sessions at PASS Summit, SQLBits, SQL Connections and local SQL Saturday
events, and has remained a top answerer of questions on the MSDN SQL Server Database
Engine forum since 2007.

Jonathan is a performance tuning expert for both SQL Server and hardware, and has
architected complex systems as a developer, business analyst, and DBA. He also
has extensive development (T-SQL, C#, and ASP.Net), hardware and virtualization
design expertise, Windows expertise, Active Directory experience, and IIS
administration experience.

Outside of SQL Server, Jonathan is also a Drill Sergeant in the US Army Reserves and is
married with two young children. On most nights he can be found at the playground, in a
swimming pool, or at the beach with his kids.

Jonathan can be found online as @SQLPoolBoy on Twitter, or through his blog at
http://sqlskills.com/blogs/jonathan.

Ted Krueger

Ted is a Senior SQL Server consultant for a respected Microsoft Partner company. He
is an MVP, author, blogger, speaker, volunteer, and mentor. Working with SQL Server
for over a decade, Ted's areas of expertise are SSIS, high-availability, mirroring, and

http://sqlskills.com/blogs/jonathan

xii

replication, as well as embracing all the other features that come along with this powerful
database server. He works tirelessly to educate and help others in the community. He
is a co-founder of the technical community at http://LessThanDot.com. Ted can also
be found answering forum questions, working as a PASS regional mentor, answering
questions on Twitter, and fishing and golfing in his spare time.

Ted can be found online as @onpnt on Twitter, or through his blog at
http://blogs.LessThanDot.com.

Ted contributed Chapters 3 and 6 to this book.

About the Technical Reviewer

Gail Shaw

Gail is a Senior Consultant with Xpertease, based in Johannesburg, South Africa. She
specializes in database performance tuning and database recovery, with a particular
focus on topics such as indexing strategies, execution plans, and writing T-SQL code
that performs well and scales gracefully.

Gail is a SQL Server MVP, and a frequent poster on both the SQL Server Central and
SQLTeam forums. She writes articles for SQLServerCentral and Simple-Talk and blogs on
all things relating to database performance on her blog at http://sqlinthewild.co.za.
She has spoken at TechEd Africa, several of the 24 Hours of PASS web events and, on
multiple occasions, at the PASS Community summit. At the Pass Community Summit in
2009, her presentation on statistics was ranked 7th overall, for the event.

Gail is an Aikido Shodan (1st degree black belt) and an avid archer. In her copious
spare time she is pursuing a Master's degree in Computer Science at the University of
South Africa.

http://www.LessThanDot.com
http://blogs.lessthandot.com
http://sqlinthewild.co.za

xiii

Gail also contributed additional material throughout the book, and particularly to
Chapters 3, 5, and 6.

Acknowledgements

Jonathan Kehayias

Getting this book to print required more than just putting thoughts down as text,
and a number of people contributed to it along the way. First and foremost, I'd like
to acknowledge my wife, Sarah, and kids, Charlotte and Michael, and their ability and
willingness to put up with the late hours I spent at night, locked in our home office,
as well as the weekends spent sitting at my laptop when there were so many other
things we could have been doing. Over the last year, even more than normal, Sarah
spent many nights wondering if I was actually going to make it to bed or not, and
provided distractions for Michael and Charlotte on a number of weekends, especially
during the last few weeks before going to print. Without their support, I never would
have made it through the first drafts let alone the repeated edits, as we worked towards
final completion of the book.

Running a close second would be the technical editors associated with this book. The
technical editor, Gail Shaw, contributed many ideas and topics to the book, as well as
adding examples and text to enhance the content of many of the chapters. I knew, at
the start of the book, that I wanted a leading member of the SQL Server forums as my
technical editor, and though we primarily answer questions on different sites, Gail was at
the top of a very short list of potential candidates. How Gail was able to find time to assist
with this book defies understanding, but for her efforts I am forever indebted.

The chief editor of the book, Tony Davis, has to be one of the most patient people I have
ever met. Through all the edits, delays, and then the final sprint to the end, Tony worked

xiv

tirelessly to keep the book focused and progressing towards being printed. This book is as
much their work as it is the authors'.

A final thank you goes to my friend, Amit Banerjee, a member of the Escalation Team in
Microsoft Customer Support Services for SQL Server in Bangalore, India, who graciously
reviewed Chapter 4 of the book for technical errors in the information on memory
internals.

 Additional recognition goes out to all of the mentors I've had over the years, the list
of which is incredibly long. Without the commitment of SQL Server MVPs like Arnie
Rowland, Paul Randal, Aaron Bertrand, Louis Davidson, Geoff Hiten, and countless
others, I would never have remained committed to answering questions on the forums.

Ted Krueger

Being a contributor to this book was a great honor for me and I would not have been able
to do it without the support of my loving wife, Michelle, and the patience and silliness
of my sons, Ethan and Cameron. Family makes everything in a person, and the strength
provided by my family was my motivating force throughout.

Special thanks to the technical reviewer, Gail Shaw, whose tireless efforts and knowledge
helped make this the book it is. Thanks also to Jonathan Kehayias for his confidence and
mentorship in allowing me to author Chapters 3 and 6. In all the years I've been working
with SQL Server, no other person has taught and helped me more than Jonathan. He puts
more time and energy into helping the community and understanding SQL Server, than
any other person I've worked with, and does so in an unselfish manner.

Lastly, I'd like to thank the SQL Server Community for sharing their time and knowledge.
I've been part of other development and engineering communities, but none could match
the scale and energy of knowledge exchange that takes place every day in the SQL Server
Community, via forums, articles, blogs and Twitter. I owe much of what I know to these

xv

people: Replication from Kendal Van Dyke, Execution Plans from Grant Fritchey, SQL
Server Internals from Paul Randal, and many more.

Without their hard work, figuring out how to tame this complex database system would
be a far more difficult task. I've tried my best, in turn, to share what I know with the
community.

16

Introduction

I've spent much of the last six years of my working life trying to help people solve SQL
Server-related performance problems, either hands-on, at client sites in my capacity as a
consultant, or on various online community forums, answering people's questions.

Over that time I've been exposed to a few weird and wonderful SQL Server issues but,
mainly, have seen the same problems, and the same confusions, crop up time and again. It
was only a matter of time before I leapt to the foolhardy conclusion that I ought to write
a book to explain what the most common problems were, why they occurred, and to
offer sensible, practical solutions, aimed squarely at removing the root cause of the issue,
rather than simply "papering over the cracks."

It turned out to be a much more daunting task than I imagined, for a number of reasons.
Firstly, this is, by its very nature, a fairly broad-ranging book, covering topics stretching
from CPU issues, to memory management, to missing indexes, and full transaction logs.
Secondly, it is amazing how complex some of the simplest topics become when you try
to put them down in text. Thirdly, technology changes rapidly, and the troubleshooter,
and the advice he or she offers, must adapt accordingly. There were several cases in
the writing of this book, where either a technology change meant I had to go back and
adapt my original advice, or where my own opinion of the content and troubleshooting
methodologies had evolved to the point where certain sections had to be completely
rewritten.

Despite the occasionally bumpy road, what I hope I've achieved is a book that covers
clearly and concisely the most common problems associated with the currently supported
versions of SQL Server, namely SQL Server 2005, 2008, and 2008 R2. The first chapter
explains my basic approach to performance troubleshooting, and the tools I use. It
stresses, in particular, how rare it is that a problem can be diagnosed by looking at just a
single data point.

17

The art of taming an unruly SQL Server is the art of gathering the various pieces of
information that you need, and then assembling the "puzzle" so that you have a complete
picture of what is going on inside of a server, and a true understanding of the real root
cause of the problem.

The following eight chapters cover the areas in which I see problems arising with
alarming regularity: disk I/O, high CPU, memory mismanagement, missing indexes,
blocking and deadlocking, full transaction logs, and accidentally lost data.

In each case, I describe the most common problems, why they occur, how they can be
diagnosed, using tools such as the Performance Monitor counters, Dynamic Management
Views, server-side tracing, and so on, and how to fix them.

By applying the basic steps that I use daily to troubleshoot these performance problems,
I hope that you, too, can begin to solve the performance problems in your environment,
faster and more accurately.

Who is this book for?

The primary audience for this book is anyone who has found themselves in charge of
SQL Server "by accident;" in other words, the accidental/involuntary DBAs and system
administrators who have had guardianship of SQL Server databases added to their roles,
because there is a SQL Server in their environment, and someone has got to look after it.

However, the troubleshooting concepts and methodologies covered in this book can be
applied by anyone, including seasoned database administrators, to identify and resolve
common problems and learn new tricks for managing and maintaining SQL Server.
Anyone who has ever posted questions on one of the community forums will probably
learn something new from this book.

18

Code Examples

Throughout this book are scripts demonstrating various ways to gather diagnostic data,
and there are a few places where presentation of the full code was deferred, due to space
restrictions. All the code you need to try out the examples in this book can be obtained
from the following URL:
http://www.simple-talk.com/RedGateBooks/JonathanKehayias/Troubleshooting-
SQLServer_Code.zip

All examples should run on all versions of SQL Server from SQL Server 2005 upwards,
unless specified otherwise.

http://www.simple-talk.com/RedGateBooks/JonathanKehayias/TroubleshootingSQLServer_Code.zip
http://www.simple-talk.com/RedGateBooks/JonathanKehayias/TroubleshootingSQLServer_Code.zip

19

Chapter 1: A Performance
Troubleshooting Methodology

Knowing where to start is the toughest part of solving a problem. As a Senior Database
Administrator, I prided myself on being able to pinpoint the root cause of problems in
my servers, and quickly restore services to normal working order. The ability to do this is
partly down to a sound knowledge of your SQL Server environment, partly to having the
right tools and scripts, and partly to what you learn to look out for, based on hard-earned
lessons of the past.

Nailing down a specific methodology for troubleshooting problems with SQL Server is
hard because, of course, the exact route taken to solve the problem will depend on the
specific nature of the problem and the environment. One of the keys to accurate trouble-
shooting is not only collecting and examining all of the relevant pieces of information,
but also working out what they are telling you, collectively. There is a famous old proverb,
recorded in John Heywood's Dialogue Containing the Number in Effect of All the Proverbs in
the English Tongue, that sums this up very well: I see, yet I cannot see the wood for the trees.

If you collect and examine individually five separate pieces of performance data, it's
possible that each could send you down a separate path. Viewed as a group, they will
likely lead you down the sixth, and correct, path to resolving the issue. If there is one
take-away from this chapter, as well as this book, it should be that focusing on a single
piece of information alone can often lead to an incorrect diagnosis of a problem.

What I attempt to offer in this chapter is not a set of stone tablets, prescribing the exact
steps to take to resolve all SQL Server problems, but rather a basic approach and set of
tools that have served me well time and again in the six years I've spent working with
SQL Server, troubleshooting performance problems. It covers a high-level description
of my basic approach, followed by more detailed sections on each of my areas of focus,

20

Chapter 1: A Performance Troubleshooting Methodology

including wait statistics, virtual file statistics, SQL Server-related performance counters,
and plan cache analysis.

Defining a Troubleshooting Methodology

As I noted in the introduction to this chapter, defining a troubleshooting methodology
is hard, because the actual methodology that I apply depends entirely on the specific
problem that I am trying to troubleshoot for a specific environment. However, my basic
approach, and the tools I use, remain constant, regardless of whether the problem is
users complaining of slow performance, or if I am just performing a standard server
health check.

When I am examining a server for the first time, I need to establish a picture of its general
health, and there are a number of items on which I'll focus in order to obtain this picture.
For each piece of information I collect, I'll be examining it in relation to the previous
data points, in order to validate or disprove any previous indicators as to the nature of
the problem.

Fairly early on in any analysis, I'll take a look at the wait statistics, in the sys.dm_os_
wait_stats Dynamic Management View (DMV), to identify any major resource waits in
the system, at the operating system level. Let's say I identify very high PAGEIOLATCH_SH
waits, which indicates that sessions are experiencing delays in obtaining a latch for a
buffer page. This happens when lots of sessions, or maybe one session in particular, are
requesting a lot of data pages that are not available in the buffer pool (and so physical
I/O is needed to retrieve them). SQL Server must allocate a buffer page for each one, and
place a latch on that page while it's retrieved from disk. The bottleneck here is disk I/O;
the disk subsystem simply can't return pages quickly enough to satisfy all of the page
requests, and so sessions are waiting for latches, and performance is suffering. However,
this does not necessarily mean that a slow disk subsystem is the cause of the bottleneck; it
may simply be the victim of excessive I/O caused by a problem elsewhere in the system.

21

Chapter 1: A Performance Troubleshooting Methodology

At this point, I'll want to validate this information by examining the virtual file stats, in
sys.dm_io_virtual_file_stats. Specifically, I'll be looking for evidence of high
latency associated with the read and write operations being performed by SQL Server.
At the same time, I'll be drilling deeper into the problem, since the virtual file stats will
tell me how much I/O activity is being performed by SQL Server, and how the I/O load
is distributed across files and databases on the SQL Server instance. To corroborate this
data further, I may also check the values of the Physical Disk\Avg. Disk Reads/sec
and Physical Disk\Avg. Disk Writes/sec PerfMon counters. So, at this stage, let's
say I've confirmed high latency associated with read and write operations, and found that
a particular database is experiencing a very high level of mainly read-based I/O.

My next step will be to investigate the execution statistics for queries against this
database, which are maintained in sys.dm_exec_query_stats for the execution
plans that are in the plan cache. I'll identify the queries that have the highest accumu-
lated physical reads, and then review their associated execution plans, looking for any
performance tuning opportunities, either by adding missing indexes (see Chapter 5) to the
database, or making changes to the SQL code, in order to optimize the way the database
engine accesses the data.

It may be that the code is optimized as far as it can be, but a commonly executed
reporting query simply needs to read 6 GB of data from the database, for aggregation,
as a part of its execution. If most of this data isn't found in the buffer cache, it will cause
high physical I/O, and will account for the high PAGEIOLATCH_SH waits. At this point,
we may need to look at our hardware configuration and see if the actual root of our
problem is a lack of memory installed in the server. In order to verify this, I'll examine the
PerfMon memory counters (see Chapter 4). If I see that the Page Life Expectancy is
consistently fluctuating, and the system is experiencing non-zero values for Free List
Stalls/sec, and high Lazy Writes/sec, then I can be fairly certain that the buffer
pool for the instance is inadequately sized for the amount of data that is being used by the
workload. This does not necessarily mean the server needs more memory; it may be that
the queries are inefficient and are reading far more data than necessary. To identify the
appropriate fix will require further and deeper analysis. This is just one of many possible

22

Chapter 1: A Performance Troubleshooting Methodology

examples, but it is a real-world example that I have encountered on many occasions while
troubleshooting performance problems with SQL Server.

There are a number of points in this troubleshooting process where it would have been
very easy to jump to the wrong conclusion regarding the nature of the problem. For
example, after reviewing the virtual file statistics and the performance counters for the
Physical Disks in the server, it would be easy to conclude that the disk I/O subsystem
for the server was inappropriately sized for the amount of work being done, and that
additional disks needed to be purchased to handle the disk I/O demands for the server.
Unfortunately, scaling up a disk I/O subsystem can be an extremely expensive solution
if the problem happens to be a missing index related to a commonly executed query, or
buffer pool memory pressure. It is possible that buying a large enough disk configuration
will temporarily mask the problem, but since the underlying root cause has not been
resolved, you can be sure that the same problem will recur later, as the system continues
to grow.

Having provided an overview of my basic approach, the following sections will drill a little
deeper into the specific areas of focus, such as wait statistics, virtual file statistics, perfor-
mance counters, and plan cache usage. I'll explain the information they offer individually,
and how all of this information interrelates, to help you assemble a complete under-
standing of what is going on inside of a server.

Don't forget the obvious

Just a gentle reminder: before you get yourself all giddy collecting diagnostic data, make sure you've

checked for obvious problems. If a user reports that their application is "not working properly," the first

thing you should probably do is to ensure that the SQL Server services are actually running on your

server. If you open SQL Server Configuration Manager (SSCM) and find that the status of the Database

Engine service, which has a Service Type of SQL Server, is Stopped then this is very likely the cause of

the problem, unless the instance is running in a failover cluster, at which point you need to look at the

Failover Cluster Manager to identify if the service and its dependent resources are online, and begin

troubleshooting why the service fails to start, based on what you find!

23

Chapter 1: A Performance Troubleshooting Methodology

Wait Statistics: the Basis for Troubleshooting

One of the first items that I check, when troubleshooting performance problems on a
SQL Server, is the wait statistics, which are tracked by the SQLOS during normal opera-
tions of any SQL Server.

The SQLOS is a pseudo-operating system that runs as a part of the SQL Server database
engine and provides thread scheduling, memory management, and other functions
to SQL Server. Normally, such services would, for any processes running inside the
operating system, be provided by the operating system. The reason that SQL Server
provides its own pseudo-operating system environment is that SQL Server knows how to
schedule its tasks better than the Windows operating system does, and the cooperative
scheduling that is implemented by the SQLOS allows for higher levels of concurrency
than the preemptive scheduling provided by the Windows operating system.

As an example of this, any time that SQL Server has to wait while executing an operation
or statement, the time spent waiting is tracked by the SQLOS, as wait time. This data is
exposed, for each instance of SQL Server installed on a server, in the sys.dm_os_wait_
stats DMV. The cause and length of the various waits that SQL Server is experiencing
can provide significant insight into the cause of the performance problems, as long as you
understand exactly what the wait statistics are telling you, and know how to correlate the
wait information with the additional troubleshooting information such as the PerfMon
counters, and other DMVs.

One of the reasons that wait statistics is such a good place to begin troubleshooting SQL
Server performance problems is that, often times, the specifics of the problem are not well
defined by the users, when reporting the problem. More often than not, the description
of the problem is limited to, "x, y, or z process is slower than normal, can you fix it?" One
of the easiest ways to troubleshoot an unknown problem with performance is to look at
where and why SQL Server actually had to wait to continue execution of its various tasks.

24

Chapter 1: A Performance Troubleshooting Methodology

Usually, Windows Server and SQL Server patches will have been regularly applied to the
server, so you'll know how long ago the server was restarted, and therefore over what
period the statistics have accumulated (unless someone manually cleared them out – see
later). Ideally, you'll want this period to be longer than around two weeks (in order to
ensure the stats cover the entire workload), but not so long that the data becomes hard to
analyze. In the latter case, you might also consider capturing the values, waiting a period,
capturing again and comparing the two.

Diagnosing wait statistics for a single instance of SQL Server is no small task. Often
times, the information provided by the wait statistics is only a symptom of the actual
problem. To use this wait information effectively, you need to understand the difference
between resource (i.e. traceable to a hardware resource) and non-resource waits in the
system, and the other outputs provided by SQL Server, in relation to the wait information
that is being tracked by the SQL Server instance overall.

As a part of the normal operations of SQL Server, a number of wait conditions exist
which are non-problematic in nature and generally expected on the server. These wait
conditions can generally be queried from the sys.dm_os_waiting_tasks DMV for the
system sessions, as shown in Listing 1.1.

SELECT DISTINCT
 wt.wait_type
FROM sys.dm_os_waiting_tasks AS wt
 JOIN sys.dm_exec_sessions AS s ON wt.session_id = s.session_id
WHERE s.is_user_process = 0

Listing 1.1: Discovering system session waits.

When looking at the wait statistics being tracked by SQL Server, it's important that these
wait types are eliminated from the analysis, allowing the more problematic waits in the
system to be identified. One of the things I do as a part of tracking wait information is to
maintain a script that filters out the non-problematic wait types, as shown in Listing 1.2.

25

Chapter 1: A Performance Troubleshooting Methodology

SELECT TOP 10
 wait_type ,
 max_wait_time_ms wait_time_ms ,
 signal_wait_time_ms ,
 wait_time_ms - signal_wait_time_ms AS resource_wait_time_ms ,
 100.0 * wait_time_ms / SUM(wait_time_ms) OVER ()
 AS percent_total_waits ,
 100.0 * signal_wait_time_ms / SUM(signal_wait_time_ms) OVER ()
 AS percent_total_signal_waits ,
 100.0 * (wait_time_ms - signal_wait_time_ms)
 / SUM(wait_time_ms) OVER () AS percent_total_resource_waits
FROM sys.dm_os_wait_stats
WHERE wait_time_ms > 0 -- remove zero wait_time
 AND wait_type NOT IN -- filter out additional irrelevant waits
('SLEEP_TASK', 'BROKER_TASK_STOP', 'BROKER_TO_FLUSH',
 'SQLTRACE_BUFFER_FLUSH','CLR_AUTO_EVENT', 'CLR_MANUAL_EVENT',
 'LAZYWRITER_SLEEP', 'SLEEP_SYSTEMTASK', 'SLEEP_BPOOL_FLUSH',
 'BROKER_EVENTHANDLER', 'XE_DISPATCHER_WAIT', 'FT_IFTSHC_MUTEX',
 'CHECKPOINT_QUEUE', 'FT_IFTS_SCHEDULER_IDLE_WAIT',
 'BROKER_TRANSMITTER', 'FT_IFTSHC_MUTEX', 'KSOURCE_WAKEUP',
 'LAZYWRITER_SLEEP', 'LOGMGR_QUEUE', 'ONDEMAND_TASK_QUEUE',
 'REQUEST_FOR_DEADLOCK_SEARCH', 'XE_TIMER_EVENT', 'BAD_PAGE_PROCESS',
 'DBMIRROR_EVENTS_QUEUE', 'BROKER_RECEIVE_WAITFOR',
 'PREEMPTIVE_OS_GETPROCADDRESS', 'PREEMPTIVE_OS_AUTHENTICATIONOPS',
 'WAITFOR', 'DISPATCHER_QUEUE_SEMAPHORE', 'XE_DISPATCHER_JOIN',
 'RESOURCE_QUEUE')
ORDER BY wait_time_ms DESC

Listing 1.2: Finding the top ten cumulative wait events.

In general, when examining wait statistics, I focus on the top waits, according to wait_
time_ms, and look out for high wait times associated with the following specific wait
types, each of these are covered in more detail in the appropriate chapters of this book:

•	 CXPACKET

•	 Often indicates nothing more than that certain queries are executing with parallel-
ism; CXPACKET waits in the server are not an immediate sign of problems, although
they may be the symptom of another problem, associated with one of the other high
value wait types in the instance, as covered in Chapter 3.

26

Chapter 1: A Performance Troubleshooting Methodology

•	 SOS_SCHEDULER_YIELD

•	 The tasks executing in the system are yielding the scheduler, having exceeded their
quantum, and are having to wait in the runnable queue for other tasks to execute.
This may indicate that the server is under CPU pressure. See Chapter 3 for more
information on this.

•	 THREADPOOL

•	 A task had to wait to have a worker bound to it, in order to execute. This could
be a sign of worker thread starvation, requiring an increase in the number of
CPUs in the server, to handle a highly concurrent workload, or it can be a sign of
blocking, resulting in a large number of parallel tasks consuming the worker threads
for long periods.

•	 LCK_*

•	 These wait types signify that blocking is occurring in the system and that sessions
have had to wait to acquire a lock of a specific type, which was being held by anoth-
er database session. This problem can be investigated further using the information
in the sys.dm_db_index_operational_stats and techniques described in
Chapter 6 of this book.

•	 PAGEIOLATCH_*, IO_COMPLETION, WRITELOG

•	 These waits are commonly associated with disk I/O bottlenecks, though the root
cause of the problem may be, and commonly is, a poorly performing query that is
consuming excessive amounts of memory in the server. PAGEIOLATCH_* waits are
specifically associated with delays in being able to read or write data from the data-
base files. WRITELOG waits are related to issues with writing to log files. These waits
should be evaluated in conjunction with the virtual file statistics as well as Physical
Disk performance counters, to determine if the problem is specific to a single data-
base, file, or disk, or is instance wide.

27

Chapter 1: A Performance Troubleshooting Methodology

•	 PAGELATCH_*

•	 Non-I/O waits for latches on data pages in the buffer pool. A lot of times
PAGELATCH_* waits are associated with allocation contention issues. One of
the best-known allocations issues associated with PAGELATCH_* waits occurs in
tempdb when the a large number of objects are being created and destroyed in
tempdb and the system experiences contention on the Shared Global Allocation
Map (SGAM), Global Allocation Map (GAM), and Page Free Space (PFS) pages in the
tempdb database.

•	 LATCH_*

•	 These waits are associated with lightweight short-term synchronization objects that
are used to protect access to internal caches, but not the buffer cache. These waits
can indicate a range of problems, depending on the latch type. Determining the
specific latch class that has the most accumulated wait time associated with it can
be found by querying the sys.dm_os_latch_stats DMV.

•	 ASYNC_NETWORK_IO

•	 This wait is often incorrectly attributed to a network bottleneck. In fact, the most
common cause of this wait is a client application that is performing row-by-row
processing of the data being streamed from SQL Server as a result set (client accepts
one row, processes, accepts next row, and so on). Correcting this wait type generally
requires changing the client-side code so that it reads the result set as fast as pos-
sible, and then performs processing.

These basic explanations of each of the major wait types won't make you an expert on
wait type analysis, but the appearance of any of these wait types high up in the output of
Listing 1.2 will certainly help direct your subsequent investigations. For example, if you
see PAGEIOLATCH_* waits you will probably want to make your next focus the virtual file
stats, as explained in the previous example.

28

Chapter 1: A Performance Troubleshooting Methodology

Conversely, if the primary wait types in the system are LCK_* waits, then you won't
want to waste time looking at the disk I/O configuration, but instead focus on discov-
ering what might be causing blocking inside the databases on the server. When LCK_*
wait types crop up, I tend to jump immediately into more advanced troubleshooting of
that specific problem, and begin looking at blocking in the system using the sys.dm_
exec_requests DMV and other methods as described in Chapter 6, rather than strictly
adhering to my normal methodology. However I may, depending on what I find, double
back to see what other problems are in the system.

After fixing any problem in the server, in order to validate that the problem has indeed
been fixed, the wait statistics being tracked by the server can be reset using the code in
Listing 1.3.

DBCC SQLPERF('sys.dm_os_wait_stats', clear)

Listing 1.3: Clearing the wait statistics on a server.

•	 One of the caveats associated with clearing the wait statistics on the server, is that it
will take a period of time for the wait statistics to accumulate to the point that you
know whether or not a specific problem has been addressed.

Virtual File Statistics

A common trap in my experience, when using wait statistics as a primary source of
troubleshooting data, is that most SQL Servers will demonstrate signs of what looks like
a disk I/O bottleneck. Unfortunately, the wait statistics don't tell you what is causing the
I/O to occur, and it's easy to misdiagnose the root cause.

This is why an examination of the virtual file statistics, alongside the wait statistics, is
almost always recommended. The virtual file statistics are exposed through the sys.
dm_io_virtual_file_stats function which, when passed a file_id (and possibly
database_id), will provide cumulative physical I/O statistics, the number of reads

29

Chapter 1: A Performance Troubleshooting Methodology

and writes on each data file, and the number of reads and writes on each log file, for
the various databases in the instance, from which can be calculated the ratio of reads to
writes. This also shows the number of I/O stalls and the stall time associated with the
requests, which is the total amount of time sessions have waited for I/O to be completed
on the file.

SELECT DB_NAME(vfs.database_id) AS database_name ,
 vfs.database_id ,
 vfs.FILE_ID ,
 io_stall_read_ms / NULLIF(num_of_reads, 0) AS avg_read_latency ,
 io_stall_write_ms / NULLIF(num_of_writes, 0)
 AS avg_write_latency ,
 io_stall / NULLIF(num_of_reads + num_of_writes, 0)
 AS avg_total_latency ,
 num_of_bytes_read / NULLIF(num_of_reads, 0)
 AS avg_bytes_per_read ,
 num_of_bytes_written / NULLIF(num_of_writes, 0)
 AS avg_bytes_per_write ,
 vfs.io_stall ,
 vfs.num_of_reads ,
 vfs.num_of_bytes_read ,
 vfs.io_stall_read_ms ,
 vfs.num_of_writes ,
 vfs.num_of_bytes_written ,
 vfs.io_stall_write_ms ,
 size_on_disk_bytes / 1024 / 1024. AS size_on_disk_mbytes ,
 physical_name
FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS vfs
 JOIN sys.master_files AS mf ON vfs.database_id = mf.database_id
 AND vfs.FILE_ID = mf.FILE_ID
ORDER BY avg_total_latency DESC

Listing 1.4: Virtual file statistics.

What I'm primarily looking at in the results is patterns of activity on the file, whether
heavy-read or heavy-write, and at the average latency associated with the I/O, as this will
direct further investigation and possible solutions.

30

Chapter 1: A Performance Troubleshooting Methodology

If the data and log files are on a shared disk array in the server, and the calculated
avg_total_latency is the same across all of the databases, and higher than what is
acceptable for the specific workload, then the problem may be that the workload has
outgrown the disk I/O subsystem.

However, if the server hosts a database that is used for archiving data to slower storage,
for year-on-year reporting, then it may be that having PAGEIOLATCH_* waits in the
database is entirely normal, and the io_stall information for the specific database
files may lead us to determine that the waits are most likely attributable to the archiving
process. This highlights the fact that it helps to have a sound knowledge of the underlying
configuration and type of workload for the server, while you're troubleshooting
the problem.

If a particular file is subject to very heavy read activity (for example a ratio of 10:1,
or higher, for the read:write ratio), and is showing high average latency, then I may
recommend a RAID change for the disk array, for example from RAID 10 to RAID 5,
offering more spindles to share the read I/O.

Hopefully, this discussion has highlighted the key element of effective troubleshooting,
which is that you need to examine many "data points" together, in order to arrive at a
true diagnosis. The discovery of I/O pressure, revealed by high I/O-related waits, could be
caused by inadequate capacity or configuration of the disk subsystem, but its root cause is
actually more likely to lie elsewhere, such as in a memory bottleneck in the buffer pool, or
excessive index and/or table scans due to poorly written queries (see the Plan Cache Usage
section of this chapter) and a lack of indexing.

Performance Counters

Many articles, white papers, and blog posts on the Internet attempt to provide detailed
lists of the important performance counters that should be monitored for SQL Server
instances, along with general guidelines for acceptable values for these counters.
However, if you try to collect and analyze the values for all of the available counters, you'll
quickly find it an overwhelming task.

31

Chapter 1: A Performance Troubleshooting Methodology

Personally, at least in the initial stages of my investigation, I rely on a small subset of
counters, directly related to SQL Server. At a more advanced stage in the troubleshooting
process, I may also begin collecting Windows counters, in order to verify the information
that I already have, or to help isolate an edge case problem to a specific cause.

One of my favorite tools, when I get to the point that I need to collect a larger subset
of counters, collecting information from Windows as well as SQL Server, is the
Performance Analysis of Logs (PAL) tool, which has been made available by Microsoft
for free on http://pal.codeplex.com.

The tool provides built-in templates that can be exported to create a Performance
Collector Set in Windows, each set containing the key counters for a specific product.
It includes a template for SQL Server 2005 and 2008. The greatest benefit of this tool is
that it also has built-in threshold templates that can be used to process the performance
counter data after it has been collected. These can be used to produce a detailed report,
breaking down the data into time slices and so automating the analysis of the data into
periods of time and activity. If you want to know more about all of the counters related
to SQL Server performance, what they mean, and what Microsoft currently says the
threshold values for those counters are, I would recommend downloading the tool and
taking a look at all the information contained in the SQL Server threshold file.

Nevertheless, the counters I investigate initially are limited to those related to specific
areas of SQL Server, and are ones that have proven themselves over the years to provide
information critical to determining how to continue with the troubleshooting process.
The counters are all available from within SQL Server through the sys.dm_os_perfor-
mance_counters DMV and can be queried using T-SQL alone.

One of the challenges with querying the raw performance counter data directly is that
some of the performance counters are cumulative ones, increasing in value as time
progresses, and analysis of the data requires capturing two snapshots of the data and then
calculating the difference between the snapshots. The query in Listing 1.5 performs the
snapshots and calculations automatically, allowing the output to be analyzed directly.
There are other performance counters, not considered in Listing 1.5, which have a

http://pal.codeplex.com

32

Chapter 1: A Performance Troubleshooting Methodology

secondary, associated base counter by which the main counter has to be divided to arrive
at its actual value.

DECLARE @CounterPrefix NVARCHAR(30)
SET @CounterPrefix = CASE WHEN @@SERVICENAME = 'MSSQLSERVER'
 THEN 'SQLServer:'
 ELSE 'MSSQL$' + @@SERVICENAME + ':'
 END ;
-- Capture the first counter set
SELECT CAST(1 AS INT) AS collection_instance ,
 [OBJECT_NAME] ,
 counter_name ,
 instance_name ,
 cntr_value ,
 cntr_type ,
 CURRENT_TIMESTAMP AS collection_time
INTO #perf_counters_init
FROM sys.dm_os_performance_counters
WHERE (OBJECT_NAME = @CounterPrefix + 'Access Methods'
 AND counter_name = 'Full Scans/sec'
)
 OR (OBJECT_NAME = @CounterPrefix + 'Access Methods'
 AND counter_name = 'Index Searches/sec'
)
 OR (OBJECT_NAME = @CounterPrefix + 'Buffer Manager'
 AND counter_name = 'Lazy Writes/sec'
)
 OR (OBJECT_NAME = @CounterPrefix + 'Buffer Manager'
 AND counter_name = 'Page life expectancy'
)
 OR (OBJECT_NAME = @CounterPrefix + 'General Statistics'
 AND counter_name = 'Processes Blocked'
)
 OR (OBJECT_NAME = @CounterPrefix + 'General Statistics'
 AND counter_name = 'User Connections'
)
 OR (OBJECT_NAME = @CounterPrefix + 'Locks'
 AND counter_name = 'Lock Waits/sec'
)
 OR (OBJECT_NAME = @CounterPrefix + 'Locks'
 AND counter_name = 'Lock Wait Time (ms)'
)

33

Chapter 1: A Performance Troubleshooting Methodology

 OR (OBJECT_NAME = @CounterPrefix + 'SQL Statistics'
 AND counter_name = 'SQL Re-Compilations/sec'
)
 OR (OBJECT_NAME = @CounterPrefix + 'Memory Manager'
 AND counter_name = 'Memory Grants Pending'
)
 OR (OBJECT_NAME = @CounterPrefix + 'SQL Statistics'
 AND counter_name = 'Batch Requests/sec'
)
 OR (OBJECT_NAME = @CounterPrefix + 'SQL Statistics'
 AND counter_name = 'SQL Compilations/sec'
)

-- Wait on Second between data collection
WAITFOR DELAY '00:00:01'

-- Capture the second counter set
SELECT CAST(2 AS INT) AS collection_instance ,
 OBJECT_NAME ,
 counter_name ,
 instance_name ,
 cntr_value ,
 cntr_type ,
 CURRENT_TIMESTAMP AS collection_time
INTO #perf_counters_second
FROM sys.dm_os_performance_counters
WHERE (OBJECT_NAME = @CounterPrefix + 'Access Methods'
 AND counter_name = 'Full Scans/sec'
)
 OR (OBJECT_NAME = @CounterPrefix + 'Access Methods'
 AND counter_name = 'Index Searches/sec'
)
 OR (OBJECT_NAME = @CounterPrefix + 'Buffer Manager'
 AND counter_name = 'Lazy Writes/sec'
)
 OR (OBJECT_NAME = @CounterPrefix + 'Buffer Manager'
 AND counter_name = 'Page life expectancy'
)
 OR (OBJECT_NAME = @CounterPrefix + 'General Statistics'
 AND counter_name = 'Processes Blocked'
)
 OR (OBJECT_NAME = @CounterPrefix + 'General Statistics'
 AND counter_name = 'User Connections'
)

34

Chapter 1: A Performance Troubleshooting Methodology

 OR (OBJECT_NAME = @CounterPrefix + 'Locks'
 AND counter_name = 'Lock Waits/sec'
)
 OR (OBJECT_NAME = @CounterPrefix + 'Locks'
 AND counter_name = 'Lock Wait Time (ms)'
)
 OR (OBJECT_NAME = @CounterPrefix + 'SQL Statistics'
 AND counter_name = 'SQL Re-Compilations/sec'
)
 OR (OBJECT_NAME = @CounterPrefix + 'Memory Manager'
 AND counter_name = 'Memory Grants Pending'
)
 OR (OBJECT_NAME = @CounterPrefix + 'SQL Statistics'
 AND counter_name = 'Batch Requests/sec'
)
 OR (OBJECT_NAME = @CounterPrefix + 'SQL Statistics'
 AND counter_name = 'SQL Compilations/sec'
)

-- Calculate the cumulative counter values
SELECT i.OBJECT_NAME ,
 i.counter_name ,
 i.instance_name ,
 CASE WHEN i.cntr_type = 272696576
 THEN s.cntr_value - i.cntr_value
 WHEN i.cntr_type = 65792 THEN s.cntr_value
 END AS cntr_value
FROM #perf_counters_init AS i
 JOIN #perf_counters_second AS s
 ON i.collection_instance + 1 = s.collection_instance
 AND i.OBJECT_NAME = s.OBJECT_NAME
 AND i.counter_name = s.counter_name
 AND i.instance_name = s.instance_name
ORDER BY OBJECT_NAME

-- Cleanup tables
DROP TABLE #perf_counters_init
DROP TABLE #perf_counters_second

Listing 1.5: SQL Server performance counters.

35

Chapter 1: A Performance Troubleshooting Methodology

The performance counters collected by this script are:

•	 SQLServer:Access Methods\Full Scans/sec

•	 SQLServer:Access Methods\Index Searches/sec

•	 SQLServer:Buffer Manager\Lazy Writes/sec

•	 SQLServer:Buffer Manager\Page life expectancy

•	 SQLServer:Buffer Manager\Free list stalls/sec

•	 SQLServer:General Statistics\Processes Blocked

•	 SQLServer:General Statistics\User Connections

•	 SQLServer:Locks\Lock Waits/sec

•	 SQLServer:Locks\Lock Wait Time (ms)

•	 SQLServer:Memory Manager\Memory Grants Pending

•	 SQLServer:SQL Statistics\Batch Requests/sec

•	 SQLServer:SQL Statistics\SQL Compilations/sec

•	 SQLServer:SQL Statistics\SQL Re-Compilations/sec

The two Access Methods counters provide information about the ways that tables
are being accessed in the database. The most important one is the Full Scans/sec
counter, which can give us an idea of the number of index and table scans that are
occurring in the system.

If the disk I/O subsystem is the bottleneck (which, remember, is most often caused by
pressure placed on it by a problem elsewhere) and this counter is showing that there
are scans occurring, it may be a sign that there are missing indexes, or inefficient code
in the database. How many scans are problematic? It depends entirely on the size of the
objects being scanned and the type of workload being run. In general, I want the number
of Index Searches/sec to be higher than the number of Full Scans/sec by a factor

36

Chapter 1: A Performance Troubleshooting Methodology

of 800–1000. If the number of Full Scans/sec is too high, refer to Chapter 5, Missing
Indexes to determine if there are missing indexes in the database, resulting in excess
I/O operations.

The Buffer Manager and Memory Manager counters can be used, as a group, to
identify if SQL Server is experiencing memory pressure. The values of the Page Life
Expectancy, Free List Stalls/sec, and Lazy Writes/sec counters, when corre-
lated, will validate or disprove the theory that the buffer cache is under memory pressure.

A lot of online references will tell you that if the Page Life Expectancy (PLE) perfor-
mance counter drops lower than 300, which is the number of seconds a page will remain
in the data cache, then you have memory pressure. However, this guideline value for the
PLE counter was set at a time when most SQL Servers only had 4 GB of RAM, and the
data cache portion of the buffer pool was generally 1.6 GB. In modern servers, where it
is common for SQL Servers to have 32 GB or more of installed RAM, and a significantly
larger data cache, having 1.6 GB of data churn through that cache every 5 minutes is not
necessarily a significant event.

In short, the appropriate value for this counter depends on the size of the SQL Server
data cache, and a fixed value of 300 no longer applies. Instead, I evaluate the value for
the PLE counter based on the installed memory in the server. To do this, I take the base
counter value of 300 presented by most resources, and then determine a multiple of this
value based on the configured buffer cache size, which is the 'max server memory' sp_
configure option in SQL Server, divided by 4 GB. So, for a server with 32 GB allocated
to the buffer pool, the PLE value should be at least (32/4)*300 = 2400. See Chapter 4,
Memory Management for a more thorough discussion of memory configuration and
considerations.

If the PLE is consistently below this value, and the server is experiencing high Lazy
Writes/sec, which are page flushes from the buffer cache outside of the normal CHECK-
POINT process, then the server is most likely experiencing data cache memory pressure,
which will also increase the disk I/O being performed by the SQL Server. At this point,

37

Chapter 1: A Performance Troubleshooting Methodology

the Access Methods counters should be investigated to determine if excessive table or
index scans are being performed on the SQL Server.

The General Statistics\Processes Blocked, Locks\Lock Waits/sec, and
Locks\Lock Wait Time (ms) counters provide information about blocking in the SQL
Server instance, at the time of the data collection. If these counters return a value other
than zero, over repeated collections of the data, then blocking is actively occurring in one
of the databases and the information contained in Chapter 6, Blocking should be used to
troubleshoot the problems further.

The three SQL Statistics counters provide information about how frequently SQL
Server is compiling or recompiling an execution plan, in relation to the number of
batches being executed against the server. The higher the number of SQL Compila-
tions/sec in relation to the Batch Requests/sec, the more likely the SQL Server is
experiencing an ad hoc workload that is not making optimal using of plan caching. The
higher the number of SQL Re-Compilations/sec in relation to the Batch Requests/
sec, the more likely it is that there is an inefficiency in the code design that is forcing
a recompile of the code being executed in the SQL Server. In either case, investigation
of the Plan Cache, as detailed in the next section, should identify why the server has to
consistently compile execution plans for the workload.

The Memory Manager\Memory Grants Pending performance counter provides
information about the number of processes waiting on a workspace memory grant in
the instance. If this counter has a high value, SQL Server may benefit from additional
memory, but there may be query inefficiencies in the instance that are causing excessive
memory grant requirements, for example, large sorts or hashes that can be resolved by
tuning the indexing or queries being executed.

38

Chapter 1: A Performance Troubleshooting Methodology

Plan Cache Usage

In my experience, the Plan Cache in SQL Server 2005 and 2008 is one of the most
underused assets for troubleshooting performance problems in SQL Server. As a part
of the normal execution of batches and queries, SQL Server tracks the accumulated
execution information for each of the plans that is stored inside of the plan cache, up
to the point where the plan is flushed from the cache as a result of DDL operations,
memory pressure, or general cache maintenance. The execution information stored
inside of the plan cache can be found in the sys.dm_exec_query_stats DMV as
shown in the example query in Listing 1.6. This query will list the top ten statements
based on the average number of physical reads that the statements performed as a part
of their execution.

SELECT TOP 10
 execution_count ,
 statement_start_offset AS stmt_start_offset ,
 sql_handle ,
 plan_handle ,
 total_logical_reads / execution_count AS avg_logical_reads ,
 total_logical_writes / execution_count AS avg_logical_writes ,
 total_physical_reads / execution_count AS avg_physical_reads ,
 t.text
FROM sys.dm_exec_query_stats AS s
 CROSS APPLY sys.dm_exec_sql_text(s.sql_handle) AS t
ORDER BY avg_physical_reads DESC

Listing 1.6: SQL Server execution statistics.

The information stored in the plan cache can be used to identify the most expensive
queries based on physical I/O operations for reads and for writes, or based on different
criteria, depending on the most problematic type of I/O for the instance, discovered as a
result of previous analysis of the wait statistics and virtual file statistics.

39

Chapter 1: A Performance Troubleshooting Methodology

Additionally, the sys.dm_exec_query_plan() function can be cross-applied using
the plan_handle column from the sys.dm_exec_query_stats DMV to get the
execution plan that is stored in the plan cache. By analyzing these plans, we can identify
problematic operations that are candidates for performance tuning.

Query performance tuning

A full discussion of query performance tuning is beyond the scope of this book. In fact, several

notable books have been written on this topic alone, including "SQL Server 2008 Query Performance

Tuning Distilled" (http://www.amazon.com/Server-Performance-Tuning-Distilled-Experts/

dp/1430219025) and "Inside Microsoft SQL Server 2008: T-SQL Querying" (http://www.amazon.com/

Inside-Microsoft®-SQL-Server®-2008/dp/0735626030).

The information in the sys.dm_exec_query_stats DMV can also be used to identify
the statements that have taken the most CPU time, the longest execution time, or that
have been executed the most frequently.

In SQL Server 2008, two additional columns, query_hash and query_plan_hash,
were added to the sys.dm_exec_query_stats DMV. The query_hash is a hash over
the statement text to allow similar statements to be aggregated together. The query_
plan_hash is a hash of the query plan shape that allows queries with similar execution
plans to be aggregated together. Together, they allow the information contained in this
DMV to be aggregated for ad hoc workloads, in order to determine the total impact of
similar statements that have different compiled literal values.

http://www.amazon.com/Server-Performance-Tuning-Distilled-Experts/dp/1430219025
http://www.amazon.com/Server-Performance-Tuning-Distilled-Experts/dp/1430219025
http://www.amazon.com/Inside-Microsoft�-SQL-Server�-2008/dp/0735626030
http://www.amazon.com/Inside-Microsoft�-SQL-Server�-2008/dp/0735626030

40

Chapter 1: A Performance Troubleshooting Methodology

Summary

This chapter has outlined my basic approach to investigating performance problems in
SQL Server. This approach is more or less the same, regardless of whether it is a server
I know well, or one I'm investigating for the first time, with no prior knowledge of the
health and configuration of the SQL Server instance it houses. Based on the information
gathered using this methodology, more advanced diagnosis of the identified problem
areas can be performed, using information contained in the subsequent chapters in
this book.

The most important point that I want to stress in this opening chapter is that no single
piece of information in SQL Server should be used to pinpoint any specific problem.
The art of taming an unruly SQL Server is the art of assembling the various pieces of the
puzzle so that you have a complete understanding of what is going on inside of a server.
If you focus only on what is immediately in front of you, you will, in most cases, miss the
most important item, which is the true root cause of a particular problem in SQL Server.

41

Chapter 1: A Performance Troubleshooting Methodology

42

Chapter 2: Disk I/O Configuration

Improper hardware configuration is a common cause of SQL Server performance and
scalability problems. If you try to run SQL Server on workstation-grade hardware, you
will run into problems, but even on server-grade hardware, performance problems can
and will occur if one or more of the hardware components have been improperly sized
and configured for the SQL Server workload.

SQL Server is very different from other applications in terms of its disk usage character-
istics and storage requirements, and the disk subsystem is one of the most commonly
undersized and poorly-configured hardware components for SQL Server. Often the
I/O workload can be substantially reduced by measures such as appropriate use of
indexing, or ensuring queries don't read more data than strictly necessary. However, if
I/O problems persist as indicated, for example, by high latency values for the Physical
Disk\Disk Reads/sec and Physical Disk\Disk Writes/sec PerfMon counters, or
specific I/O-related wait types in the DMVs, then you'll need to troubleshoot your disk
I/O system. This task may be relatively straightforward, or grievously complex, depending
on whether you're using simple, directly attached storage, or a vast and complex, enter-
prise-wide Storage Area Network (SAN).

This chapter discusses the basics of disk I/O subsystem configuration for SQL Server, and
the most common problems associated with the incorrectly sized or incorrectly designed
disk configurations, covering topics such as:

•	 Appropriate choice of hardware RAID level – there are many possible configurations,
and the right one will depend largely on the nature of the SQL Server workload.

•	 Storage capacity versus throughput – 1 TB of database storage can be satisfied with a
single 1 TB disk drive, but the I/O throughput and performance are likely to be poor.

43

Chapter 2: Disk I/O Configuration

•	 Workload type and distribution – specific considerations for data, log, and
tempdb files.

•	 Common disk I/O problems – such as disk partition misalignment and network
bandwidth issues in SANs.

By far the best way to deal with disk I/O issues is to work as hard as you can during
the system design phase to prevent them from occurring. The only way to be sure that
your disk I/O subsystem will meet your I/O performance and throughput requirements
is to understand what those requirements are, and test the performance of your disk
subsystem under realistic loads, using a tool such as SQLIO or IOmeter.

Disk Configuration: Basic Considerations

Memory scalability has improved substantially over recent years. It is now relatively
inexpensive to over-provision RAM capacity for SQL Server, to help minimize disk I/O.
Likewise, as powerful processors with eight, or even twelve, physical cores emerge onto
the market, many modern servers often have spare CPU capacity which, again, can be
used to help reduce pressure on the disk I/O system.

The common theme here seems to be that the disk subsystem needs as much help as it
can get. It's certainly true that, over a similar time period, performance improvements of
the traditional magnetic disk drives which still underpin the vast majority of SQL Server
installations have been relatively modest by comparison with improvements in memory
and CPU. As such, great care needs to be taken when provisioning and configuring the
disk subsystem hardware for SQL Server installations, in order to ensure that it meets the
I/O workload requirements of the SQL Server database that runs on it.

This section will briefly review some of the major considerations when sizing and config-
uring the disk subsystem, and we'll drill into each of these issues as we progress through
the chapter.

44

Chapter 2: Disk I/O Configuration

Disk size vs. disk throughput

One of the most common mistakes made when planning and building a disk I/O
subsystem for SQL Server is to think purely in terms of how much disk space is
required, rather than the disk throughput required to support the transaction
workload on the database.

For conventional hard drives that have a rotating platter then, purely in terms of the
disk mechanics, the limiting factors for performance and throughput, stated in IOPS
and MB/sec, are:

•	 rotations per minute – how quickly the platter spins to read data off of the disk

•	 seek time in ms – the time it takes to reposition the drive head to locate data on the
disk.

If you need 1 TB of storage for a database then you can satisfy that with a single, 1 TB disk
drive, but you'll find that both the rotational latency and disk head latency will be high,
and the I/O performance and throughput correspondingly low. Such a single-disk set up
would be inadvisable, regardless of the supported workload type, but would be especially
problematic when the workload generated a large number of random read/write opera-
tions (such as would be typical for an OLTP workload), resulting in severe disk head
latency issues.

The way to mitigate disk latency issues, and vastly improve disk I/O performance and
throughput, is to stripe the data across a large number of smaller disks, configured in
one of the various available RAID configurations (discussed later), which can then be
presented to Windows as a single hardware device.

Of course, this can lead to a substantial increase in the complexity of the storage system,
and means that the ultimate disk I/O throughput and performance is affected, not just
by the physical disk characteristics, but also by issues such as the chosen RAID configu-
ration, the architecture of the storage array (DAS or SAN, as discussed later), and the

45

Chapter 2: Disk I/O Configuration

performance of other components of the storage array, such as Host Bus Adapters or
RAID controllers, and so on.

Solid state drives

Modern solid state disks contain no moving parts, so they are not subject to the same throughput limita-

tions as conventional disks, and they are gradually pushing the IOPS potential beyond the capabilities of

most large, conventional disk arrays, in a single hardware device. They are still relatively new technology,

and not currently in heavy use for transactional database systems, due to lifespan and cost considera-

tions, and are not covered further in this chapter. However, they may redefine the storage space in the

near future.

Random versus sequential I/O

The basic building block in SQL Server is known as a page, which is 8 KB in size. To
minimize the number of I/O requests when reading data from disk, SQL Server employs
a read-ahead mechanism that can read a number of contiguous pages, up to 128 pages on
Standard Edition and 1,024 pages on Enterprise Edition, in a single I/O operation.

At the same time, rather than continuously writing any data modifications to disk, the
changes are made to data pages in the buffer pool, which are collected into contiguous
blocks and written to disk in a single I/O operation, at CHECKPOINT, after the descrip-
tions of the changes have been hardened to the transaction log.

SQL Server databases perform a mix of random and sequential I/O operations depending
on the activities being performed. Sequential I/O is any operation where the blocks can
be read from, or written to, disk without having to reposition the disk head on the drive.
Sequential I/O is used by SQL Server for read-ahead operations, and for all transaction
log operations, and is the fastest type of I/O that can be performed using conventional
disks. Random I/O is any operation where the disk head on the drive has to change
positions on the platter, incurring seek latency as a part of the operation, which reduces

46

Chapter 2: Disk I/O Configuration

the performance and number of operations in comparison to sequential I/O. Read
operations in general, especially in OLTP systems, are random I/O operations, reading
relatively small blocks of pages sequentially as a part of larger random I/O requests.

For this reason, the chosen disk configuration should be heavily influenced by the type of
file being stored on the disks, and the type of I/O activity to which it is subjected. In short,
for optimum performance, the disk I/O subsystem for the log files should be configured
differently than the disk I/O subsystem for the data files.

The disk configuration for the database data files should be optimized for 64 KB random
read I/O, and performance benchmarked for I/O sizes of 8 KB, 64 KB, 128 KB, and 256 KB
to determine the potential performance and throughput capacity of the configuration. If
the server is being used primarily for a large data warehouse or decision support system
(DSS) database, the I/O subsystem should be benchmarked for larger I/O sizes up to 1024
KB for read-ahead operations, depending on the database design, and how it is being
used. However, the transaction log in SQL Server primarily performs sequential write
operations in random sizes up to 60 KB.

Choosing the Right RAID Level

RAID, an acronym for Redundant Array of Independent Disks, is the technology used to
achieve the following objectives:

•	 increase levels of I/O performance, measured in Input/Output Operations Per Second
(IOPS), which is roughly (MB/sec /IO size in KB)*1024

•	 increase levels of I/O throughput, measured in Megabytes Per Second (MB/sec) which
is roughly (IOPS*IO size in KB)/1024

•	 increase storage capacity available in a single logical device – you can't purchase a
single 5 TB disk yet, but you can have a 5 TB disk in Windows, for example, by using
RAID to stripe six 1 TB drives in a RAID5 array

47

Chapter 2: Disk I/O Configuration

•	 gain data redundancy through storing parity information across multiple disks, or
using mirroring of the physical disks in the array.

The choice of RAID level is heavily dependent on the nature of the workload that the disk
array must support. For example, as discussed earlier, the difference in the nature of the
I/O workloads for data and for log files means that different RAID configurations may be
applicable in each case.

Data files are subject primarily to random read activity and, due to the way that SQL
Server batches write operations to disk with CHECKPOINT, this allows the use of RAID
levels that trade-off write performance for higher read performance and better usage of
the available disk storage capacity. The sequential activity for the log files is primarily for
write activities during log buffer flushes, making write performance much more critical a
consideration than it may be for the data files.

Choosing the appropriate RAID level is often a difficult task and, unless money is no
object, often involves some sort of compromise between factors such as the overall cost of
the solution, storage capacity, disk throughput, and the degree of "protection" in case of a
failure of one of the disks in the array.

There are a number of RAID levels currently available on the market, each of which has
its own associated costs and benefits. Over the following sections, we'll examine the
most common standard RAID levels (0, 1, 5 and 6) as well as nested RAID levels, such as
RAID 0+1 or 1+0, whereby one RAID array is used inside of a secondary RAID array. We'll
explain, briefly, how each level works, and its relative merits and drawbacks for SQL
Server systems.

48

Chapter 2: Disk I/O Configuration

A brief overview of RAID configurations

The most common RAID levels used with SQL Server are RAID 1, 5, 6 and 1+0, since these
ensure that the data stored on the array will not be lost or damaged/corrupted if one of the
disks in the array fails catastrophically. The protection of the data stored inside SQL Server
should be considered as the most important factor in RAID level selection, followed closely
by the desired performance characteristic for the disk array. The fastest disk array in the
world won't be useful if it loses all your organization's information in a single failure.

RAID 0

RAID 0, most commonly known as striping, provides improved I/O rates (in terms of
IOPS) by striping the data across multiple drives, allowing the read and write operations to
be shared amongst the drives inside the array. Figure 2.1 shows a RAID 0 implementation
where A1, A2, and so on, represent logically sequential segments of data. We can see that,
although A2 comes sequentially after A1, it is stored on a separate drive, allowing multiple
segments to be accessed simultaneously.

Disk 1

A1

A3

A5

RAID 0

Disk 2

A2

A4

A6

Figure 2.1: RAID 0.

This level of RAID provides the best performance for both read and write operations, but
provides no redundancy or protection against data loss. In the event of a single disk failure
in the array, all of the data is lost. As such, this RAID level is not appropriate for SQL
Server implementations.

49

Chapter 2: Disk I/O Configuration

RAID 1

RAID 1, most commonly known as mirroring, provides protection against the loss of
data from a single disk by mirroring the writes to a second disk, as shown in Figure 2.2. A
RAID 1 configuration provides redundancy, but doesn't provide added write performance
to the system, since the maximum throughput for the array is limited to the I/O capacity
of a single disk. If you have a duplexing setup (an extension of mirroring where both
disks in the mirror can be read simultaneously) then it's possible, in theory, to get a read
performance benefit. In practice, however, the improvements are highly variable, though
generally small, and dependent on the hardware implementation.

While RAID 1 provides data redundancy, protecting it from a single disk loss, it effectively
doubles the cost of storage.

Disk 1

A1

A2

A3

RAID 1

Disk 2

A1

A2

A3

Figure 2.2: RAID 1 implementation.

For low I/O demands, RAID 1 can provide acceptable performance for SQL Server data
files, but it generally doesn't meet the IOPS requirements associated with heavy, random-
read operations, even on moderately-sized databases. In most cases, however, RAID 1 can
be used for storing a single transaction log. The sequential nature of the transaction log
activity means that the read/write head of each drive is relatively static, and moves in a
progressive sweep across the disk head as writes occur. This minimizes I/O latency and
allows for significantly higher IOPS than is possible for random I/O operations.

50

Chapter 2: Disk I/O Configuration

If multiple transaction log files are placed on a single RAID 1 array, the net effect of the
combined sequential I/O activity for each file will be random I/O at the physical level,
and higher latency will result from the movement of the disk head to perform operations
against each of the files being written to sequentially.

RAID 5 (and 6)

RAID 5 is commonly known as "striping with parity;" the data is striped across multiples
disks, as per RAID 0, but parity data is stored in order to provide protection from single
disk failure. The minimum number of disks required for a RAID 5 array is three. The
parity blocks containing the parity data are staggered across the stripes inside the array,
as shown in Figure 2.3. So, for example, the Ap segment stores parity data arising from the
comparison of data in segments A1 and A2. If Disk 2 were to fail, then the data in the A2
segment could be reconstructed, by a comparison of the data in A1 with the parity data.

RAID 5

Disk 1

A1

B1

Cp

Disk 2

A2

Bp

C1

Disk 3

Ap

B2

C2

Figure 2.3: RAID 5 implementation.

Note that the total storage capacity for a RAID 5 array is (n-1)*disk size, where n is the
number of disks. So for a RAID 5 array of (say) 3 x 100 GB disks, we'd have 200 GB for data
storage. For a 5-disk array, we'd have 400 GB for data storage, and so on.

In this manner, RAID 5 provides redundancy with minimal reduction in storage capacity,
which is one of the major reasons for its popularity. Striping the data across multiple disks
improves read performance, but the need to maintain parity data incurs a performance

51

Chapter 2: Disk I/O Configuration

penalty for writes; for example, each time data is updated in segment A1, the parity data
must be recalculated and rewritten. Additionally, if one of the disks in a RAID 5 array fails
physically, the array performance becomes degraded by the parity comparisons that have
to be performed to read the data stored on the array. The level of degradation depends on
the number of disks configured in the array; as the number of disks increases, the number
of comparisons increases, reducing the performance further.

For heavy read but low write databases, RAID 5 can be optimal for the data files. However,
in circumstances where that database incurs heavy write activity, the cost of the parity
calculations can reduce the performance of the system. For this same reason, RAID 5
is not recommended for the database transaction log files, which primarily perform
sequential writes and require the lowest write latency possible.

RAID 6, is an extension of RAID 5 but, instead of a single distributed parity bit, it uses
double-distributed parity bits, where the calculated parity data is stored on two separate
disks in the array, allowing for a double disk failure in the array, while still protecting the
data. So, for example, in Figure 2.4, parity data arising from the comparison of data in the
A1 and A2 segments is stored in both the Aq and Ap parity data segments.

Disk 1

Dp

RAID 6

A1

B1

Cq

Disk 2

D1

A2

Bq

Cp

Disk 3

D2

Aq

Bp

C1

Disk 4

Dq

Ap

B2

C2

Figure 2.4: RAID 6 implementation for a 4-disk array.

In RAID 6, the total storage capacity is (n-2)*disk size so, for this 4-disk array, we lose
half the disk space for parity data storage. Also, the performance impact of the parity

52

Chapter 2: Disk I/O Configuration

calculations will be relatively high. For these reasons, RAID 10 is a better RAID configu-
ration to support double disk loss, when only four disks are in the array.

Figure 2.5 shows a more typical RAID 6 implementation, involving a 7-disk array.

Disk 5

G4

D3

E3

F3

Cq

Bp

A5

Disk 2

G1

D2

Ep

Fq

C2

B2

A2

Disk 3

G2

Dp

Eq

F1

C3

B3

A3

Disk 4

G3

Dq

E2

F2

Cp

B4

A4

Disk 6

G5

D4

E4

F4

C4

Bq

Ap

Disk 7

Gp

D5

E5

F5

C5

B5

Aq

Disk 1

Gq

D1

E1

Fp

C1

B1

A1

RAID 6

Figure 2.5: RAID 6 implementation for a 7-disk array.

RAID 6 is common for Storage Area Network (SAN) applications where the number of
disks in a single array is higher than for most Direct Attached Storage (DAS) applications,
increasing the possibility of multiple disk failures during the period of time when a single
disk may be offline. RAID 6 has a performance penalty similar to RAID 5 for write opera-
tions, since the parity bit calculation impacts performance.

RAID 10

RAID 10, or RAID 1+0, is a nested RAID level known as a "striped pair of mirrors." It
provides redundancy by first mirroring each disk, using RAID 1, and then striping those
mirrored disks, with RAID 0, to improve performance. There is a significant monetary
cost increase associated with this configuration since only half of the disk space is
available for use. However, this configuration offers the best configuration for redun-
dancy since, potentially, it allows for multiple disk failures while still leaving the system
operational, and without degrading system performance.

53

Chapter 2: Disk I/O Configuration

In the configuration shown in Figure 2.6, each of the RAID 1 mirrored pairs could sustain
a single disk failure and the array would continue to remain operational. However, if
both of the disks in a single RAID 1 mirrored pair were to fail at the same time, the system
would no longer be operational.

Disk 1

A1

A4

A7

RAID 1

Disk 2

A1

A4

A7

Disk 3

A2

A5

A8

RAID 1

Disk 4

A2

A5

A8

 RAID 0

RAID 1+0

Disk 5

A3

A6

A9

RAID 1

Disk 6

A3

A6

A9

Figure 2.6: RAID 1+0 implementation.

Since no parity calculations must occur, RAID 1+0 is the fastest RAID configuration
for writes that also provides redundancy, offering performance near to, or matching,
the performance of a RAID 0 configuration. However, for the number of spindles
that comprise the array, read performance will generally be lower than a RAID 5 array
configured with the same number of physical disks.

RAID 01

RAID 01 or RAID 0+1, is a nested RAID level also known as "mirrored pairs of striped
disks." In a RAID 0+1 configuration, the nested levels are the opposite of the RAID 1+0,
with the disks first being striped in a RAID 0 and then mirrored using RAID 1. However,
this type of configuration only allows for a single disk loss from one side of the array,
since a single disk failure in a RAID 0 array causes that array to fail. A loss of a single disk
in both of the RAID 0 striped arrays would result in total data loss. The higher risk of
data loss in RAID 01 means that, in most circumstances, RAID 1+0 is preferable for SQL
Server installations.

54

Chapter 2: Disk I/O Configuration

Disk 1

A1

A4

A7

RAID 0

Disk 2

A2

A5

A8

 RAID 1

RAID 0+1

Disk 3

A3

A6

A9

Disk 4

A1

A4

A7

RAID 0

Disk 5

A2

A5

A8

Disk 6

A3

A6

A9

Figure 2.7: RAID 0+1 implementation.

Disk size and throughput considerations

Modern hard disks are much larger in size than previously available, making larger capac-
ities possible with fewer disks. However, as discussed earlier, purchasing a small number
of large disks may not be the best option in terms of I/O performance and throughput.
For example, consider a database that is 400 GB in size and performs a balanced mix of
random read and write operations. The number of possible RAID and disk configurations
for this database exceeds the space available for this entire book. However, a few potential
configurations are as follows:

1. RAID 1 using 2 x 600 GB 15 K RPM disks

2. RAID 5 using 3 x 300 GB 15 K RPM disks

3. RAID 5 using 5 x 146 GB 15 K RPM disks

4. RAID 10 using 8 x 146 GB 15 K RPM disks

5. RAID 10 using 14 x 73 GB 15 K RPM disks.

55

Chapter 2: Disk I/O Configuration

Based on the above RAID configurations, the following I/O throughput rates would be
theoretically possible based on a 64 K random I/O workload for SQL Server:

1. 185 IOPS at 11.5 MB/sec

2. 222 IOPS at 14 MB/sec

3. 345 IOPS at 22 MB/sec

4. 816 IOPS at 51 MB/sec

5. 1609 IOPS at 101 MB/sec.

Hopefully, the message is clear: the number of disk heads, and the RAID configuration,
will have a direct and dramatic impact on the potential I/O capacity of the RAID array.

Remember, though, that these numbers are theoretical, meaning that they are
solely based on the potential I/O capacity of the disks in a given configuration.
They take no account of other factors that can and will have an impact on overall
throughput, including:

•	 RAID controller cache size and configuration for read and write caching, which can
improve read-ahead pre-fetch if more cache is dedicated to reads, or absorb heavy
bursts of write activity if more cache is dedicated to writes.

•	 RAID stripe size, which determines the amount of data that is written to, or read
from, a single disk in a stripe before advancing to the next disk in the stripe.

•	 Partition alignment, which ensures that the starting offset of a disk partition is
aligned with the RAID stripe size and sector offset for the disk, so that read and write
operations don't cross sector boundaries, incurring an additional I/O operation to
complete. See Incorrect partition alignment, later in this chapter, for further details.

•	 NTFS format allocation unit sizes; the 4 K default for NTFS is good for file servers
and the operating system drives, but not database data files which perform better using
a 64 K allocation unit.

56

Chapter 2: Disk I/O Configuration

The only way to be sure that your selected disk configuration will cope gracefully with the
workload placed on it by your databases is to perform proper benchmarking of the I/O
subsystem, prior to usage. Never rely on theoretical calculations for your values of either
IOPS or MB/s throughput. You need to simulate a realistic I/O workload, using multiple
workers, and get the actual numbers.

A number of tools exist for measuring the I/O throughput of a given configuration, but
the two most common tools used for benchmarking storage configurations for SQL
Server are SQLIO and IOmeter.

SQLIO has to be one of the worst-named tools in the world, since it leads to the
common misconception that it simulates the I/O workload of SQL Server. The truth is
that the tool has absolutely nothing to do with SQL Server; it is simply an I/O stress tool
that generates I/O based on the command-like parameters that are passed to the tool.
IOmeter is also an I/O stress testing tool, originally developed by Intel and later released
as an open source project. Of the two, IOmeter is the most flexible, and can generate
mixed I/O workloads that more closely reflect what might be generated by SQL Server.
IOmeter also has a graphical user interface that is used for configuring the tests and
monitoring their progress.

Downloading SQLIO or IOmeter

SQLIO can be downloaded for free from Microsoft's website at http://www.microsoft.com/down-

load/en/details.aspx?id=20163.

IOmeter can be downloaded for free from http://www.iometer.org/.

Microsoft provides a separate tool for testing the reliability and integrity of a disk config-
uration, named SQLIOSim. This tool tests the storage using the same disk operations
that SQL Server would perform for reads, writes, checkpoints, backups, and read-ahead
operations, to ensure that the storage meets the reliability requirements for SQL Server.
Unlike SQLIO and IOmeter, SQLIOSim uses separate data and log files to simulate the
reading and writing activity of SQL Server, using the same types of I/O patterns for each

http://www.microsoft.com/download/en/details.aspx?id=20163
http://www.microsoft.com/download/en/details.aspx?id=20163
http://www.iometer.org/

57

Chapter 2: Disk I/O Configuration

file that would occur under normal operations. This tool should be used to validate that
the I/O subsystem functions correctly under heavy loads, but it should not be used for
performance benchmarking the configuration.

Downloading SQLIOSim

SQLIOSim can be downloaded from Microsoft's website at http://support.microsoft.com/

kb/231619/en-us.

Workload considerations

As discussed previously, there are many factors that will influence the choices you make
for your disk I/O subsystem, and especially the RAID level, such as how often the data is
written compared to read, and whether the I/O is largely sequential or random in nature.
Also important is the need to correctly distribute your workload across the hardware
resources, by placing data and log files on separate, dedicated disks, and making special
consideration for the tempdb database.

Data files

The appropriate disk configuration for the data files of a database depends heavily on
the read-to-write ratio for the database. SQL Server tracks the I/O usage of the database
files for an instance and makes this information available in the sys.dm_io_virtual_
file_stats Dynamic Management Function. While this information can be used
to determine if your overall workload is heavier for reads vs. writes, the information
contained in the output is based on the operations that have occurred since the last
time the SQL Server instance started up, so it is important to ensure that your normal
representative workload for the server has occurred, before using this information to
determine your workload division.

http://support.microsoft.com/kb/231619/en-us
http://support.microsoft.com/kb/231619/en-us

58

Chapter 2: Disk I/O Configuration

For a database that is primarily read-only, RAID 5 or RAID 6 can offer good read perfor-
mance, while also maximizing the available storage. RAID 5 or 6 arrays are commonly
used for data warehouses, or for storing data where write latency doesn't impact overall
system performance.

However, for highly transactional databases where the number of writes is comparable to
the number of reads, using a RAID 5 or RAID 6 configuration for the data files disks can
cause a bottleneck during checkpoint operations, when "dirty pages" in the buffer cache
are written to the data file.

For OLTP implementations of heavy-write databases, RAID 1+0 provides the best perfor-
mance since it doesn't perform parity calculations during write operations. Of course,
RAID 1+0 arrays bring a much higher implementation cost, since the available storage is
exactly half of the configured disks in the array.

Log files

For databases that are subject to a substantial amount of write activity, the sizing and
configuration of the disks for the transaction log file, and hence the performance of log
writes, can be critical to the overall performance of the system. This is because all data
changes must first be hardened in the log file before a transaction commit (either implicit
or explicit) can be considered complete, and before the data pages can be written to disk
(in the case where CHECKPOINT or LAZY WRITER write a dirty data page to disk before
the transaction commits).

Since the transaction log is written to sequentially, RAID 1 can be used in most situa-
tions. For highly transactional databases, the transaction log for each database should be
located on dedicated physical disks. Having the log files for multiple highly transactional
databases on the same physical disks can result in write I/O bottlenecks, often shown by
high WRITELOG waits in sys.dm_os_wait_stats, and by high io_write_stall_ms
values in sys.dm_io_virtual_file_stats() for the transaction log file. These waits
are caused by the disk head having to be repositioned across the disk platters to perform

59

Chapter 2: Disk I/O Configuration

the writes, and can be worse when multiple transaction log files are physically interleaved,
or physically fragmented on disk.

Special considerations for tempdb

The tempdb database in SQL Server is a special database that is used by the database
engine during the execution of user requests, for performing sorts that exceed the
memory allocated to the sort, hash operations, and to store data for temporary tables
and table variables. In SQL Server 2005 and 2008, it is also used to maintain version store
information, for trigger execution, online index operations, when using the SNAPSHOT
and READ COMMITTED SNAPSHOT Isolation levels (a.k.a. row versioning), and in SQL
Server 2008 for maintaining Change Tracking information. In addition to the general
usage of tempdb, some maintenance operations, such as DBCC CHECKDB and index
rebuilds performed ONLINE or using the SORT_IN_TEMPDB option, can make heavy use
of tempdb.

The tempdb database is a global resource, used in the manner described above by all
sessions connected to a SQL Server instance. One of the best descriptions of tempdb
was made by SQL Server MVP Brent Ozar, who described it as being "like a public toilet,
anyone can abuse it with all sorts of horrific things you probably wouldn't approve of." As
such, special consideration is needed with regard to disk configuration, in order to avoid
contention on this resource.

As a general rule, the tempdb database files should be physically separate from the user
data files and transaction log files, on a dedicated disk array. Since tempdb is a write-
heavy database, RAID 1 or RAID 1+0 are usually the configurations best able to support
the concurrent workload of tempdb.

However, since tempdb is used for temporary storage only, Solid State Disks and
even RamDisks (disks created by software drivers using RAM from the server, or from
specialized hardware devices) can be used to significantly improve the I/O characteristics

60

Chapter 2: Disk I/O Configuration

of the tempdb database, removing the rotating media and disk head from the configu-
ration, and so reducing the seek latency for both reads and writes.

The tempdb database is subject to specific problems that generally don't affect standard
user databases, specifically PFS, GAM, and SGAM contention, associated with the
consistent creation and destruction of temporary objects (see http://blogs.msdn.com/
sqlserverstorageengine/archive/2009/01/04/what-is-allocation-bottleneck.aspx
for more details). To minimize the impact of this problem and, in most cases, to eliminate
it, multiple data files can be created for the tempdb database that are the same size, and
are configured with the same AutoGrowth settings. When a database has multiple files in
the same filegroup, allocations are made from each file, using a proportionate fill factor,
which causes the files to be used equally in proportion to their size and available free
space. Since each file has its own PFS, GAM and SGAM pages, creating multiple files for
tempdb will reduce contention on these pages when allocations are made.

Tip: configuring a single file per processor, or not!

SQL Server MVP Paul Randal provides guidance on the PFS, GAM, SGAM problem with tempdb and the

appropriate number of files to configure based on the number of processors on his blog posts:

"Search Engine Q&A #12: Should you create multiple files for a user DB on a multi-core box?"

(http://www.sqlskills.com/blogs/paul/post/Search-Engine-QA-12-Should-you-create-mul-

tiple-files-for-a-user-DB-on-a-multi-core-box.aspx) and "A SQL Server DBA myth a day: (12/30)

tempdb should always have one data file per processor core" (http://sqlskills.com/BLOGS/PAUL/

post/A-SQL-Server-DBA-myth-a-day-(1230)-tempdb-should-always-have-one-data-file-per-

processor-core.aspx).

http://blogs.msdn.com/sqlserverstorageengine/archive/2009/01/04/what-is-allocation-bottleneck.aspx
http://blogs.msdn.com/sqlserverstorageengine/archive/2009/01/04/what-is-allocation-bottleneck.aspx
http://www.sqlskills.com/blogs/paul/post/Search-Engine-QA-12-Should-you-create-multiple-files-for-a-user-DB-on-a-multi-core-box.aspx
http://www.sqlskills.com/blogs/paul/post/Search-Engine-QA-12-Should-you-create-multiple-files-for-a-user-DB-on-a-multi-core-box.aspx
http://sqlskills.com/BLOGS/PAUL/post/A-SQL-Server-DBA-myth-a-day-(1230)-tempdb-should-always-have-one-data-file-per-processor-core.aspx
http://sqlskills.com/BLOGS/PAUL/post/A-SQL-Server-DBA-myth-a-day-(1230)-tempdb-should-always-have-one-data-file-per-processor-core.aspx
http://sqlskills.com/BLOGS/PAUL/post/A-SQL-Server-DBA-myth-a-day-(1230)-tempdb-should-always-have-one-data-file-per-processor-core.aspx

61

Chapter 2: Disk I/O Configuration

Direct Attached Storage vs. Storage Area
Networks

The two most common configurations used for SQL Server storage are Direct Attached
Storage (DAS) and Storage Area Networks (SAN), and each has its own pros and cons that
must be understood in order to arrive at an appropriate implementation for SQL Server.

Direct Attached Storage

DAS is the traditional method of providing storage for servers, where the disks used by
the server are directly attached to the server. The disks are either built into the server
chassis, or are housed in external expansion bays that are plugged in to the server using a
RAID controller.

DAS implementations are cheap to build, provide predictable performance characteristics,
since the disks are dedicated to a single server, and require the least amount of experience
and knowledge to implement properly. However, depending on the specific implemen-
tation, DAS solutions will not have the advanced feature set that may be available when
using a SAN, such as support for failover clustering, disk array snapshots, and cross-data
center, array-based replication (a redundancy feature, which allows data written to the
array to be replicated to a second SAN).

With DAS solutions, performance troubleshooting is greatly simplified, since the number
of components is reduced, and there is only a single system utilizing the I/O subsystem.

62

Chapter 2: Disk I/O Configuration

Storage Area Networks

SAN implementations are a more advanced configuration for enterprise-wide storage
requirements. The storage is centrally managed in a shared environment, allowing
for higher usage density of the available storage. In other words, SANs are designed to
optimize storage usage, not necessarily optimize storage performance. However, SANs do
offer a significantly more advanced feature set than is generally available through DAS. A
basic example of a typical SAN environment is shown in Figure 2.8.

Figure 2.8: Typical SAN implementation.

However, the shared storage implementation also adds to the complexity of trouble-
shooting performance problems. Depending on the specific implementation, storage can
be optimized for I/O performance, and/or it can be optimized solely for capacity, or it
can be entirely proprietary to the SAN vendor, in which case little control exists for the
physical implementation of the environment.

63

Chapter 2: Disk I/O Configuration

One of the biggest problems with SAN-based storage arrays, for many SQL Server DBAs,
is the manner in which the physical implementation of the storage array is "abstracted."
When accessing data in a SAN array, all Windows sees is a "single physical disk," presented
as a Logical Unit Number (LUN). However, a SAN might be using 50 LUNs from a
shared pool of disks that are also being used by the rest of the enterprise. This can have
performance ramifications for SQL Server. Unless a DBA has worked directly with a SAN
administrator to plan out the I/O configuration of the LUNs being used by a SQL Server,
the DBA has no idea how the physical hardware is actually being used.

Depending on the vendor, the SAN implementation, and the workload requirements,
sharing storage at the physical level can result in acceptable performance but can become
a nightmare for troubleshooting when problem arise, where one team points the finger at
the other and vice versa.

As a general recommendation, when using SAN-based storage for SQL Server, the same
I/O considerations must be made that would be made when using a DAS implementation.
The underlying storage for the data files should be optimized for random I/O and segre-
gated physically from the underlying storage for the transaction log files, which should be
optimized for sequential I/O. The I/O throughput must be able to sustain the workload
requirements, and any bottlenecks in the system must be fully understood before actually
implementing the configuration for production usage.

For SAN implementations, the "SAN fabric" is the network that is configured to provide
access from the server to the physical disks which back the LUNs being presented to
the server. This SAN fabric consists of multiple switched interconnections that provide
redundancy to the configuration. There are multiple components, such as Host Bus
Adapters (HBAs), storage controllers, and network switches, in the connection between
the server and the SAN, any of which could become a potential bottleneck to your overall
I/O capacity.

SAN-based implementations make use of HBAs, which are purpose-built network cards
that provide access to the storage network (Fabric + Array, in Figure 2.8), via fiber optic
cables (FC), standard network Ethernet (iSCSI), or a hybrid mix of the two known as

64

Chapter 2: Disk I/O Configuration

Fiber Channel over Ethernet (FCOE). Depending on the specific implementation being
used, and whether or not multi-path I/O has been configured appropriately for the
environment, the I/O performance and throughput may be limited to the port speed of a
single HBA in server.

Multi-path I/O

Multi-path I/O (MPIO) provides multiple, redundant paths from a single server to the SAN implementa-

tion. Depending on the configuration of the MPIO, one of the benefits can also be load balancing across

the connections, which can result in performance improvements compared to using a single connection.

Different MPIO implementations have different characteristics, and it is best to work with your specific

hardware vendor to configure MPIO in your environment.

The HBAs of the servers connect to network switches that, in turn, connect to the
storage controllers on the SAN. The storage controllers manage the physical disks which
comprise the actual storage available to the SAN implementation. Each of the storage
controllers can have one or more connections into the network, and each one maintains
its own cache for frequently read data, and/or to handle writes immediately, allowing
deferred flushes to the physical disks, which can be slower than writing directly to cache.
These caches can be mirrored to other controllers over high-speed connections, to allow
failure to occur with minimal to no impact on the environment. In this way, multiple
storage controllers work together as a sort of "failover cluster" for the SAN, providing
high availability.

When using SAN-based storage implementations, the slowest point in the overall
configuration will be the bottleneck for the system. For example, consider a SAN using
a 4 Gb/sec HBA and connecting to a 4 Gb/sec switch that connects to a 2 Gb/sec storage
controller port. Even if the physical disks in the array are capable of 8 Gb/sec of I/O, the 2
Gb/sec storage controller port will be the bottleneck in the implementation.

This is the reason that troubleshooting SAN-based implementations for SQL Server can
be incredibly difficult. Any time a SAN is being used with SQL Server, troubleshooting

65

Chapter 2: Disk I/O Configuration

the performance problems in the environment requires additional support from the SAN
administrator.

Diagnosing Disk I/O Issues

My primary tool for investigating disk I/O issues is PerfMon and specifically the
Physical Disk\Disk Reads/sec and Physical Disk\Disk Writes/sec counters.
The key for performance is having the lowest latency possible and my guideline latency
values for each of these counters are as follows:

•	 Less than 10 ms = good performance

•	 Between 10 ms and 20 ms = slow performance

•	 Between 20 ms and 50 ms = poor performance

•	 Greater than 50 ms = significant performance problem.

In addition to the performance counters, high wait times for PAGEIOLATCH_*, ASYNC_
IO_COMPLETION, IO_COMPLETION, or WRITELOG waits can be signs of disk I/O bottle-
necks on the server. The query to retrieve the wait statistics for an instance of SQL Server
is included in the Wait Statistics: the Basis for Troubleshooting section of Chapter 1.

Common Disk I/O Problems

As with many of the problems covered throughout this book, the first port of call when
attempting to resolve I/O issues is to ensure that a lack of indexing (Chapter 5), or poorly
written queries, isn't causing a needlessly excessive amount of I/O. If your database design
and query workload are as tuned as they can be, and the I/O problem persists, then you're
probably suffering from a disk misconfiguration issue. Based on the questions I see in

66

Chapter 2: Disk I/O Configuration

online technical forums, and on my experience as a consultant, the following
misconfigurations are at the heart of many of the disk I/O issues that I see:

•	 sizing for capacity instead of I/O performance

•	 incorrect workload isolation

•	 incorrect partition alignment

•	 incorrect bandwidth using SAN configurations.

Each of these problems and the steps necessary to troubleshoot them will be covered in
the remaining sections of this chapter.

Sizing for capacity instead of I/O performance

As previously covered in this chapter, proper sizing of the disk subsystem for SQL Server
is primarily a matter of performance, and not actual storage capacity. Often, unless an
experienced DBA is involved in the purchasing decisions, the key factor used in provi-
sioning hardware is the size of the database, and not the workload I/O performance
requirements.

A 800 GB database can be stored on a single 1TB drive, but the chances of a single 1TB
drive being able to supply the I/O capacity that will deliver satisfactory performance
under concurrent user access, are slim at best. The key to high-performance disk configu-
rations is having lots of physical disks working together, using RAID, to provide both the
required I/O capacity and the necessary storage space.

With SAN implementations, it is more likely that you will get the number of disks
necessary to handle the I/O performance requirements. However, since most SAN
implementations are not dedicated to SQL Server alone, you also have to account for the
shared I/O performance requirements of the other servers, using the same physical disks,
and the potential impact that this shared I/O will have on SQL Server performance.

67

Chapter 2: Disk I/O Configuration

Troubleshooting problems with I/O performance requires monitoring the performance
counters for the disk I/O subsystem, as well as monitoring the virtual file and wait stats
for the database instance, to determine the impact the I/O subsystem may be having on
SQL Server performance.

Incorrect workload isolation

Workload isolation is critical for SQL Server storage planning. As discussed earlier, the
I/O characteristics of the transaction log files and data files are significantly different, and
segregating the I/O for the two files is critical to overall system performance. For high-
write workloads, in particular, where the transaction log files are constantly written to,
the need to isolate the transaction log files on separate physical disk arrays is paramount.

In SAN-based implementations, where there are no dedicated spindles configured specifi-
cally for SQL Server, workload isolation also has to take into account the other systems
that are sharing the physical spindles, and the impact that they will have on the perfor-
mance of SQL Server.

As discussed in the SAN section, earlier, it is very common in small and medium business
infrastructures to have SANs that allocate storage to SQL Server from a disk pool that
is shared by the whole enterprise, and so is being used by all manner of other applica-
tions. My advice is to consider this sort of configuration inappropriate for use with SQL
Server, unless appropriate testing proves otherwise, or the pool of disks is large enough to
support the required I/O throughput for the shared demand.

If a shared pool of disks is being used, it is important to have the right monitoring tools
in place for the configuration. Having a SQL Server database, Oracle database, and busy
Exchange mailbox database sharing a small disk pool is likely to be problematic for all
three in terms of performance, due to the competing high I/O workloads.

68

Chapter 2: Disk I/O Configuration

Incorrect partition alignment

At PASS Summit 2008, Jimmy May, a member of the SQLCAT team, presented a
session on Disk Partition Alignment Best Practices for SQL Server, which was later turned
into a white paper of the same name (http://msdn.microsoft.com/en-us/library/
dd758814%28v=sql.100%29.aspx). At that time, few people had ever heard of partition
alignment, let alone realized that it had long been a silent performance killer for disk
storage arrays, often reducing performance by as much as 20–30% overall.

The crux of the problem is that disk hardware reports 63 hidden sectors at the beginning
of the drive, which are used for the master boot record (MBR) and Windows reserves the
space required for the MBR when creating a partition on the disk. This offset of 63 sectors
results in a 31.5 KB offset of the disk, which is misaligned with the standard stripe unit
sizes used by RAID controllers, which range from 4 KB to 512 KB based on the specific
controller and configuration being used to control the size of each stripe element written
to, or read from, each disk in the stripe.

Most disks commonly used today have a 512-byte sector size, but newer disks and SSDs
may use a 4 KB sector size. The recommended allocation unit size for SQL Server is 64
KB, instead of the default 4 KB on NTFS and, based on the recommended allocation unit
size for a 512-byte sector, a 64 KB block of data will use 128 sectors.

When this is offset by 63 sectors, the result is a split I/O, where one disk in the array
incurs an I/O operation to read 65 sectors of information and a second I/O request occurs
to the next disk in the array to read the remaining 63 sectors of data for the 64 KB block
of data.

To prevent this problem from continuing in the future, Microsoft changed Windows
Server 2008 to offset the starting partition at a 1 MB boundary, which is compatible with
all existing stripe unit sizes for RAID, and results in appropriate alignment of the disk.
The problem is that moving a disk to Windows Server 2008 doesn't fix the problem, and
any disk that was partitioned on Windows Server 2000 or 2003 will be misaligned unless

http://msdn.microsoft.com/en-us/library/dd758814%28v=sql.100%29.aspx
http://msdn.microsoft.com/en-us/library/dd758814%28v=sql.100%29.aspx

69

Chapter 2: Disk I/O Configuration

it was explicitly aligned using diskpar (Windows Server 2000) or diskpart (Windows
Server 2003) from the command line.

The only way to find out if you have this problem is to run the WMIC command shown
in Listing 2.1, from the command line, to retrieve the current partition offset information
from Windows, and determine if any of the partitions are misaligned.

wmic partition get BlockSize, StartingOffset, Name, Index

Listing 2.1: Using WMI query to investigate possible disk partition misalignment.

If the StartingOffset value is not evenly divisible without a remainder, or
decimal result, by the stripe unit size being used by the RAID controller, then the
disk is misaligned.

The good news is that fixing a misaligned partition is very easy to do, but the bad news is
that, to fix the problem, you have to delete the existing partitions and data from the disks
and start over. The diskpart tool in Windows Server 2003, 2008, and 2008 R2 can be
used to create a partition on a disk that is aligned to a specified size in KB. The following
diskpart command will create a partition that is aligned at 64 KB.

create partition primary align=64

Listing 2.2: Creating a 64 KB aligned partition.

Once the partition is aligned it can be assigned a letter and formatted, using the recom-
mended 64 KB allocation unit size, then put back into service as a host for database files,
without the costly performance impact associated with misalignment.

70

Chapter 2: Disk I/O Configuration

Incorrect bandwidth using SAN configurations

In SAN environments, where the storage is attached through a network connection, one
of the biggest limiting factors to storage performance is the bandwidth available for the
connection. This is true regardless of whether the connection is Fiber Channel, or iSCSI,
using traditional Ethernet for the connectivity.

When I first started working with SAN environments for SQL Server the prevailing
technology in use was Fiber Channel, and the standard port speed was 2 Gb/sec for a
single path. At the time, newer hardware that supported 4 Gb/sec connections for a single
path was just being implemented in environments. Soon thereafter, 1 Gb/sec iSCSI began
to appear in small-to-medium business environments, as a lower-cost implementation of
shared storage for the enterprise.

For me, one of the hardest things to understand, when working with SANs, was the
impact that the paths to the SAN had on storage performance, especially in multi-path
environments where the expectation was that multiple paths to the SAN would improve
the overall performance of the storage connections.

When using SAN multi-path technologies, the initial benchmarking and validation of
the storage configuration is incredibly important. You need to verify whether or not the
multiple paths to the SAN really are being used in conjunction with each other to improve
the performance.

Typically, a 1 Gb/sec connection to a SAN will be capable of a maximum throughput of
90–95 MB/sec, assuming the underlying storage configuration will support this level of
throughput. So, theoretically, two 1 Gb/sec connections should provide 180–190 Mb/sec
of throughput. However, depending on the exact multi-path configuration, this may not
be an accurate expectation.

71

Chapter 2: Disk I/O Configuration

A full discussion of multi-path configurations of SANs is beyond our remit, but the
key point in determining the available bandwidth is appropriate benchmarking of the
storage subsystem using tools like SQLIO or IOmeter. If the storage performance is
not meeting the expectations for the configuration, you will have to determine where
exactly the bottleneck in the configuration lies, and continue troubleshooting from there.
It could be that the number of disks underlying the storage array cannot support the
throughput requirements, or that the SAN caching is the bottleneck, or that the multi-
path configuration is not functioning as expected and you are only getting an actual
single path to the SAN for I/O.

Summary

Proper configuration of the hardware, as well as the SQL Server database engine, is
critical to the optimum performance of the overall system. Incorrect hardware configu-
rations, generally in the disk I/O subsystem, often result in a system that fails to meet
performance expectations.

The best strategy with regard to disk I/O configuration problems could be summarized as
"avoid them as far as possible, through appropriate planning and testing."

•	 Don't consider only storage capacity when provisioning the disk subsystem; I/O
performance and throughput are critical.

•	 Make sure your files are separated according to the type of I/O workload. Data files, log
files, and tempdb files should all be on separate disks, and configured appropriately for
the given workload type.

•	 Test the performance of your disk subsystem under realistic loads; it's the only way to
be sure will meet your I/O performance and throughput requirements.

72

Chapter 2: Disk I/O Configuration

If your system does suffer from disk I/O issues, there are very few quick fixes. First, you
need to ensure that you're not wasting I/O cycles, either through poorly designed queries,
lack of indexing, or through hardware-related "bugs" such as disk partition misalignment.

Beyond that, you probably need to add I/O capacity, or work out what component is
causing the I/O bottleneck. If you are using DAS, this may be relatively straightforward. If
you're using a SAN, it helps if you are friendly with your SAN administrator.

73

Chapter 3: High CPU Utilization

A CPU-bound system is relatively easy to spot, but not always as easy to diagnose. If you
notice that one or more of the CPUs are working at close to maximum capacity, along
with a dramatic decrease in server performance, then you've likely got a CPU issue. The
CPU is involved in almost all SQL Server activity, from running queries to moving data
in and out of memory, and so on, which means that an over-taxed CPU can have dire
consequences.

Unfortunately, the source of CPU pressure is not always easy to pinpoint since what
seems like a CPU problem may actually have its root cause elsewhere, such as insuf-
ficient memory, causing SQL Server to constantly move data in and out of memory, or
poorly written queries, inadequate indexing, or even inappropriate configuration option
settings. The source of the CPU pressure may also be a non-SQL Server process running
on the server.

Regardless of what caused the problem, the goal of the investigation stage of trouble-
shooting excessive CPU utilization in SQL Server is to isolate the problem to a specific
source. Generally, this will require the collection of multiple pieces of information, using
tools such as Performance Monitor (PerfMon), SQLTrace and several of the SQL Server
Dynamic Management Views.

Once it has been confirmed that the high CPU usage is due to the SQL Server process,
and the problem has been isolated to a specific query (or set of queries), we can seek to
alleviate the CPU pressure via design changes, such as tuning CPU-intensive queries,
adding appropriate indexes, replacing ad hoc SQL with stored procedures to improve plan
reuse and so on, or by tweaking SQL Server and Windows configuration settings.

74

Chapter 3: High CPU Utilization

Investigating CPU Pressure

In this section, we'll discuss the three main tools used to measure CPU usage, and
diagnose CPU pressure, in SQL Server:

•	 Performance Monitor – a Windows monitoring tool for measuring the CPU usage by
SQL Server and other processes running on the server.

•	 SQLTrace – a set of system stored procedures for real-time tracing events that are
executing in SQL Server during periods of high CPU usage.

•	 Dynamic Management Views – a collection of system objects that provide both
snapshot and aggregate data regarding resource usage in SQL Server.

Performance Monitor

If your SQL Server system is experiencing excessively high CPU activity, the first tool for
which you should reach is Performance Monitor (PerfMon). This Windows monitoring
tool will confirm whether the excessive CPU usage is due to SQL Server activity, or is
caused by other processes on the server, or the operating system itself. There is little point
in spending valuable time and energy investigating SQL Server for excessive CPU usage, if
the root cause is a non-SQL Server process.

The primary PerfMon counters that are of value for monitoring CPU usage are listed
below with brief explanations (quoted from MSDN):

Processor/ %Privileged Time – percentage of time the processor spends on execution of Microsoft

Windows kernel commands such as core operating system activity and device drivers.

Processor/ %User Time – percentage of time the processor spends on executing user processes such as

SQL Server. This includes I/O requests from SQL Server.

Process (sqlservr.exe)/ %Processor Time – the sum of processor time on each processor for all

threads of the process.

75

Chapter 3: High CPU Utilization

Simply open up PerfMon (Control Panel | System and Security | Administrative Tools),
click the Add button (represented by a green cross) and add the counters, as shown in
Figure 3.1.

Figure 3.1: Adding CPU counters in PerfMon.

These three counters are sufficient to monitor the overall CPU usage, as well as the usage
by SQL Server. However, there are several SQL Statistics counters (and one Plan
Cache counter) that don't directly monitor CPU usage but do monitor events such as
compilation and recompilation events, which can eat up a lot of CPU cycles, or are indica-
tions of problems that produce high CPU usage. These counters are simply listed here,
and discussed in further detail later in the chapter, in direct relation to the issues that
they can be used to investigate.

76

Chapter 3: High CPU Utilization

•	 SQLServer:SQL Statistics/Auto-Param Attempts/sec

•	 SQLServer:SQL Statistics/Failed Auto-params/sec

•	 SQLServer:SQL Statistics/Batch Requests/sec

•	 SQLServer:SQL Statistics/SQL Compilations/sec

•	 SQLServer:SQL Statistics/SQL Re-Compilations/sec

•	 SQLServer:Plan Cache/Cache hit Ratio

None of these counters have hard thresholds that indicate "good" or "bad" values; instead
they should be evaluated against what is normal for the system in question, and if a
certain value falls far outside the normal range, the cause should be investigated further.

Processor usage in virtual machines

With a virtual machine (VM), the %ProcessorTime is the percentage of the resources allocated to the

VM that is being used, not the percentage allocated to the actual hardware. Hence, if the VM has been

allocated very minimal CPU resources, PerfMon may show very high %ProcessorTime even though

the actual CPUs are barely being used. One of the first steps when investigating high CPU usage in a

virtual machine is to check the hardware usage of the virtual machine as a whole and ensure that the

resource allocations are reasonable.

SQL Trace

The Profiler utility included with SQL Server can be used to examine the details of what
commands are running against a SQL Server. It is a useful tool for digging into details of
specific problems once the general problem has been identified. The Profiler GUI makes
use of a set of stored procedures, collectively known as SQL Trace. The GUI itself should
be used with caution on busier servers, as it can have an adverse effect on the overall

77

Chapter 3: High CPU Utilization

performance and stability of the server. Instead, a server-side trace should be run, with
output directed to a file on a fast, local drive.

The main usage for SQL Trace is to identify specific queries that are consuming
large amounts of CPU. It is less useful for a point-in-time analysis than the Dynamic
Management Views are, and is more useful for capturing workloads for analysis.
With the Dynamic Management Views (such as sys.dm_exec_requests) the rising
resource usage can be watched while the query is still running, while with SQL Trace
the statement or batch must complete before the event that shows the total resource
usage is fired.

To capture a set of queries that are using excessive amounts of CPU, a trace needs to be
run during times of high CPU usage. The details on how to set up and run a trace are
given in Chapter 5, and will not be repeated here. The one additional consideration in
running a trace to investigate queries that are consuming large amounts of CPU is that
a trace filter should be added on the CPU column to avoid capturing large numbers of
uninteresting queries.

Dynamic Management Views

Various Dynamic Management Views (DMVs) provide a range of information that can
help diagnose CPU-related issues. This information includes aggregated query perfor-
mance statistics, aggregated wait statistics, details of what is running, what is waiting for
processing time, what is waiting for other resources, and other information that is hard or
impossible to get in any other way. We can investigate high CPU usage by SQL Server by
examining the CPU-related wait statistics, the scheduler details and the aggregated query
performance statistics, as follows:

•	 Verifying the extent of CPU pressure via signal waits, using sys.dm_os_wait_stats.

•	 Diagnosing a CPU-bound system according the types of wait observed, using sys.
dm_os_wait_stats and sys.dm_os_schedulers.

78

Chapter 3: High CPU Utilization

•	 Identifying high-CPU cached plans, and associated queries, using sys.dm_exec_
query_stats and sys.dm_exec_sql_text.

•	 Identifying currently waiting tasks, especially ones waiting on CPU-related wait types
using sys.dm_os_waiting_tasks.

•	 Observing the resource usage of currently executing queries with sys.
dm_exec_requests.

Investigating CPU-related wait statistics

Whenever a session has to wait before the requested work can continue, SQL Server
records the reason for the wait (the resource that is being waited on) and the length of
time waited. The sys.dm_os_wait_stats DMV exposes these wait statistics, aggre-
gated across all sessions since the server last restarted or the wait statistics were cleared
out with the DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR); command. This
DMV can be used, among other things, to confirm CPU pressure and establish the most
common wait types that are being experienced by a CPU-bound system.

It's worth noting that some third-party monitoring tools rely on the statistics in this DMV
not being cleared out between server restarts as, if they are cleared out, it may impact the
accuracy of the information shown by these monitoring tools.

Signal wait time

Along with a wait_type column, indicating the type of wait, the sys.dm_os_wait_
stats DMV returns several useful wait times, including:

•	 wait_time_ms – total amount of time that tasks have waited on this given wait type;
this value includes the time in the signal_wait_time_ms column. The value incre-
ments from the moment a task stops execution, to wait for a resource, to the point it
resumes execution.

79

Chapter 3: High CPU Utilization

•	 signal_wait_time_ms – the total amount of time tasks took to start executing after
being signaled (i.e. after the resource it was waiting for became available); this is time
spent on the runnable queue, and is pure CPU wait.

If the signal wait time is a significant portion of the total wait time, it means that tasks
are waiting a relatively long time to resume execution after the resources that they were
waiting for became available. This can indicate either that there are lots of CPU-intensive
queries, which may need optimizing, or that the server needs more CPU. The query in
Listing 3.1 will provide a measure of how much of the total wait time is signal wait time.

SELECT SUM(signal_wait_time_ms) AS TotalSignalWaitTime ,
 (SUM(CAST(signal_wait_time_ms AS NUMERIC(20, 2)))
 / SUM(CAST(wait_time_ms AS NUMERIC(20, 2))) * 100)
 AS PercentageSignalWaitsOfTotalTime
FROM sys.dm_os_wait_stats

Listing 3.1: Verifying CPU pressure via signal wait time.

Since this DMV shows aggregated wait times and counts since the statistics were cleared
or since the server started, a point-in-time view of the wait stats is generally not that
useful. What is most useful is to compare the wait stats at a particular time with the stats
at an earlier time and see how they changed. The other option is to clear the wait stats
DMV, using DBCC SQLPERF("sys.dm_os_wait_stats",CLEAR);, wait a while, then
query and see what's accumulated in that known and set period of time.

Tracking session and statement-level waits

Since the wait times in this DMV are aggregated, it is hard to relate a wait time to a specific query, unless

you're on a test system with only one session running. However, in SQL Server 2008, it's possible to do

this if you use Extended Events. See my blog post: http://sqlblog.com/blogs/jonathan_kehayias/

archive/2010/12/30/an-xevent-a-day-30-of-31-tracking-session-and-statement-level-waits.

aspx.

http://sqlblog.com/blogs/jonathan_kehayias/archive/2010/12/30/an-xevent-a-day-30-of-31-tracking-session-and-statement-level-waits.aspx
http://sqlblog.com/blogs/jonathan_kehayias/archive/2010/12/30/an-xevent-a-day-30-of-31-tracking-session-and-statement-level-waits.aspx
http://sqlblog.com/blogs/jonathan_kehayias/archive/2010/12/30/an-xevent-a-day-30-of-31-tracking-session-and-statement-level-waits.aspx

80

Chapter 3: High CPU Utilization

We can also use the sys.dm_os_wait_stats DMV to find out which resource waits are
the most common in our CPU-bound system, as shown in Listing 3.2, where we identify
the top wait events, ordered according to the total amount of time processes have waited
(wait_time_ms) on this event. It is important to ignore the benign waits, typically ones
caused by system processes that are expected to be waiting most of the time. We're also
subtracting out the signal_wait_time as that portion of the wait time is not waiting
for the particular resource, but waiting for time on the scheduler.

SELECT TOP (10)
 wait_type ,
 waiting_tasks_count ,
 (wait_time_ms - signal_wait_time_ms) AS resource_wait_time ,
 max_wait_time_ms ,
 CASE waiting_tasks_count
 WHEN 0 THEN 0
 ELSE wait_time_ms / waiting_tasks_count
 END AS avg_wait_time
FROM sys.dm_os_wait_stats
WHERE wait_type NOT LIKE '%SLEEP%' -- remove eg. SLEEP_TASK and
 -- LAZYWRITER_SLEEP waits
 AND wait_type NOT LIKE 'XE%'
 AND wait_type NOT IN -- remove system waits
('KSOURCE_WAKEUP', 'BROKER_TASK_STOP', 'FT_IFTS_SCHEDULER_IDLE_WAIT',
 'SQLTRACE_BUFFER_FLUSH', 'CLR_AUTO_EVENT', 'BROKER_EVENTHANDLER',
 'BAD_PAGE_PROCESS', 'BROKER_TRANSMITTER', 'CHECKPOINT_QUEUE',
 'DBMIRROR_EVENTS_QUEUE', 'SQLTRACE_BUFFER_FLUSH', 'CLR_MANUAL_EVENT',
 'ONDEMAND_TASK_QUEUE', 'REQUEST_FOR_DEADLOCK_SEARCH', 'LOGMGR_QUEUE',
 'BROKER_RECEIVE_WAITFOR', 'PREEMPTIVE_OS_GETPROCADDRESS',
 'PREEMPTIVE_OS_AUTHENTICATIONOPS', 'BROKER_TO_FLUSH')
ORDER BY wait_time_ms DESC
-- **** Author: Jonathan Kaheyias ****

Listing 3.2: Finding the top 10 wait events (cumulative).

Three interesting wait types to look out for, in regard to CPU pressure, are SOS_
SCHEDULER_YIELD, CXPACKET and CMEMTHREAD.

81

Chapter 3: High CPU Utilization

SOS_SCHEDULER_YIELD waits

The SQL scheduler is a cooperative multi-tasking scheduler. This means that it relies on
the executing queries to voluntarily relinquish the CPU after a specific amount of running
time. By contrast, the Windows scheduler is a pre-emptive multi-tasking scheduler, which
means it removes tasks from the CPU after a specific amount of time.

When a task voluntarily relinquishes the CPU and begins waiting to resume execution,
the wait type assigned to the task is SOS_SCHEDULER_YIELD. The relinquishing task
goes back onto the runnable queue and another task gets its allocated time on the CPU.

If overall wait times are low, this type of wait is benign, simply indicating that the query
spent longer than allowed on the CPU without having to wait for other resources (disk
I/O, locks, latches, memory grants and so on).

If queries show high wait times in sys.dm_exec_requests or sys.dm_os_waiting_
tasks for the SOS_SCHEDULER_YIELD wait type, it's an indication that the query is
extremely CPU-intensive. If there are high wait times for this wait type overall on the
server it can indicate either that there are lots of CPU-intensive queries, which may need
optimizing, or that the server needs more CPU. Scheduler activity can be investigated
further using the sys.dm_os_schedulers DMV (discussed shortly).

CXPACKET waits

CXPACKET waits occur during synchronization of the query processor exchange iterator
between workers, for a query running in parallel across multiple processors. If the server
hosts a data warehouse or reporting type of database that receives a low volume of queries
but processes large amounts of data, parallelism can substantially reduce the time it
takes to execute those queries. In contrast, however, if the server hosts an OLTP database
that has a lot of small queries and transactions, then parallelism can kill throughput and
negatively impact performance. For further discussion of high CXPACKET waits and how
to deal with this issue see the section Inappropriate parallelism, later.

82

Chapter 3: High CPU Utilization

CMEMTHREAD waits

CMEMTHREAD waits are waits for synchronized memory objects. Some memory objects
can be accessed by multiple threads simultaneously, some cannot. When multiple threads
are trying to access a memory object, typically a cache, which must be accessed by one
thread at a time, the waiting threads get a CMEMTHREAD wait.

In general, CMEMTHREAD waits are not common or long-lasting. However, there is a
known memory issue with SQL Server 2005 where, under certain circumstances, a
server would show very high CPU usage, very high CMEMTHREAD waits, and very poorly
performing queries. The details of this will be discussed later, in the TokenAndPermUser-
Store section.

Investigating scheduler queues

The sys.dm_os_schedulers DMV can identify whether or not a SQL instance is
CPU-bound. This DMV returns one row for each of the SQL Server schedulers and it lists
the total number of tasks that are assigned to each scheduler, as well as the number that
are runnable.

A runnable task is one that is in the runnable queues, waiting for CPU time. Other
tasks on the scheduler that are in the current_tasks_count but not the runnable_
tasks_count are ones that are either sleeping or waiting for a resource (lock, latch, I/O,
memory, and so on).

SELECT scheduler_id ,
 current_tasks_count ,
 runnable_tasks_count
FROM sys.dm_os_schedulers
WHERE scheduler_id < 255

Listing 3.3: Investigating scheduler queues.

83

Chapter 3: High CPU Utilization

Again, there is no threshold value that represents the boundary between a "good" and
"bad" number of runnable tasks, but the lower the better. A high number of runnable
tasks, like a high signal wait time, indicates that there is not enough CPU for the current
query load.

The filter for schedulers below 255 removes, from the result set, the numerous hidden
schedulers in SQL Server, which are used for backups, the Dedicated Administrator
Connection (DAC), and so on, and are not of interest when investigating general
CPU load.

Identifying CPU-intensive queries

In order to determine the worst-running queries in the plan cache of SQL Server, the
DMVs sys.dm_exec_query_stats and sys.dm_exec_sql_text can be used.
The sys.dm_exec_query_stats DMV provides aggregated statistics and returns
one row for each query statement in the cached plan. Many of the columns are incre-
mented counters, and provide information about how many times a query has been
executed and the resources that were used. For example, the *_worker_time columns
represent the time spent on the CPU, and the *_elapsed_time columns show the total
execution time.

The query shown in Listing 3.4 returns the top ten most costly queries in cache by total
worker time. We join to the sys.dm_exec_sql_text and sys.dm_exec_query_
plan functions to retrieve the text and execution plans for these queries, within
the batch.

SELECT TOP (10)
 SUBSTRING(ST.text, (QS.statement_start_offset / 2) + 1,
 ((CASE statement_end_offset
 WHEN -1 THEN DATALENGTH(st.text)
 ELSE QS.statement_end_offset
 END - QS.statement_start_offset) / 2) + 1)
 AS statement_text ,

84

Chapter 3: High CPU Utilization

 execution_count ,
 total_worker_time / 1000 AS total_worker_time_ms ,
 (total_worker_time / 1000) / execution_count
 AS avg_worker_time_ms ,
 total_logical_reads ,
 total_logical_reads / execution_count AS avg_logical_reads ,
 total_elapsed_time / 1000 AS total_elapsed_time_ms ,
 (total_elapsed_time / 1000) / execution_count
 AS avg_elapsed_time_ms ,
 qp.query_plan
FROM sys.dm_exec_query_stats qs
 CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) st
 CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
ORDER BY total_worker_time DESC

Listing 3.4: Finding the top ten CPU-consuming queries.

The execution plan can be viewed by clicking the XML link to open the plan in its
graphical form. The execution plan returned is for the entire batch, not just the
high-CPU statement.

When querying the plan cache in order to investigate sub-optimal plans, note that some
queries may not be listed. Execution plans are retained in cache until SQL Server decides
that the plan has aged to a point where it should be removed to allow for new execution
plans to be cached, or the cache is fully or partially cleared by DBCC commands, database
state changes (restoring a database, detaching or taking a database offline, and so on) or
certain server-wide configuration changes, or SQL Server is restarted. SQL Server will
also remove execution plans from the cache if it finds that extra memory is required
elsewhere in the system.

Clearing the plan cache

You can flush all plans from the cache using, DBCC FREEPROCCACHE, or supply a plan_handle or

sql_handle to remove a plan for a specific batch. Alternatively, DBCC FREEPROCINDB(db_id) can

be used to remove plans for a specific database.

85

Chapter 3: High CPU Utilization

It's also important to note that some queries may never appear in the cache at all.
Procedures marked WITH RECOMPILE and queries with the hint OPTION (RECOMPILE)
are never cached. Also, the query stats for a query are cleared when the query recompiles
for any reason, for example due to changing statistics or schema changes. As a result,
queries that are subject to many recompilation events may also show a very low total for
elapsed time, because that total is only for the current plan, which may not have been in
cache very long.

This problem extends beyond just recompilation; the results you receive from queries
such as Listing 3.4 will be skewed towards plans that have been in the cache the longest.
An often-used plan that's been in the cache a long time will appear higher in the list than
a really bad plan that has only recently been added to the cache.

You can still get a good idea of what queries have run and how they have run, but the only
way to ensure a truly level playing field is to flush the cache and then perform the analysis
after a set period of time. However, flushing the cache on a production server may not be
the best idea, especially if that server is already known to be CPU-bound. That's why, if a
comprehensive analysis is needed, I recommend you use server-side tracing to capture all
of the executing queries for a period of time.

Common Causes of High CPU Usage

Regardless of the size and expense of the hardware and technology that underpins your
SQL Server installations, there is always the risk that one or more poorly tuned T-SQL
statements will cause severe overutilization of resources.

For every statement sent to SQL Server for execution, the query optimizer attempts to
find the most efficient way to retrieve the data, i.e. the one that is the least expensive in
terms of use of CPU, I/O and memory resources. The plan it produces will only be as
good as the data access paths that are available to it, and the information it has regarding
the data and its distribution. If appropriate indexes are missing, or queries are written

86

Chapter 3: High CPU Utilization

in such a way that potentially-useful indexes are ignored, then the optimizer will not
be able to come up with a truly optimal plan. Likewise, if the information the optimizer
has regarding the data, via index statistics, is inaccurate, then the optimizer may select
a sub-optimal plan, since the information that it is using to calculate the cost of plans is
inaccurate.

Another possibility is that the optimizer will produce a plan that is optimal for one
execution of the query (typically the one that triggered the optimization) and not
for others. This is commonly known as "parameter sniffing," though it should more
accurately be referred to as "inappropriate parameter sniffing," since parameter sniffing is
in general a good thing, as we'll discuss later in the chapter.

Missing indexes

It might surprise some people to learn that missing indexes can cause high CPU usage
but, in fact, a lack of appropriate indexing is one of the most common causes of heavy
CPU and I/O utilization in SQL Server. When an appropriate index doesn't exist to satisfy
a query, the table scans that result can cause significant CPU usage, as SQL has to read
and process far, far more rows than is actually necessary to satisfy the query.

Using the execution plans obtained from the plan cache, as shown in Listing 3.4, we
can find any operations that can be replaced with more efficient operations, by adding
covering indexes, or in some cases changing the indexes that are in place. Let's consider a
simple query against the Adventureworks2008 database, as shown in Listing 3.5.

SELECT per.FirstName ,
 per.LastName ,
 p.Name ,
 p.ProductNumber ,
 OrderDate ,
 LineTotal ,
 soh.TotalDue
FROM Sales.SalesOrderHeader AS soh

87

Chapter 3: High CPU Utilization

 INNER JOIN Sales.SalesOrderDetail sod
 ON soh.SalesOrderID = sod.SalesOrderID
 INNER JOIN Production.Product AS p ON sod.ProductID = p.ProductID
 INNER JOIN Sales.Customer AS c ON soh.CustomerID = c.CustomerID
 INNER JOIN Person.Person AS per
 ON c.PersonID = per.BusinessEntityID
WHERE LineTotal > 25000

Listing 3.5: A simple query in AdventureWorks.

This query causes a table scan on the SalesOrderDetail table, as there is no index on
the LineTotal column. The execution characteristics (with all the necessary pages in
the data cache, so no I/O waits) are as follows:

SQL Server parse and compile time:
 CPU time = 0 ms, elapsed time = 0 ms.

 SQL Server Execution Times:
 CPU time = 452 ms, elapsed time = 458 ms.

Almost half a second of CPU time to return 24 rows; that's not good. Now let's add a
simple index, as shown in Listing 3.6.

CREATE NONCLUSTERED INDEX idx_SalesOrderDetail_LineTotal
ON Sales.SalesOrderDetail (LineTotal)

Listing 3.6: Adding an index to the LineTotal column in AdventureWorks.

Now, if we run the same query again, the performance characteristics will be very
different:

SQL Server parse and compile time:
 CPU time = 0 ms, elapsed time = 0 ms.

 SQL Server Execution Times:
 CPU time = 0 ms, elapsed time = 8 ms.

88

Chapter 3: High CPU Utilization

This was a simplistic example, but it serves to demonstrate the point, and one of
the major problems I see when investigating high CPU scenarios is very simply
missing indexes.

Please refer to Chapter 5 for further information on missing indexes.

Outdated statistics

The SQL Server Optimizer uses statistics to calculate the estimated cardinality for
various query operators. That cardinality, essentially number of rows, affects the cost of
the operators. The cost of the operators, in turn, determines the cost of the plan. If the
cardinality estimation is wrong, because of outdated statistics, the cost that the optimizer
calculates for the operators will also be wrong, leading the optimizer to select a plan that
has a low estimated cost, but a very high actual cost when it is executed.

The most common side effect of incorrect statistics is that the optimizer estimates on the
low-side for the number of rows, and so chooses operators that are very good for small
numbers of rows, such as nested loop joins and key lookups. When the query is executed
and it turns out that a large number of rows need to be processed, the chosen operators
scale badly and the plan is highly inefficient.

One way to tell if there is a problem with statistics for a particular query, is to run
the query in Management Studio, return the actual execution plan and examine the
estimated and actual row counts for any index seek and scan operations within the
execution plan. If the two counts are significantly different, bearing in mind that the
estimated count is per execution of the operator and the actual count is a total for all
executions of the operator, then one possibility is that the statistics are outdated.

Fixing outdated statistics is done via the UPDATE STATISTICS statement. This can be
run for all the statistics on a table (UPDATE STATISTICS <Table name>) or just for one
specific statistics set (UPDATE STATISTICS <Table name> <statistic name>).

89

Chapter 3: High CPU Utilization

If the problem is due to stale statistics, i.e. an update of the statistics fixes the problem,
then you need to prevent a recurrence of the problem, and there are three ways to do it:

1. If the database setting, Auto_Update_Statistics, is off, consider turning it on.
Alternatively, a database-wide statistics update job can be run on a regular basis.

2. If automatic updates are disabled for a particular index of set of statistics, as a result
of rebuilding the index with the NORECOMPUTE option, they should be enabled.

3. A job can be created that updates the specific statistics that suffer from insufficient
updates, and so result in performance problems. This job can be scheduled as often as
necessary. I have heard of cases where such a job is run hourly.

Non-SARGable predicates

SARGable, where SARG stands for Search Argument, is one of those annoying made-up
terms that we, as IT people, love to use; it simply means that that a predicate can be used
in an index seek operation. The rules for SARGable predicates, in general, are that the
column should be directly compared (equality or inequality) to an expression, and that
any functions specified on the column will make the predicate non-SARGable. In other
words, WHERE SomeFunction(Column) = @Value is not SARGable, whereas WHERE
Column = SomeOtherFunction(@Value) is SARGable. Note that SARGability doesn't
rule out the use of operators such as LIKE or BETWEEN (both inequality comparisons) or
IN (treated as a set of equality comparisons).

Non-SARGable predicates can result in table or index scans and, similar to the case of
missing indexes, this will cause significant CPU usage as SQL has to read and process
far more rows than necessary. Listing 3.7 shows an example of a WHERE clause predicate
that is non-SARGable due to the usage of some date-manipulation functions on the
ModifiedDate column. This example assumes that an index has been added on
ModifiedDate, as there is not one in the standard AdventureWorks database.

90

Chapter 3: High CPU Utilization

SELECT soh.SalesOrderID ,
 OrderDate ,
 DueDate ,
 ShipDate ,
 Status ,
 SubTotal ,
 TaxAmt ,
 Freight ,
 TotalDue
FROM Sales.SalesOrderheader AS soh
 INNER JOIN Sales.SalesOrderDetail AS sod
 ON soh.SalesOrderID = sod.SalesOrderID
WHERE CONVERT(VARCHAR(10), sod.ModifiedDate, 101) = '01/01/2010'

Listing 3.7: A non-SARGable predicate in the search condition.

From the execution plan, we can see that use of the functions on the ModifiedDate
column meant that an index seek operation was not possible; the entire index was
scanned in order to locate the matching values, as shown in Figure 3.2.

Figure 3.2: An index scan on the SalesOrderDetail index.

91

Chapter 3: High CPU Utilization

This is a fairly common problem in SQL code. Dates can be difficult to work with and
often people take the easiest approach, not realizing the impact it will have on perfor-
mance. The change in this case is easy; modify the predicate to be a range (inequality)
search for date and times within the desired day.

SELECT soh.SalesOrderID ,
 OrderDate ,
 DueDate ,
 ShipDate ,
 Status ,
 SubTotal ,
 TaxAmt ,
 Freight ,
 TotalDue
FROM Sales.SalesOrderheader AS soh
 INNER JOIN Sales.SalesOrderDetail AS sod ON soh.SalesOrderID = sod.
SalesOrderID
WHERE sod.ModifiedDate >= '2010/01/01'
 AND sod.ModifiedDate < '2010/01/02'

Listing 3.8: A SARGable predicate in the search condition.

Figure 3.3 confirms that we now see an index seek operation.

This is a fairly common problem in many databases; I often see functions such as
UPPER, LTRIM, ISNULL being used in queries, either in the joins or in the WHERE
clause, and in many cases there is simply no need for them. If the columns use a case-
insensitive collation, then uppercase and lowercase values are considered equal, and
the use of the UPPER or LOWER functions do nothing other than degrade performance.
Similarly, with string comparisons SQL ignores trailing spaces, removing the need for
the RTRIM function.

92

Chapter 3: High CPU Utilization

Figure 3.3: An index seek on the SalesOrderDetail index.

Dealing with NULLs is always a fun one. The ISNULL function is often used unnecessarily
due to a misunderstanding of how NULLs work in predicates. For example, the following
two WHERE clause predicates are completely equivalent in function.

WHERE ISNULL(SomeCol,0) > 0
WHERE SomeCol > 0

In the first one, any row with a NULL value will be excluded because the NULL is
converted to zero and the filter is for values greater than zero. In the second one, any
row with a NULL value will be excluded because NULLs do not ever return true when
compared to any value using the =, <>, <, > or any of the other comparison operators.
They can only return true for IS NULL or IS NOT NULL checks. Hence, both predicates
achieve the same result, but only the second one allows use of index seeks.

93

Chapter 3: High CPU Utilization

Implicit conversions

An implicit conversion results from a comparison of unequal data types. SQL cannot
compare values of differing types and it must convert one of the columns involved to the
same data type as the other, in order to do the comparison.

When an implicit conversion occurs on a column that is used in a WHERE or FROM clause,
the SQL Server Optimizer dictates a conversion of all the column values before the
filter can be applied. This means that, during the query execution, the query processor
will convert the lower precedence data type to the higher precedence data type before
applying the filter or join condition. This means that, as with the case of functions on the
column, the predicate is considered non-SARGable and so index seeks cannot be used,
SQL must process more rows than necessary to get the results, and this leads to higher
CPU usage.

A common manifestation of this problem is the comparison of NVARCHAR parameters to
columns that are of type VARCHAR. There are some data access libraries (JDBC springs
immediately to mind) that pass string constants as Unicode (NVARCHAR), by default.
The problem is demonstrated in Listing 3.9, where the AccountNumber column is a
VARCHAR and the parameter is a Unicode string (NVARCHAR), so designated by the N
before the opening quote.

SELECT p.FirstName ,
 p.LastName ,
 c.AccountNumber
FROM Sales.Customer AS c
 INNER JOIN Person.Person AS p ON c.PersonID = p.BusinessEntityID
WHERE AccountNumber = N'AW00029594'

Listing 3.9: An implicit data type conversion in the search condition.

The relevant section of the execution plan, shown in Figure 3.4, confirms that we get an
index scan operation.

94

Chapter 3: High CPU Utilization

Figure 3.4: The non-SARGable predicate results in an index scan.

The Filter properties window, in Figure 3.5, shows the implicit conversion.

Figure 3.5: The filter predicate dictates the need to convert all the rows in

the AccountNumber column to NVARCHAR.

The fix for implicit conversions is to ensure that columns used in joins are always of the
same type and that, in the WHERE clause, any variables, parameters or constants are of the
same type as the columns to which they are being compared. If they are not, make careful
use of conversion functions (CAST, CONVERT) on the variables, parameters or constants so
that they match the data type of the column.

95

Chapter 3: High CPU Utilization

If using data access libraries like JDBC, check the properties to ensure that they are not
passing all string values as NVARCHAR regardless of the underlying column data type.

Parameter sniffing

Parameter sniffing is a process used by SQL Server when creating an execution plan for a
stored procedure, function, or parameterized query. The first time the plan is compiled,
SQL Server will examine, or "sniff", the input parameter values supplied, and use them,
in conjunction with the column statistics, to estimate the number of rows that will
be touched by the query. It then uses that estimate in its costing of various possible
execution plans. A problem only arises if the values that were passed as input parameters
on initial plan creation, result in a row count that is atypical of that which will result from
future executions of the procedure. Parameter sniffing only occurs at the time a plan is
compiled or recompiled, and all subsequent executions of the stored procedure, function,
or parameterized query will use the same plan.

During the initial compile, only the values of the input parameters can be sniffed as
any local variables will have no value. If a statement within the batch is recompiled,
both parameter and variable values can be sniffed, as the variables will, by that time,
have values.

By way of an example, we'll use the AdventureWorks database again, and specifically the
ShipDate in the Sales.SalesOrderHeader table. This column has a minimum date
of 2011/07/08 and maximum date of 2004/08/07. Listing 3.10 shows a stored procedure to
find all sales order numbers (also in this table) that are between two given ship dates.

CREATE PROCEDURE user_GetCustomerShipDates
 (
 @ShipDateStart DATETIME ,
 @ShipDateEnd DATETIME
)
AS
 SELECT CustomerID ,

96

Chapter 3: High CPU Utilization

 SalesOrderNumber
 FROM Sales.SalesOrderHeader
 WHERE ShipDate BETWEEN @ShipDateStart AND @ShipDateEnd
GO

Listing 3.10: The user_GetCustomerShipDates stored procedure.

This would be supported by a non-clustered index on ShipDate, as shown in Listing 3.11.

CREATE NONCLUSTERED INDEX IDX_ShipDate_ASC
 ON Sales.SalesOrderHeader (ShipDate)
GO

Listing 3.11: A non-clustered index on the ShipDate column.

Now, we'll execute the stored procedure twice, as shown in Listing 3.12, with the first
query spanning a date range of several years, and so returning many rows, and the second
one only covering a range of ten days. Be sure to retrieve the actual execution plan with
the results.

DBCC FREEPROCCACHE
EXEC user_GetCustomerShipDates '2001/07/08', '2004/01/01'
EXEC user_GetCustomerShipDates '2001/07/10', '2001/07/20'

Listing 3.12: Executing the user_GetCustomerShipDates stored procedure, with the large date range

query first.

Note that we ran DBCC FREEPROCCACHE to clear the plan cache and ensure a new plan is
created. The plan is identical in each case, as shown in Figure 3.6

97

Chapter 3: High CPU Utilization

Figure 3.6: Execution plans for the user_GetCustomerShipDates stored procedure.

In the plan we see that optimizer has chosen not to use the non-clustered index on the
ShipDate column, which we created especially for this procedure. The reason is that
it is not a covering index (it doesn't include the SalesOrderNumber column) and the
number of rows that the optimizer estimated, based on the parameter values for the
initial execution, along with the statistics, was too high to make the combination of
index seek/key lookup optimal. Hence the optimizer ignores that index and scans a
different one.

Now, run Listing 3.12 again, this time not returning the execution plan, but with
STATISTICS IO and STATISTICS TIME enabled. The reason we're doing a separate run is
that returning the actual execution has an impact on the query's performance, so execu-
tions that return the execution plan should not also be used to check the query's perfor-
mance statistics. The results are as follows (the separating headers were added manually,
for clarity).

98

Chapter 3: High CPU Utilization

==FIRST EXECUTION (LARGE DATE RANGE)===

(Table 'SalesOrderHeader'. Scan count 1, logical reads 686, physical reads 0.

 SQL Server Execution Times:
 CPU time = 16 ms, elapsed time = 197 ms.

 SQL Server Execution Times:
 CPU time = 16 ms, elapsed time = 197 ms.

==SECOND EXECUTION (SMALL DATE RANGE)===

Table 'SalesOrderHeader'. Scan count 1, logical reads 686, physical reads 0.

 SQL Server Execution Times:
 CPU time = 15 ms, elapsed time = 5 ms.

 SQL Server Execution Times:
 CPU time = 15 ms, elapsed time = 5 ms.

The logical reads are shown as 686 reads for both, but it's the CPU time that is of far more
interest here. It's worth noting that the majority of the elapsed time is actually the trans-
mission and display of the rows, hence this time will be far larger for 17,000 rows (the first
set) than for 40 rows (the second).

Now, we'll clear the cache again and flip the order of execution, so the shorter date range
query is executed first, as shown in Listing 3.13. This means that, this time, the parameter
sniffing process will result in a much lower estimated number of rows.

DBCC FREEPROCCACHE
EXEC user_GetCustomerShipDates '2001/07/10', '2001/07/20'
EXEC user_GetCustomerShipDates '2001/07/08', '2004/01/01'

Listing 3.13: Executing the user_GetCustomerShipDates stored procedure, with the shorter date

range query first.

99

Chapter 3: High CPU Utilization

As expected, the execution plan has changed dramatically, as shown in Figure 3.7. The
smaller number of estimated rows leads the optimizer to use an index seek on our IDX_
ShipDate_ASC index, followed by a key lookup to retrieve the remaining rows.

Figure 3.7: New execution plans for the user_GetCustomerShipDates stored procedure.

Run Listing 3.13 again, this time without the execution plan but with the statistics, and
you'll see that the plan works just fine for the first execution, but causes problems for the
next one.

==FIRST EXECUTION (SMALL DATE RANGE)===

Table 'SalesOrderHeader'. Scan count 1, logical reads 127, physical reads 0, read-
ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

 SQL Server Execution Times:
 CPU time = 0 ms, elapsed time = 0 ms.

==SECOND EXECUTION (LARGE DATE RANGE)===

Table 'SalesOrderHeader'. Scan count 1, logical reads 52429, physical reads 0.

 SQL Server Execution Times:
 CPU time = 47 ms, elapsed time = 182 ms.

100

Chapter 3: High CPU Utilization

Now that's not a huge jump in CPU time, but remember that even the second execution
is dealing with 17,000 rows in the result set. At larger row counts, this problem can have a
very significant impact.

This is a classic, though small-scale, example of parameter sniffing working against us.
The plan with the key lookups is only optimal for small row counts (typically < 1% of the
table). Above that, the additional I/O and additional CPU required for the key lookups
becomes very significant.

There are several different ways to tackle parameter sniffing problems, depending on the
situation and on the version of SQL Server you're using.

Trace Flag 4136

SQL Server 2008 introduced an option to turn parameter sniffing off altogether for a SQL
Server instance, by simply enabling Trace Flag 4136. This option was added in SQL Server
2008 SP1 CU7, and SQL Server 2008 R2 CU2, and also back-ported into SQL Server 2005
in SP3 CU9.

When the query optimizer is able to "sniff" the value of a parameter, it uses this value,
along with the statistics histogram, to provide an accurate estimate of the number of
records that will be returned. As discussed earlier, this is only problematic if the initial
parameter value turns out to be completely atypical.

When parameter sniffing is prevented, the optimizer can't find out the parameter value
and so can't use the statistics histogram. Instead, it makes what is often a less accurate
estimation of the number of rows that will be returned, by assuming a uniform data
distribution across all data values. For example, consider a column X, containing 10 rows
with values 1, 2, 3, 3, 3, 3, 3, 4, 5, 5. The optimizer would always estimate that a "WHERE
X=value" query will return 2 rows (total number of rows divided by number of distinct
values), and so the plan would always be optimized for this number of rows.

101

Chapter 3: High CPU Utilization

In short, although this option is available, parameter sniffing is beneficial to most proce-
dures that are written to use typical values. Turning parameter sniffing off may inadvert-
ently affect these plans in a negative way. As such, this Trace Flag should be considered an
absolute last resort if nothing else fixes the problem.

Using the OPTIMIZE FOR hint

In SQL Server 2005 and later, we can use the OPTIMIZE FOR hint to specify a parameter
value for the optimizer to use when compiling a plan, as shown in Listing 3.14.

CREATE PROCEDURE user_GetCustomerShipDates
 (
 @ShipDateStart DATETIME ,
 @ShipDateEnd DATETIME
)
AS
 SELECT CustomerID ,
 SalesOrderNumber
 FROM Sales.SalesOrderHeader
 WHERE ShipDate BETWEEN @ShipDateStart AND @ShipDateEnd
 OPTION (OPTIMIZE FOR (@ShipDateStart = '2001/07/08',
 @ShipDateEnd = '2004/01/01'))
GO

Listing 3.14: Using the OPTIMIZE FOR query hint.

This allows the optimizer to optimize the plan for a parameter value that is known to
be more typically used. This will remove the possibility for parameter sniffing, but at the
same time may still lead to a plan that is not as efficient, if atypical values are used.

In SQL Server 2008, this was "extended" to provide the OPTIMIZE FOR UNKNOWN hint,
which instructs SQL Server to not use parameter sniffing at all. This allows for a query-
by-query control of parameter sniffing, whereas the aforementioned Trace Flag controls
the setting for the entire instance. In most cases, the hint is a more desirable solution as,
in general, parameter sniffing is a good thing.

102

Chapter 3: High CPU Utilization

Recompilation options
We can use the WITH RECOMPILE option, when creating a stored procedure, as
another possible solution to parameter sniffing issues. This will mean a plan is never
cached for the procedures, since it forces a recompile, and generation of a new plan on
every execution. This means that row estimations will always be based on the current
parameter value, but at the cost of increasing the execution time of the procedure.

 CREATE PROCEDURE user_GetCustomerShipDates
 (
 @ShipDateStart DATETIME ,
 @ShipDateEnd DATETIME
)
 WITH RECOMPILE
AS
 SELECT CustomerID ,
 SalesOrderNumber
 FROM Sales.SalesOrderHeader
 WHERE ShipDate BETWEEN @ShipDateStart AND @ShipDateEnd
GO

Listing 3.15: Using the WITH RECOMPILE option.

The OPTION(RECOMPILE) query hint can be used in much the same way, and may be
a better option if there are multiple queries within the procedure and only a portion of
them suffer from parameter sniffing problems.

CREATE PROCEDURE user_GetCustomerShipDates
 (
 @ShipDateStart DATETIME ,
 @ShipDateEnd DATETIME
)
AS
 SELECT CustomerID ,
 SalesOrderNumber
 FROM Sales.SalesOrderHeader
 WHERE ShipDate BETWEEN @ShipDateStart AND @ShipDateEnd
 OPTION (RECOMPILE)
GO

Listing 3.16: Using the OPTION(RECOMPILE) query hint.

103

Chapter 3: High CPU Utilization

These techniques are useful when the overhead of the additional compilations is small
in comparison with the performance degradation caused by reuse of inappropriate plans.
The OPTION(RECOMPILE) hint should be used where possible, in preference to WITH
RECOMPILE for a stored procedure, in order to keep the impact of the repeated compi-
lation process as low as possible.

Ad hoc non-parameterized queries

Ad hoc queries are statements sent to the optimizer that are not predefined by using
stored procedures, sp_executesql or other ways to force reuse of execution plans. The
SQL Server will always check on the plan cache to see if a suitable plan can be reused for a
given query, before going through the full process of generating a new execution plan and
storing it in cache.

Ad hoc queries will cause execution plans to be generated for each and every statement.
This causes excessive use of resources, especially CPU. Consider the three queries shown
in Listing 3.17.

SELECT soh.SalesOrderNumber ,
 sod.ProductID
FROM Sales.SalesOrderHeader AS soh
 INNER JOIN Sales.SalesOrderDetail AS sod
 ON soh.SalesOrderID = sod.SalesOrderID
WHERE soh.SalesOrderNumber = 'SO43662'

SELECT soh.SalesOrderNumber ,
 sod.ProductID
FROM Sales.SalesOrderHeader AS soh
 INNER JOIN Sales.SalesOrderDetail AS sod
 ON soh.SalesOrderID = sod.SalesOrderID
WHERE soh.SalesOrderNumber = 'SO58928'

SELECT soh.SalesOrderNumber ,
 sod.ProductID
FROM Sales.SalesOrderHeader AS soh

104

Chapter 3: High CPU Utilization

 INNER JOIN Sales.SalesOrderDetail AS sod
 ON soh.SalesOrderID = sod.SalesOrderID
WHERE soh.SalesOrderNumber = 'SO70907'

Listing 3.17: Three simple but non-parameterized queries.

These three statements should produce the same execution plan, but they don't. The
different values hard-coded into value assignment in the WHERE clause mean that they
are considered by the optimizer to be three different queries, and hence get separate
execution plans.

For very simple queries, SQL Server can use a technique called simple parameterization
to replace the fixed values with parameters, and so allow for plan reuse. However, even
the queries in Listing 3.17 are too complex to qualify for simple parameterization.

The problem with non-parameterized queries is two-fold:

1. The plan cache fills up with lots of single-use plans from ad hoc queries. This means
that the memory is used less efficiently. It also means that plans that might have been
reusable can get discarded from cache due to memory pressure, requiring them to be
compiled again when the queries are rerun.

2. The compilation of these single-use plans wastes CPU. Compilation is expensive,
using relatively large amounts of CPU, and the repeated compilation of plans for ad
hoc queries, which are unlikely to be reused, is just a waste of resources.

Cases where a lack of parameterization is causing excessive plan compilation, or where
simple (or forced) parameterization is attempted but fails, can be identified using the
following counters from the SQL Statistics objects in Performance Monitor:

•	 SQLServer: SQL Statistics: SQL Compilations/Sec
•	 SQLServer: SQL Statistics: Auto-Param Attempts/Sec
•	 SQLServer: SQL Statistics: Failed Auto-Param/Sec

Reference: http://msdn.microsoft.com/en-us/library/ms190911(SQL.100).aspx.

http://msdn.microsoft.com/en-us/library/ms190911(SQL.100).aspx

105

Chapter 3: High CPU Utilization

If the non-parameterized ad hoc queries are causing a problem, there are a couple of
options for fixing it. The first and best option is to fix the problem at source, in the calling
application. If that is not an option, there are settings in SQL Server that can be changed
to alleviate the problem.

Fixing the application

If it is possible to change the application that is sending these non-parameterized queries
to SQL Server, then that option should be the one chosen. This can involve moving data
access from ad hoc queries embedded in the front-end code into stored procedures, or it
may just involve changing the ad hoc queries that are embedded in the front-end code to
their parameterized versions. Listing 3.18 shows an unparameterized query being sent to
SQL Server.

cmd.CommandType = CommandType.Text;
cmd.CommandText = @"SELECT soh.SalesOrderNumber,
 sod.ProductID
 FROM Sales.SalesOrderHeader AS soh
 INNER JOIN Sales.SalesOrderDetail AS sod
 ON soh.SalesOrderID = sod.SalesOrderID
 WHERE soh.SalesOrderNumber = '" + txtSalesOrderNo.Text + "'";

dtrSalesOrders = cmd.ExecuteReader();

Listing 3.18: An unparameterized query being sent to SQL Server.

Listing 3.19 shows the same query, but now in a parameterized form that will allow
plan reuse.

dtrSalesOrders.Close();
cmd.CommandType = CommandType.Text;
cmd.CommandText = @"SELECT soh.SalesOrderNumber,
 sod.ProductID
 FROM Sales.SalesOrderHeader AS soh
 INNER JOIN Sales.SalesOrderDetail AS sod

106

Chapter 3: High CPU Utilization

 ON soh.SalesOrderID = sod.SalesOrderID
 WHERE soh.SalesOrderNumber = @SalesOrderNo";

cmd.Parameters.Add("@SalesOrderNo", SqlDbType.NVarChar, 50);
cmd.Parameters["@SalesOrderNo"].Value = txtSalesOrderNo.Text;

dtrSalesOrders = cmd.ExecuteReader();

Listing 3.19: A parameterized query being sent to SQL Server.

If changing the application is not possible, as is often the case with vendor applications,
or where the source code for the application is unavailable, then there are two options in
SQL Server that can help alleviate the problem: forced parameterization and optimize
for ad hoc workloads.

Forced parameterization in SQL Server

SQL Server 2005 and above offers the ability to set the database-level PARAMETERI-
ZATION option to FORCED, using the ALTER DATABASE statement, as shown in Listing
3.20. This will force all ad hoc queries against that database to be parameterized before
the compile process starts.

ALTER DATABASE AdventureWorks SET PARAMETERIZATION FORCED

Listing 3.20: Setting the PARAMETERIZATION option to FORCED.

If you run this command and then rerun the three queries from Listing 3.17, the query
that the SQL Query Optimizer gets to optimize will be the parameterized version, and
you'll find that there's only one plan created in cache, not three.

There are potential downsides to using forced parameterization, in that this setting forces
SQL to use one plan for all matching queries, no matter what the literal values, so there
is a possibility for the same parameter sniffing problems to which stored procedures are

107

Chapter 3: High CPU Utilization

susceptible. If such a problem does occur, it can be investigated and resolved in much the
same way as with stored procedures, discussed earlier in this chapter.

Optimize for ad hoc workloads

In SQL Server 2008 and later, we can use optimize for ad hoc workloads, which is
a server-level setting, i.e. it will affect every single database on the server (as opposed to
forced parameterization, which is database-specific).

With this setting enabled, SQL Server does not cache the plan of an ad hoc query the first
time it is encountered. Instead, a plan-stub is cached that just indicates that the query has
been seen before. Only if the query is seen a second time is the plan cached. This won't
reduce the number of compiles for ad hoc queries, but it will make it less likely that the
plan cache will grow as much, since the initial stub takes up very little memory. As such,
it reduces the chances that other plans which could be reusable will be discarded due to
memory pressure.

To enable the optimize for ad hoc workloads setting, use sp_configure, as shown
in Listing 3.21.

EXEC sp_configure 'show advanced options',1
RECONFIGURE
EXEC sp_configure 'optimize for ad hoc workloads',1
RECONFIGURE

Listing 3.21: Enabling the optimize for ad hoc workloads setting.

108

Chapter 3: High CPU Utilization

Inappropriate parallelism

SQL Server is designed to be able to make use of multiple processors when processing
user requests. Query parallelism is the mechanism used by the SQL query execution
engine to split the work of a query into multiple threads, each of which will execute on
a separate scheduler. Queries are parallelized at the operator level; in other words, if the
query runs in parallel, some of the query operators may run in their parallel form, while
others may not.

Figure 3.8: Execution plan showing that operators are running in parallel.

When a query is submitted to SQL Server for processing, the query optimizer compiles
an execution plan that has been optimized to allow the query to execute in the fastest
manner possible. If the estimated cost of executing the plan serially exceeds the 'cost
threshold for parallelism' sp_configure option, the number of logical CPUs
available to SQL Server is greater than one, and the 'max degree of parallelism'
sp_configure option is set to the default of zero or greater than one, the plan produced
will include parallelism. The Degree of Parallelism (DOP) is not included as a part of the
plan; this is, instead, determined at the time of execution based on the number of logical
processors, the 'max degree of parallelism' sp_configure or, if the MAXDOP
query hint is being used, the value specified by the hint, and the number of available
worker threads.

Parallel query processing can reduce the time required to process a query by horizontally
partitioning the input data, distributing the partitions across multiple logical CPUs,
and simultaneously executing the same operation across multiple processor cores. This

109

Chapter 3: High CPU Utilization

can be very beneficial to data warehouse and reporting operations, which have a few
large queries that deal with volumes of data and only a few requests occur concurrently.
By splitting the request across multiple OS threads on multiple processor cores, the
optimizer increases the utilization of the hardware resources by spreading the load across
all of the processors on the server, resulting in a reduction of total execution time.

The specific impact of a parallel workload depends on a number of factors, not the least
of which is the ability of the remaining hardware components in the system to cope
with the heavy demands for memory allocation and disk I/O that a parallel workload
can generate. When parallelism is used appropriately, on high-cost queries, it can have a
very beneficial effect on overall server performance. However, it can be very detrimental
to OLTP environments where the workload consists of lots of smaller queries executing
concurrently, since the parallel operation can utilize up to all of the processor cores on
the server, causing other requests to wait to execute. If the primary use of the server is
for an OLTP database that has a lot of smaller concurrent requests, parallelism of a single
common query can sink throughput.

As noted above, SQL Server has two configuration options that control the parallel
execution of queries by the engine. They are the cost threshold for parallelism
and the max degree of parallelism options of sp_configure. The max degree of
parallelism option exists to prevent a single query from utilizing all of the processor
cores on a SQL Server. The cost threshold for parallelism option exists to control
the threshold for a query that causes the optimizer to use parallelism to execute a query.

Too often, when CPU issues related to "inappropriate parallelism" arise, the suggested
solution seems to focus solely on changing the value for max degree of parallelism.
For example, a quick online search of the problem, especially the CXPACKET wait type
(a classic indicator of parallelism-related issues, as discussed a little later) will result in
numerous posts that recommend reducing the max degree of parallelism to one half
or one fourth the number of logical processors or processor cores on the server, or even
to completely disable parallelism by setting it to 1. While this may solve the problem, it
may not be the ideal solution. The best solution is to consider, in tandem, the appropriate
value for each of these options.

110

Chapter 3: High CPU Utilization

Cost threshold for parallelism

As discussed, the cost threshold for parallelism option determines a threshold
"cost" which, when exceeded, will cause a parallel execution plan to be generated, in order
to execute the user request. Since parallel execution is only possible on multi-processor
systems, the cost threshold for parallelism option is only used by the engine
when multiple processors exist, the server is not affinitized to a single processor and max
degree of parallelism is set to a value other than 1.

The "cost" is the estimated amount of time in seconds that it would take to execute
the query serially with a given execution plan. The default value is five, meaning that
a parallel plan will only be generated and used by queries that are estimated to take
longer than five seconds to execute serially on the given system. On larger databases,
this threshold may be low enough to cause multiple concurrent executions of common
queries, and so to cause contention in the system.

To determine what might be an appropriate setting for the cost threshold for
parallelism option, it is possible to query the existing plans in the plan cache to
determine the costs associated with the plans that have been executing with parallelism,
as shown in Listing 3.22.

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED ;

WITH XMLNAMESPACES
 (DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/showplan')
SELECT query_plan AS CompleteQueryPlan ,
 n.value('(@StatementText)[1]', 'VARCHAR(4000)') AS StatementText ,
 n.value('(@StatementOptmLevel)[1]', 'VARCHAR(25)')
 AS StatementOptimizationLevel ,
 n.value('(@StatementSubTreeCost)[1]', 'VARCHAR(128)')
 AS StatementSubTreeCost ,
 n.query('.') AS ParallelSubTreeXML ,
 ecp.usecounts ,
 ecp.size_in_bytes
FROM sys.dm_exec_cached_plans AS ecp
 CROSS APPLY sys.dm_exec_query_plan(plan_handle) AS eqp

111

Chapter 3: High CPU Utilization

 CROSS APPLY query_plan.nodes
 ('/ShowPlanXML/BatchSequence/Batch/Statements/StmtSimple')
 AS qn (n)
WHERE n.query('.').exist('//RelOp[@PhysicalOp="Parallelism"]') = 1

Listing 3.22: Determining the estimated cost of parallel execution plans.

Analysis of the most commonly executed statements that result in parallel queries can
guide the appropriate setting of the cost threshold for parallelism option to
minimize the impact of multiple concurrently executing parallel requests which drive
CPU and I/O contention in the system.

Max degree of parallelism

Whenever the estimated cost of executing a query serially exceeds our carefully-evaluated
value for cost threshold for parallelism, the database engine can spread the
execution load for that query across multiple available processors, according to the degree
of parallelism dictated by the max degree of parallelism option. The number of
processors used will be determined by the lowest of the following three values:

•	 number of available processors

•	 max degree of parallelism option

•	 MAXDOP query hint provided for the query being executed (which overrides the value
specified by max degree of parallelism).

Generally speaking, as we have discussed, the appropriate value for the max degree of
parallelism option depends largely on the type of workload being executed, and the
ability of the other hardware subsystems to cope with the additional workload associated
with parallel execution in the system. If your system is experiencing parallelism-related
issues (see the Diagnosing inappropriate parallelism section), then it may be necessary to
limit the degree of parallelism, in conjunction with tuning the cost threshold for paral-
lelism to resolve the problem.

112

Chapter 3: High CPU Utilization

One of the more common online recommendations is to disable parallelism entirely by
setting the max degree of parallelism to 1. There are cases where this configuration
might make sense, for example, true OLTP workloads where all of the transactions are
small and there are a lot of transactions executing concurrently. These types of database
rarely exist today and disabling parallelism entirely is more likely to reduce performance
in the long term.

Over the years I've made a number of different recommendations about how to configure
max degree of parallelism. For example, in a SMP system, setting it to half the
number of available physical processor cores, or to the number of physical cores on a
single processor die, or even setting it to 1 to disable parallelism entirely. Today, I only
make a recommendation based on analysis of the query workload, and a review of the
wait types of associated workers and subtasks which are executing using parallelism.

In particular, I'll analyze occurrences of the CXPACKET session wait type. In most systems,
CXPACKET is the symptom and not the problem; there is often a different underlying wait
type that can be seen in sys.dm_os_waiting_tasks for the session. By focusing on
this wait type, a better decision regarding the appropriate max degree of parallelism
option can be made. For example, if the underlying wait type, is PAGEIOLATCH_SH then
the parallel operation is waiting on a read from the disk I/O subsystem, and reducing the
max degree of parallelism won't resolve the root problem; it will just reduce the
number of workers being used in the system, and reduce the accumulated wait time for
the CXPACKET wait type. However, this may reduce the additional load the parallelism
operations place on the disk I/O subsystem, and buy you time to scale up the I/O perfor-
mance of the server.

There are, however, some specific considerations, relating to the memory architecture
of the processors. On NUMA-based (Non-Uniform Memory Access) systems, the max
degree of parallelism option should be set to the minimum number of processors
available on a single NUMA node. This is done to prevent cross-node parallel processing
of a request from occurring, which incurs significant expense since sharing memory
across nodes is an expensive operation.

113

Chapter 3: High CPU Utilization

On Symmetric Multiprocessing (SMP) systems, one of the trade-offs with multiple
processor cores on a single die is the usage of shared L2 caches across multiple cores,
which can result in cache misses for memory-consuming applications such as SQL Server,
and which affects the performance of highly concurrent workloads, under higher levels
of parallelism. Here, the appropriate value for this option depends largely on the type of
workload being executed and the ability of the other hardware subsystems to cope with
the added workload associated with parallel execution in the system.

Finally, note that on SQL Server 2008 and above, the resource governor can be used
to enforce a max degree of parallelism for groups of queries, based on various
connection properties. Hence it would be possible to limit queries from one application, a
specific set of logins or specific hostnames, to a certain max degree of parallelism and let
other queries be unlimited.

Hyper-threading and parallelism

Hyper-threading is an Intel technology designed to improve parallel execution by
presenting to the operating system two logical cores for each physical core. This means
that instead of one scheduler per processor core you get two, and so two threads can be
executed "simultaneously."

AMD processors and two strong threads

Modern AMD processor architectures, such as Bulldozer, use a different approach to threading, called two

strong threads, with a design that offers dedicated hardware to each of two threads. We won't discuss

this topic further here, but further information can be found on the AMD website: http://www.anand-

tech.com/show/3863/amd-discloses-bobcat-bulldozer-architectures-at-hot-chips-2010.

A question that is commonly asked in the online forums is whether or not hyper-
threading should be enabled for SQL Server, and how such decisions are affected by
workload type.

http://www.anandtech.com/show/3863/amd-discloses-bobcat-bulldozer-architectures-at-hot-chips-2010
http://www.anandtech.com/show/3863/amd-discloses-bobcat-bulldozer-architectures-at-hot-chips-2010

114

Chapter 3: High CPU Utilization

As discussed earlier, for an OLAP or DSS workload, query execution performance will
benefit from allowing the query optimizer to parallelize individual queries. This is
certainly true when there exist a large number of true, physical CPU cores but, on early
hyper-threading implementations, it was the experience of most DBAs that the often
complex queries that comprised a typical OLP/DSS workload performed poorly when
parallelized across multiple hyper-threaded cores. A typical, short OLTP query was less
affected by running on a logical core, as opposed to a physical one, so enabling hyper-
threading for an OLTP workload could see a benefit from parallelization in the sense that
more cores were available to process more queries in a given time.

Nevertheless, several architectural problems with early hyper-threading implementa-
tions, which became more and more problematical as the CPU load on a server increased,
meant that most DBAs simply disabled hyper-threading in the BIOS, regardless of
workload type.

As recently as a few years ago, when SQL Server 2008 RTM first released, advice to disable
hyper-threading for SQL Server, especially for DW/OLAP/DSS workloads, was generally
correct. The biggest problem with older processors and hyper-threading related to the
size of the onboard caches, which are shared when hyper-threading is enabled. The
smaller cache size meant that cache misses were common place for memory-dependent
applications like SQL Server. Another issue early on was that Windows Server 2000
wasn't hyper-threading aware so, when you had a dual processor server with hyper-
threading enabled, Windows thought it had four physical processors, and would schedule
concurrent execution on both threads of a processor when under load.

However, recent advances and improvements in hardware and in Windows, as well as
in hyper-threading implementation mean that it is simply incorrect to disable hyper-
threading as a matter of course. Many of the early problems no longer exist. For example,
Windows Server 2003 and later are hyper-threading aware and so will see two physical
and two logical processors, and will handle scheduling differently to accommodate the
fact that two of the logical processors are from hyper-threading. Also, newer processors
have much larger caches (MB instead of KB); they are less prone to the cache-miss issues

115

Chapter 3: High CPU Utilization

and are much better suited for using hyper-threading with memory dependent imple-
mentations like SQL Server, especially on Windows Server 2008.

In fact, with recent processor architectures, especially Intel Nehalem and later, my advice
is to enable hyper-threading unless you find a good reason to turn it off. It's certainly
a mistake to disable hyper-threading without first thoroughly testing your application
workload with hyper-threading enabled, then disabled, in order to truly know whether or
not there is a benefit to having hyper-threading turned on or off.

Of course, as processors with eight or even twelve physical cores emerge onto the market,
it becomes easier to achieve high levels of parallelism without the need for hyper-
threading. However, the technology remains fundamental to Intel's modern processors
(for example, the Xeon E7-4870 processor, for 4-socket servers, boasts ten physical core
plus hyper-threading), and with most recent processor architectures, there is a good
chance that you'll see a performance and/or throughput benefit for both DW/OLAP and
OLTP workloads.

Diagnosing inappropriate parallelism

The best way to determine if parallel processing is causing a resource bottleneck in a
specific system is to look at the wait statistics and latch statistics for an instance of SQL
Server. When a bottleneck exists during the parallel execution of a query, the CXPACKET
wait type shows up as one of the top waits for SQL Server. This wait type is set whenever
a parallel process has to wait in the exchange iterator for another worker to continue
processing. As previously discussed, when this happens, there is generally an underlying,
non-CXPACKET wait type, which is associated with the stalled worker. However, since
multiple workers are forced to wait when this occurs, the volume of CXPACKET waits will
generally exceed the underlying root wait type being exhibited.

Whenever possible, it is best to isolate and troubleshoot the underlying wait type, since
this will lead to overall system throughput improvements. The CXPACKET waits are
simply a symptom of a problem in most cases, not the actual problem. There are scenarios

116

Chapter 3: High CPU Utilization

where it may not be possible to eliminate the underlying wait type; for example, when
the disk I/O subsystem can't keep up with the demand required by the parallel execution
of a query, the root wait type may be an IO_COMPLETION, ASYNC_IO_COMPLETION, or
PAGEIOLATCH_* wait type, and scaling out the I/O subsystem is not possible. When this
occurs, reducing the level of parallelism to a degree that still allows parallel processing
to occur without bottlenecking in the disk I/O subsystem can improve overall system
performance. It is possible that CXPACKET waits in conjunction with other wait types,
for example LATCH_* and SOS_SCHEDULER_YIELD, do show that parallelism is the
actual problem, and further investigation of the latch stats on the system will validate
if this is actually the case. The sys.dm_os_latch_stats DMV contains information
about the specific latch waits that have occurred in the instance, and if one of the top
latch waits is ACCESS_METHODS_DATASET_PARENT, in conjunction with CXPACKET,
LATCH_*, and SOS_SCHEDULER_YIELD wait types as the top waits, the level of paral-
lelism on the system is the cause of bottlenecking during query execution, and reducing
the 'max degree of parallelism' sp_configure option may be required to resolve
the problems.

Resolving parallelism issues

As discussed earlier, larger, long running queries will generally benefit from parallel
execution, since the cost of executing the query serially outweighs the cost associated
with initialization, synchronization and termination of the parallel workers, for parallel
execution of the query. Inappropriate parallelism most commonly arises in cases where
the nature of the workload is "mixed," i.e. we have what is essentially an OLTP workload,
characterized by a large number of short transactions, but where some of those trans-
actions are actually complex enough that the cost threshold for parallelism is
exceeded and SQL Server parallelizes their execution across all available cores, so tying up
CPU resources.

When parallelism-related issues are diagnosed, the first possible remedy that should be
investigated is optimizing the queries that are parallelizing inappropriately, if they are
not already tuned. Inappropriate parallelism can easily be a result of missing/inadequate

117

Chapter 3: High CPU Utilization

indexes, outdated statistics or badly written queries. In other words, by tuning these
queries, they'll cease to exceed the cost threshold for parallelism, and so will
naturally execute on a single CPU core.

If the workload is as tuned as it can be, and parallelism issues persist, then the cost
threshold for parallelism option should be used in conjunction with the max
degree of parallelism option to manage parallel execution in the system overall.

TokenAndPermUserStore

The TokenAndPermUserStore cache was introduced in SQL 2005 as an optimization
that would allow caching of the results of permissions checks by users against database
objects. This cache, however, could be the cause of performance problems, especially
in earlier builds of SQL Server 2005, because the limits on the size of the cache were
too high. The performance problems typically manifested as excessively high CPU
usage and threads with high CMEMTHREAD waits. This section will cover how to
identify problems associated with the TokenAndPermUserStore cache, short-term
work-arounds, hot fixes from Microsoft for the problem, as well as how to solve the
problem in the long term.

The problem is discussed in the Knowledge Base article 927396 (http://support.
microsoft.com/kb/927396) and tends to materialize under the following circumstances:

•	 large amounts of non-AWE memory allocated to SQL Server (this means the problem
is specific to 64-bit SQL)

•	 lots of dynamic or ad hoc SQL queries

•	 many different database users.

To investigate possible problems related to the TokenAndPermUserStore cache, track
the size of the cache over a period of time, using the query shown in Listing 3.23.

http://support.microsoft.com/kb/927396
http://support.microsoft.com/kb/927396

118

Chapter 3: High CPU Utilization

SELECT SUM(single_pages_kb + multi_pages_kb) / 1024.0 AS CacheSizeMB
FROM sys.dm_os_memory_clerks
WHERE [name] = 'TokenAndPermUserStore'

Listing 3.23: Finding the size of the TokenAndPermUserStore cache.

If the cache constantly grows in size, and that growth is accompanied by queries waiting
with a CMEMTHREAD wait type, then the size of the cache may be the cause of the high
CPU usage.

If you're using a SQL Server 2005 and the patch level is below SP2, the first thing to do is
apply SP2 at the very least, and preferably SP4, since improvements in the management of
this cache were made in SP2.

A best long-term fix, however, is an architectural change to reduce the usage of ad hoc
or dynamic SQL, and move as much logic as possible into stored procedures. Depending
on the application architecture this may be anything from trivial to impossible, but it
should be considered, as doing so almost completely removes the chance of running into
this problem.

Short-term fixes in SQL Server 2005

If these measures aren't immediately possible, there are a couple of short-term
work-arounds to this problem in SQL Server 2005.

Use the sysadmin server role

By making the application service account a member of the sysadmin server role, any
permissions checking is bypassed and the problem is resolved. The assumption is that the
account can perform any operation inside of SQL Server and therefore does not require
additional permissions checks.

119

Chapter 3: High CPU Utilization

This solution is very far from ideal, since it provides elevated permissions to the service
account. In a pinch, it will provide short-term relief to the problems associated with high
CPU utilization. However, if it works, proving that the TokenAndPermUserStore cache
is the root cause, then you should immediately determine if another solution can be
utilized instead, to solve the problem.

Regularly clear the cache

Using a SQL agent job and the command shown in Listing 3.24, you can regularly free up
space in the TokenAndPermUserStore cache.

DBCC FREESYSTEMCACHE ('TokenAndPermUserStore')

Listing 3.24: Freeing space in the TokenAndPermUserStore cache.

Again, this should only is done in extreme cases and as a temporary solution. However, it
will control the cache size until a long-term resolution can be applied.

Trace Flags

On SQL 2005 SP2 or above, Trace Flag 4618 and/or Trace Flag 4610 can be enabled. Trace
Flag 4618 restricts the number of entries that the cache will hold to 1024 and, if both flags
are enabled, the number of cache entries is limited to 8192. Restricting the number of
entries the cache will hold should be used temporarily, while other fixes are taken into
consideration.

One last configuration change option on SQL 2005, if on SP3 or above, is that Trace Flag
4621 can be enabled. This allows a custom quota to be set. For the details of configuring
this, see Knowledge Base article 959823 (http://support.microsoft.com/kb/959823).

http://support.microsoft.com/kb/959823

120

Chapter 3: High CPU Utilization

Configuration options in SQL Server 2008

With SQL Server 2008, the configuration options access check cache bucket count
and access check cache quota were introduced. These options control the number of
entries and number of hash buckets used for the TokenAndPermUserStore cache. The
cache should not cause the same problems on SQL 2008 as it did on SQL 2005, but if the
problems do manifest, the quota can be set to a lower number and/or the number of hash
buckets can be increased. Changing these settings can reduce the time necessary to locate
cache entries. This configuration change is, however, not a recommended change unless
directed under the guidance of Microsoft Customer Support, but IT should be noted as
an area for your troubleshooting.

Windows Server and BIOS power saving options

As a part of the green computing initiatives, many hardware manufacturers ship new
desktops, laptops, and even servers intended for datacenter use, with the advanced power
control configuration set such that the operating system, or the hardware itself, can
automatically reduce power consumption and cooling requirements of the system by
turning off devices that are not being used, and under-clocking the processors installed
in the server. Unfortunately, this can have quite a negative impact on your processor
performance.

These hardware-based power-saving settings can be configured in the main system
BIOS to allow the hardware to control power consumption (Hardware), the Windows
operating system to control power management (OS Control), or to disable power
management features completely (None). In general, the default option for the BIOS is
to allow the operating system to control the power management features of the system,
based on its configured options.

Windows Server 2008 and 2008 R2 default the power management configuration setting
(the Windows Power Plan feature) to Balanced, which allows the system to switch to a

121

Chapter 3: High CPU Utilization

low performance state to reduce power consumption. One of the surprises that many
people have had, on upgrading their systems on newer server hardware that has Windows
Server 2008 or 2008 R2 installed on it, is that overall performance decreases after a period
of time and ends up being significantly lower than when the server first started up. This
is a direct result of power management features causing under-clocking of the processors
on the server.

To identify if this is a problem on your system, a free tool named CPU-Z, available from
http://www.cpuid.com/softwares/cpu-z/versions-history.html, can be used to
collect information about the current state of the processors installed in a server. We
won't discuss this tool in detail here, but the important values to look out for, in regard
power management problems, are the CPU Specification, which will show the type of
processor and its rated clock speed, and the Core Speed, which shows the current clock
speed of the processors in the system. If the Core Speed is lower that the rated specifi-
cation, then power management is reducing the performance of the system.

The first thing to do is to check the current Windows power management scheme. If
it is set to Balanced, change it to High Performance, which prevents the system from
switching to a low performance state and ensures the performance characteristics of
the system are consistent (see http://support.microsoft.com/kb/2207548). If High
Performance is being used by Windows, the BIOS setting should be checked. If it's set to
Hardware, change it to OS Control.

What is insidious here is the impact that power saving has on the % Processor Usage
performance counter. The value for this counter is calculated based on the currently used
CPU frequency, divided by the available CPU frequency. As such, an under-clocked CPU
causes Windows to report higher CPU usage values, leading people to believe that the
server is under heavier load than it is in reality.

http://www.cpuid.com/softwares/cpu-z/versions-history.html
http://support.microsoft.com/kb/2207548

122

Chapter 3: High CPU Utilization

Summary

Poor management of CPU utilization can and will often have a dramatic impact on SQL
Server performance. In general the sustained CPU usage of a SQL Server machine should
not exceed 60–70%. Occasional spikes to higher values should not be a problem, but
sustained heavier usage is an indication that the server is under severe CPU load.

When CPU issues arise, and having confirmed that the high CPU usage is due to the SQL
Server process, the first job is to isolate the source of the problem, using information from
tools such as Performance Monitor (PerfMon), SQLTrace and the SQL Server Dynamic
Management Views, many of which have been greatly enhanced with the releases of SQL
Server 2005 and 2008.

With the problem located, the appropriate measures can be taken to relieve the CPU
pressure, ranging from adding useful indexes and tuning CPU-hungry queries, to
changing configuration settings. If all of this fails, it may simply be that you need more or
faster CPUs along with a better balancing of the load across CPUs, and better scheduling
of CPU-intensive queries.

Additional Resources

•	 Implicit data conversations

•	 http://sqlblog.com/blogs/jonathan_kehayias/archive/2010/01/08/finding-
implicit-column-conversions-in-the-plan-cache.aspx

•	 Query tuning

•	 http://www.straightpathsql.com/presentations/ucandoit/

•	 http://www.simple-talk.com/sql/performance/
simple-query-tuning-with-statistics-io-and-execution-plans/

http://sqlblog.com/blogs/jonathan_kehayias/archive/2010/01/08/finding-implicit-column-conversions-in-the-plan-cache.aspx
http://sqlblog.com/blogs/jonathan_kehayias/archive/2010/01/08/finding-implicit-column-conversions-in-the-plan-cache.aspx
http://www.straightpathsql.com/presentations/ucandoit/
http://www.simple-talk.com/sql/performance/simple-query-tuning-with-statistics-io-and-execution-plans/
http://www.simple-talk.com/sql/performance/simple-query-tuning-with-statistics-io-and-execution-plans/

123

Chapter 3: High CPU Utilization

•	 http://www.simple-talk.com/sql/t-sql-programming/13-things-you-
should-know-about-statistics-and-the-query-optimizer/

•	 http://www.simple-talk.com/author/gail-shaw/

•	 Estimated vs. actual row counts

•	 http://sqlinthewild.co.za/index.php/2009/09/22/
estimated-rows-actual-rows-and-execution-count/

•	 Cost threshold for parallelism

•	 http://sqlblog.com/blogs/jonathan_kehayias/archive/2010/01/26/21172.aspx

•	 Max degree of parallelism

•	 http://msdn.microsoft.com/en-us/library/ms181007.aspx

•	 Query hints

•	 http://msdn.microsoft.com/en-us/library/ms181714.aspx

•	 Guidelines for modifying MAXDOP

•	 http://support.microsoft.com/kb/329204

•	 Limiting MAXDOP with the Resource Governor

•	 http://www.sqlmag.com/blog/sql-server-questions-answered-28/
database-administration/controlling-maxdop-executing-queries-140163

•	 Parallelism/MAXDOP configuration

•	 http://msdn.microsoft.com/en-us/library/ms178065.aspx

•	 http://msdn.microsoft.com/en-us/library/ms188611.aspx

•	 http://blogs.msdn.com/b/joesack/archive/2009/03/18/should-you-worry-
about-sos-scheduler-yield.aspx

http://www.simple-talk.com/sql/t-sql-programming/13-things-you-should-know-about-statistics-and-the-query-optimizer/
http://www.simple-talk.com/sql/t-sql-programming/13-things-you-should-know-about-statistics-and-the-query-optimizer/
http://www.simple-talk.com/author/gail-shaw/
http://sqlinthewild.co.za/index.php/2009/09/22/estimated-rows-actual-rows-and-execution-count/
http://sqlinthewild.co.za/index.php/2009/09/22/estimated-rows-actual-rows-and-execution-count/
http://sqlblog.com/blogs/jonathan_kehayias/archive/2010/01/26/21172.aspx
http://msdn.microsoft.com/en-us/library/ms181007.aspx
http://msdn.microsoft.com/en-us/library/ms181714.aspx
http://support.microsoft.com/kb/329204
http://www.sqlmag.com/blog/sql-server-questions-answered-28/database-administration/controlling-maxdop-executing-queries-140163
http://www.sqlmag.com/blog/sql-server-questions-answered-28/database-administration/controlling-maxdop-executing-queries-140163
http://msdn.microsoft.com/en-us/library/ms178065.aspx
http://msdn.microsoft.com/en-us/library/ms188611.aspx
http://blogs.msdn.com/b/joesack/archive/2009/03/18/should-you-worry-about-sos-scheduler-yield.aspx
http://blogs.msdn.com/b/joesack/archive/2009/03/18/should-you-worry-about-sos-scheduler-yield.aspx

124

Chapter 3: High CPU Utilization

•	 SQLOS architecture

•	 http://blogs.msdn.com/b/sqlosteam/archive/2010/06/23/sqlos-resources.aspx

•	 http://sqlblogcasts.com/blogs/sqlworkshops/archive/2007/11/25/finding-
optimal-number-of-cpus-for-a-given-long-running-cpu-intensive-dss-olap-
like-queries-workload.aspx

•	 System Monitor CPU counters

•	 http://msdn.microsoft.com/en-us/library/ms178072.aspx

•	 DMV usage for CPU usage from ring buffers

•	 http://troubleshootingsql.com/2009/12/30/how-to-find-out-the-cpu-
usage-information-for-the-sql-server-process-using-ring-buffers/

•	 http://msdn.microsoft.com/en-us/library/ms175048(SQL.90).aspx

•	 http://technet.microsoft.com/en-us/library/cc966540.aspx

•	 Forced parameterization

•	 http://technet.microsoft.com/en-us/library/ms175037(SQL.90).aspx

•	 Fixing TokenAndPermUserStore problems

•	 Identification and overview

•	 http://support.microsoft.com/kb/927396

•	 Access check result cache

•	 http://support.microsoft.com/kb/955644

•	 http://msdn.microsoft.com/en-us/library/cc645588.aspx

•	 Purging the cache whenever it reaches a certain size

•	 http://blogs.msdn.com/chrissk/archive/2008/06/19/script-to-purge-
tokenandpermuserstore.aspx

http://blogs.msdn.com/b/sqlosteam/archive/2010/06/23/sqlos-resources.aspx
http://sqlblogcasts.com/blogs/sqlworkshops/archive/2007/11/25/finding-optimal-number-of-cpus-for-a-given-long-running-cpu-intensive-dss-olap-like-queries-workload.aspx
http://sqlblogcasts.com/blogs/sqlworkshops/archive/2007/11/25/finding-optimal-number-of-cpus-for-a-given-long-running-cpu-intensive-dss-olap-like-queries-workload.aspx
http://sqlblogcasts.com/blogs/sqlworkshops/archive/2007/11/25/finding-optimal-number-of-cpus-for-a-given-long-running-cpu-intensive-dss-olap-like-queries-workload.aspx
http://msdn.microsoft.com/en-us/library/ms178072.aspx
http://troubleshootingsql.com/2009/12/30/how-to-find-out-the-cpu-usage-information-for-the-sql-server-process-using-ring-buffers/
http://troubleshootingsql.com/2009/12/30/how-to-find-out-the-cpu-usage-information-for-the-sql-server-process-using-ring-buffers/
http://msdn.microsoft.com/en-us/library/ms175048(SQL.90).aspx
http://technet.microsoft.com/en-us/library/cc966540.aspx
http://technet.microsoft.com/en-us/library/ms175037(SQL.90).aspx
http://support.microsoft.com/kb/927396
http://support.microsoft.com/kb/955644
http://msdn.microsoft.com/en-us/library/cc645588.aspx
http://blogs.msdn.com/chrissk/archive/2008/06/19/script-to-purge-tokenandpermuserstore.aspx
http://blogs.msdn.com/chrissk/archive/2008/06/19/script-to-purge-tokenandpermuserstore.aspx

125

Chapter 3: High CPU Utilization

•	 SQL Server 2008 sp_configure options

•	 http://support.microsoft.com/kb/955644/en-us

•	 Hot-fixes associated with this problem

•	 http://support.microsoft.com/kb/959823

http://support.microsoft.com/kb/955644/en-us
http://support.microsoft.com/kb/959823

126

Chapter 4: Memory Management

Memory allocation and consumption in SQL Server is a constant source of questions in
the online forums. It is very common for SQL Server to use large amounts of memory,
and once it allocates that memory, it doesn't release it. This is different behavior from
that exhibited by most other applications and it leads some users to believe that SQL
Server has a memory leak when this is not the case.

This chapter will take a look at how SQL Server actually allocates memory, how this
affects ongoing server operations and, specifically, the differences between memory
allocations on 32-bit servers and 64-bit servers.

We'll then move on to discuss how to diagnose memory pressure in SQL Server, where
SQL Server is forced to operate with an insufficient amount of memory, using memory-
related performance counters and Dynamic Management Views.

Finally, we'll discuss some common problems associated with memory allocations from
SQL Server on the various platforms, and how to resolve these problems by, for example,
tuning memory-related configuration options in SQL Server. As you progress through
the chapters, it is important to pay close attention to the specific cases where changing
the memory configuration options is being recommended. Incorrect configuration of the
memory options can cause more problems than the default options, depending on the
change being made.

Memory allocation and usage in SQL Server is a complex topic, and we're only going to
go deep enough to allow a basic understanding of the SQL Server memory issues that
can arise. If you're hungry for more after reading this chapter, I recommend the work
of Mark Russinovich (for example, http://blogs.technet.com/b/markrussinovich/
archive/2008/07/21/3092070.aspx) and Christian Bolton, especially his presen-
tation, A Walk Down Memory Lane, from SQLBits III (http://sqlbits.com/Sessions/
Event3/A_walk_down_memory_lane).

http://blogs.technet.com/b/markrussinovich/archive/2008/07/21/3092070.aspx
http://blogs.technet.com/b/markrussinovich/archive/2008/07/21/3092070.aspx
http://sqlbits.com/Sessions/Event3/A_walk_down_memory_lane
http://sqlbits.com/Sessions/Event3/A_walk_down_memory_lane

127

Chapter 4: Memory Management

The Self-Tuning Database Engine

For a long time, Microsoft has been committed to the vision of a self-tuning SQL Server
database engine, as a way to reduce the total cost of ownership of the product. Starting
with SQL Server 2005, SQL Server manages memory usage dynamically, and can change
its memory usage without requiring a restart of the database engine. SQL Server simply
does not offer the configuration options for fine-tuning the memory allocations that
are prevalent in other RDBMS platforms. Instead, the amount of memory allocated to
individual components, for example the plan cache, is controlled automatically and
entirely by the database engine, depending on the current SQL Server workload and on
other activities on the server. Memory cannot be allocated manually.

While SQL Server lacks the knobs to control specific memory allocations, there are
still a few configuration options that affect how the database engine utilizes memory.
Whether or not these configuration options require changes from the default values
specified during the installation of the system, depends on a number of factors including
the versions and editions of Windows Operating System and SQL Server being used,
the amount of physical memory installed in the server, and the processor architecture
(x86, x64, IA64).

How SQL Server Allocates Memory

The first time someone glances at the Processes tab in Windows Task Manager on a
typical SQL Server machine, as shown in Figure 4.1, he or she is generally shocked by the
amount of memory that is being used on the server; generally by the sqlservr.exe
process. The first instinct of someone who doesn't understand how SQL Server works, is
that SQL Server has a memory leak, which is not the case.

128

Chapter 4: Memory Management

Figure 4.1: SQL Server Process memory usage (default settings).

There is a big difference between high memory usage and a memory leak, and SQL Server
is designed to use memory in large quantities, in order to cache information, such as
recently used data pages. This improves performance by reducing the need to consistently
read data from disk; a much slower and more expensive operation than accessing it from
memory.

As a general rule, SQL Server will use as much memory as you can give it, and it will not
release the memory that it has allocated under normal operations, unless the operating
system has set the memory low resource notification flag, which triggers SQL Server to
reduce its memory allocations. One of the self-tuning features added to the SQLOS in
SQL Server 2005 was a dedicated thread that monitors memory notifications issued by

129

Chapter 4: Memory Management

the Windows operating system, to inform other applications of the status of
memory usage in the operating system. Two such memory notifications are set
by the Windows OS:

•	 memory high lets SQL Server know that it can grow its working set and use
additional memory

•	 memory low lets SQL Server know that the operating system is under memory
pressure and that SQL should try to reduce its working set to return memory to the
operating system.

If neither flag is set by Windows, then memory usage is stable and SQL Server will
continue to operate inside of its existing process space. This functionality did not exist
prior to Windows Server 2003 and SQL Server 2005. Slava Oks, a developer on the
SQLOS team for SQL Server 2005, has a blog post on memory pressure (http://blogs.
msdn.com/b/slavao/archive/2005/02/01/364523.aspx), which explains the basic types
of memory pressure and possible consequences (see Figure 4.2). The "memory low"
notification, for example, is a result of what Slava terms external (OS) dynamic memory
pressure. The post also discusses the need to receive notifications of such pressure, and
how SQL Server was designed to dynamically manage its memory usage based on the
Windows memory notifications.

http://blogs.msdn.com/b/slavao/archive/2005/02/01/364523.aspx
http://blogs.msdn.com/b/slavao/archive/2005/02/01/364523.aspx

130

Chapter 4: Memory Management

Figure 4.2: Summary of basic types of SQL Server memory pressure.

The amount of memory that SQL Server can use depends on several factors:

•	 amount of physical memory installed in the server

•	 memory limits of the installed Windows operating system (see http://msdn.
microsoft.com/en-us/library/aa366778.aspx)

•	 SQL Server architecture (32-bit versus 64-bit)

•	 SQL Server configuration options that control memory usage

•	 SQL Server version and edition.

http://msdn.microsoft.com/en-us/library/aa366778.aspx
http://msdn.microsoft.com/en-us/library/aa366778.aspx

131

Chapter 4: Memory Management

These have been listed in the order of limitation; for example, if the server only has 4 GB
of physical memory (RAM) installed, that's going to be the upper limit for SQL Server.

If a server has 64 GB of RAM, and the Windows operating system is Windows Server 2008
64-bit Standard Edition, then the OS limit is 32 GB and that is the most that could be
used by SQL Server.

If a 32-bit edition of SQL Server is installed on a Windows Server 2008 x64 Enterprise
Edition system with 128 GB RAM, the maximum amount of memory that SQL Server
could address, under the default settings for WOW64, would be 4 GB, since a 32-bit
pointer can only ever "see" a maximum of 4 GB (232/10243). However, by setting the
appropriate SQL Server configuration options (namely, by enabling AWE (Address
Windowing Extensions), as discussed later), SQL Server can access additional memory
via Physical Address Extensions (PAE). This changes the pointer to 36-bit and, with the
use of AWE to allocate the memory, raises the maximum amount of memory to 64 GB
(236/10243).

The SQL Server version and edition will occasionally have an impact on the memory
limit for SQL Server. For example, in SQL Server 2000 the ability to enable AWE memory
usage was an Enterprise Edition-only feature, so if you were using Standard Edition, SQL
Server would not have access to this additional memory. In SQL Server 2005, use of AWE
became a Standard Edition feature, and so this edition limitation was removed. Another
example is that, in SQL Server 2005 and 2008, 64-bit editions running Enterprise Edition
can make use of Large Pages (discussed later in this chapter).

32-bit Virtual Address Space limitations

The Windows OS runs every process, including the SQL Server process, in its own
dedicated area of virtual memory, known as the Virtual Address Space (VAS). One of
the biggest challenges with memory management for 32-bit SQL Server is the limited
amount of VAS to which a 32-bit process has access. A 32-bit process can only ever address

132

Chapter 4: Memory Management

a maximum of 4 GB of memory and so a 32-bit SQL Server process only has access to 4
GB of VAS. The VAS is divided into two regions; kernel mode (or system) space and user
mode (or application) space.

The kernel mode VAS is used by the OS, for mapping various system data structures
such as the file cache, Paged and Non-Page pools (discussed briefly later). The user mode
VAS is used to map memory for the currently-executing application process (in our case,
SQL Server).

By default, Windows divides the VAS evenly into 2 GB kernel mode VAS and 2 GB user
mode VAS. In other words, the total VAS is 4 GB but a single 32-bit SQL Server process
can only address 2 GB in the user mode VAS for its working set. Using the default config-
uration, SQL Server allocates memory in this 2 GB of user mode VAS for the buffer pool
(data and plan cache), with a smaller amount of memory required for non-buffer pool
(multi-page) allocations.

Over the coming sections, we'll discuss the following topics:

•	 How SQL Server allocates memory in the user mode VAS.

•	 Memory reservation for non-buffer pool allocations.

•	 How to extend user mode VAS to a maximum of 3 GB, using VAS tuning.

•	 How to make available to the SQL Server process a separate, larger (>4 GB) area of
memory, called AWE memory, for data cache allocations.

Please note that many of the concepts and limitations discussed in this section apply only
to 32-bit installations of SQL Server. Please refer to the Using 64-bit SQL Server section for
details of 64-bit installations.

133

Chapter 4: Memory Management

User mode VAS allocation and VirtualAlloc

SQL Server reserves 2 GB of user mode VAS but doesn't commit that memory until a
physical memory allocation occurs. SQL Server allocates memory in the user mode VAS
by making calls to the VirtualAlloc function in the Windows API. If you're running a
32-bit version of either Windows OS or SQL Server, then a call to VirtualAlloc returns
a 32-bit pointer and so, as discussed, this limits the amount of user mode VAS that SQL
Server can use to 2 GB.

Memory allocated by VirtualAlloc doesn't have to be physically present, so 2 GB of
user mode VAS would still be reserved by Windows for SQL Server use, regardless of how
much physical memory (RAM) was installed. However, when that memory is committed
(used), it needs to be backed by RAM (or the page file) and Windows ensures that the
amount of memory committed by SQL Server and any other processes will be less than,
or equal to, the installed physical memory, plus page file capacity.

However, if you happen to have less than 2 GB of RAM installed (rare, these days) then
the RAM limit becomes the hard upper limit of memory that SQL Server will commit.
During initial memory ramp up, SQL Server will ensure that the buffer cache is smaller
than the physical RAM available; SQL Server isn't going to commit memory that is
guaranteed to be paged out for the buffer cache, since the whole point of having the
buffer cache in memory is to reduce the physical disk activity. In fact, your buffer pool
will be somewhat smaller than the installed RAM, due to additional memory require-
ments of SQL Server which are discussed in more detail in the next section, Non-buffer
pool allocations (MemToLeave).

Finally, note that any memory allocated by VirtualAlloc is pageable; this means
that the Windows OS can force this memory to be paged to disk, in response to
memory pressure.

134

Chapter 4: Memory Management

Non-buffer pool allocations (MemToLeave)

As discussed, the largest memory allocations made by SQL Server are generally to the
buffer pool, for data pages and execution plan caching. However, any user mode VAS
memory allocation that required more than 8 KB of contiguous memory would be a
non-buffer pool allocation, made by the multi-page allocator. Examples of such multi-
page allocations include thread stack allocations, heap allocations, extended stored
procedures, SQLCLR, linked servers, and backup buffers. Of these, the backup buffers,
i.e. the series of buffers allocated at the start of a database backup, are one of the most
common consumers of non-buffer pool memory, with the total space required by the
backup buffers being the number of buffers times the maximum data transfer size
(MaxTransferSize*BackupBufferCount). It is not uncommon for a backup operation
to reserve 16 backup buffers; with each backup buffer being 4 MB in size, this on its own
will eat up 64 MB of non-buffer pool memory.

To ensure that sufficient VAS is available for non-buffer pool allocation requirements,
32-bit editions of SQL Server, upon startup, reserve a contiguous portion of the VAS that
is commonly referred to as the MemToLeave.

MemToLeave (or VAS Reservation) calculation

This only applies to 32-bit instances of SQL Server and is not performed on 64-bit instances of

SQL Server.

Once this reservation is taken, the size of the buffer pool is determined based on the
amount of physical memory that is installed in the server and the remaining VAS.

For SQL Server 2005 and 2008, the calculation for the MemToLeave is calculated from
the required thread stack size in MB, which is:
MaxWorkerThreads * 0.5 MB + default reservation size (256 MB).
where MaxWorkerThreads = (ProcessorCount-4)+256).

For SQL Server 2000, the calculation is MaxWorkerThreads=256.

135

Chapter 4: Memory Management

In general, for 32-bit SQL Server installations using the default configuration options
for Windows and SQL Server, the amount of the MemToLeave reservation is at least
384 MB ((256*0.5) + 256), and generally less than 432 MB, depending on the number of
processors installed in the server. The –g startup parameter for the SQL Server service,
covered shortly, can be used to increase the amount of VAS that is reserved by the
MemToLeave calculation.

When this is subtracted from the 2 GB of user mode VAS, the remaining portion is
available to the buffer pool, up to the available physical memory installed in the server.
So, for servers with 2 GB of RAM, or more, this means that about 1.6 GB of RAM will be
available to the buffer pool.

To allow 32-bit SQL Server to utilize any additional memory for buffer pool allocations,
two options exist, and the appropriate option depends on the amount of memory that is
installed on the server.

For servers with 4 GB of RAM, we can apply the concept known as 4 Gigabyte Tuning
(4GT) or, more generally, as VAS tuning in order to gain extra user mode VAS (at the
expense of kernel mode VAS). For servers with more than 4 GB of RAM, we can make
available a separate area of memory that can be used exclusively for allocations to the data
cache portion of the buffer pool, by enabling AWE.

VAS tuning

For servers with 4 GB of memory, it's possible to change the way VAS is allocated between
user mode and kernel mode processes. Instead of a 50:50 split, up to 1 GB of additional
space can be allocated to user mode VAS for the buffer pool. In Windows Server 2008 this
process is generally referred to as VAS tuning, though in earlier Windows version it was
called 4 Gigabyte Tuning (4GT).

136

Chapter 4: Memory Management

Of course, the trade-off with VAS tuning is that you end up with up to 1 GB less space for
kernel mode VAS, and this can have significant consequences. When the kernel mode
VAS is reduced, the number of system Page Table Entries (PTEs) is reduced, and this in
turn reduces the total amount of memory that SQL Server can address.

Critical concepts: Page Table Entries

PTEs allow the mapping of virtual memory addresses to physical memory addresses. If there are an insuf-

ficient number of PTEs within the Windows kernel address space, the amount of physical memory that

can be stably addressed by the system is limited. The PTEs used to map AWE memory, for example, must

remain memory resident to provide system stability.

In short, if insufficient address space is allocated to kernel mode VAS, it can lead to system
instability, so care must be taken when using VAS tuning.

In Windows Server 2008, VAS tuning for 32-bit servers is accomplished through the use
of BCDEdit /set from the command prompt to set the value for the increaseuserva
option to between 2048 and 3072 MB.

In Windows Server 2000 and beyond, two switches can be added to the boot.ini file to
control how the VAS is split. The /3GB switch in the boot.ini changes the allocation
so that 3 GB is allocated to the user mode VAS and 1 GB is allocated to kernel mode. In
cases where the 3 GB:1 GB split proves problematic, the /USERVA switch can be used in
conjunction with the /3GB switch in order to tune the split, and allocate additional VAS
to the kernel mode address space, increasing slightly the number of PTEs and the size of
the Non-Paged Pool.

For more on 4GT tuning…

…see the Books Online, "Topic: 4 Gigabyte Tuning" (http://msdn.microsoft.com/en-us/library/

bb613473(v=vs.85).aspx).

http://msdn.microsoft.com/en-us/library/bb613473(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb613473(v=vs.85).aspx

137

Chapter 4: Memory Management

The case for AWE

On 32-bit servers on which more than 4 GB of RAM is installed, SQL Server can utilize
the memory over 4 GB through the use of Address Windowing Extensions (AWE),
assuming the Windows operating system supports it. AWE is significantly more flexible,
and allows for more memory to be made available than is the case with 4GT. However,
AWE requires additional configuration of the OS to use Physical Address Extensions
(PAE) to work.

PAE is enabled on Windows Server 2008 through the use of BDCEdit /set from the
command prompt, to set the PAE option to ForceEnable. On Windows Server 2000
and 2003, PAE is enabled through the use of the /PAE boot.ini switch. When PAE is
used by the OS, the 32-bit pointer used for memory management is expanded by 4 bits,
to 36 bits, allowing the OS to address up to 64 GB of RAM. However, for applications to
make use of this additional memory, they must use AWE.

While VAS tuning is concerned with reallocation of VAS, memory allocated using AWE is
entirely separate. When allocating memory above the 4 GB limit using AWE, SQL Server
does not use calls to VirtualAlloc, but instead calls the AllocateUserPhysical-
Pages function in Windows. Unlike memory allocated using VirtualAlloc, memory
allocated using AllocateUserPhysicalPages is mapped using PTEs and has to be
physically available on the server to be allocated. Also, once the allocation is made, the
memory is locked and non-pageable by Windows.

Memory allocated by SQL Server using AWE can be used only for the data cache portion
of the buffer pool. So, when using AWE, all data cache is allocated in AWE memory (and is
non-pageable), and the rest of the buffer pool (mainly the plan cache), and any non-buffer
pool allocations that require user mode Virtual Address Space, will continue to be
mapped within the 2 GB of user mode VAS.

In order for SQL Server to be able to use AWE to allocate memory, PAE must first be
enabled, as described earlier. Next, the 'awe enabled' sp_configure option must be
set inside of SQL Server, and the SQL Server service account must have the Lock Pages

138

Chapter 4: Memory Management

in Memory user right, found in the User Rights Assignment of the Local Security Policy
assigned to it in Windows (using the Windows Group Policy tool, gpedit.msc). If you
enable either of these options, or to enable both of them at the same time, you must then
restart the database engine in order for the change(s) to take effect.

As previously hinted, one of the side effects of granting the Lock Pages in Memory user
rights to the SQL Server service account, is that the memory allocated to the buffer pool
using AWE is locked and cannot be paged out if the Windows operating system gets into
memory pressure. For this reason, whenever AWE is being used, it is recommended that
the 'max server memory' sp_configure option be set in order to set a firm upper limit
for memory that can be allocated to the buffer pool and so ensure that sufficient memory
is available to the operating system after the SQL Server memory ramp up completes. If
the Windows OS experiences memory pressure, it will set the memory low notification
flag. SQL Server will always respond to this by performing a cache sweep and trying to
free up memory (down to the value specified by the min server memory setting). In the
meantime, however, the OS is unable to page out the AWE memory, as it is locked. If SQL
Server is unable to free up enough memory quickly enough, the OS can reach an unstable
state where it can't page, and can't allocate more memory.

For systems with less than 16 GB of RAM, it's possible to use the 4GT methods discussed
in the previous section, in conjunction with AWE, but it is not generally recommended.
One of the side effects of including the /3GB switch in the boot file, for 4GT tuning, is
that the total amount of memory that can be managed by Windows is reduced from
64 GB to 16 GB due to the reduction in the number of PTEs caused by the lower kernel
mode address space. On systems with more than 16 GB of RAM, the use of 4GT tuning
in conjunction with AWE is unsupported by Microsoft (see http://support.microsoft.
com/kb/274750).

http://support.microsoft.com/kb/274750
http://support.microsoft.com/kb/274750

139

Chapter 4: Memory Management

The –g startup parameter

Earlier in this chapter, it was noted that during startup of 32-bit SQL Servers, a portion
of the user mode VAS is reserved (a process called VAS Reservation) for non-buffer pool
memory allocations. The size of this MemToLeave reservation is generally very small
compared to the amount of memory that a SQL Server may have installed, and compared
to the size of the buffer pool.

For most systems, this is not a problem, since the majority of memory consumed by
SQL Server is not from this region of reserved address space, but from the buffer pool.
However, as applications have increased in complexity, so have the databases that support
them, and it is possible that the default VAS Reservation for a SQL Server instance is not
large enough to support the requirements for non-buffer pool memory allocations.

Compounding the problem of inadequate size of the non-buffer pool VAS, is fragmen-
tation of the VAS Reservation that does exist. Memory allocations from VAS must be
contiguously allocated, and it is possible that sufficient VAS is available, but it has
become fragmented and the appropriate contiguous size required for a memory
allocation is not available.

Determining which of these two problems exists can be accomplished by querying the
sys.dm_os_virtual_address_dump DMV to find the size of the available VAS on the
system, and the size of the largest contiguously available space.

Determining available VAS

SQL Server MVP, Christian Bolton, provides a script to determine the amount of available VAS to SQL

Server, and the size of the largest contiguous block of VAS on his blog post: "SQL Server memtoleave,

VAS and 64-bit" (http://sqlblogcasts.com/blogs/christian/archive/2008/01/07/sql-server-

memtoleave-vas-and-64-bit.aspx).

http://sqlblogcasts.com/blogs/christian/archive/2008/01/07/sql-server-memtoleave-vas-and-64-bit.aspx
http://sqlblogcasts.com/blogs/christian/archive/2008/01/07/sql-server-memtoleave-vas-and-64-bit.aspx

140

Chapter 4: Memory Management

The –g startup parameter for the SQL Server service can be used to increase the amount
of VAS reserved by the MemToLeave startup VAS Reservation. This parameter can be
used with an integer value greater than 256, to specify the size in megabytes to be used
for the base reservation variable of the MemToLeave sizing calculation. By default, the
base reservation is 256 MB in size, to which the calculated thread stack size (as shown
earlier) for the instance is added to get the total size of the MemToLeave VAS Reservation.
When this option is used, it reduces the user mode VAS available to the buffer pool, and
therefore reduces the maximum size of the buffer pool for the SQL instance.

MemToLeave fragmentation is a more difficult problem to handle; if you call Microsoft
support with this issue, you'll probably be told that the only answer is to upgrade to 64-bit
SQL Server. The reason that this recommendation is made is that the size of the VAS on
a 64-bit server is 8 TB, which exceeds the amount of physical RAM currently possible in
a server, meaning that there will always be available VAS for non-buffer pool allocations
by SQL Server. If you can't immediately upgrade to 64-bit SQL Server, your only options,
currently, are to schedule frequent instance restarts or use the –g startup parameter to
assign more memory to MemToLeave with the idea that the fragmentation will have less
of an effect.

Using 64-bit SQL Server

The first 64-bit version of SQL Server 2000 was released in 2003 and it changed memory
management for SQL Server significantly. Over the coming sections, we'll discuss some of
the most significant changes, a few of which have caught some DBAs off-guard.

Higher VAS memory limits

One of the benefits of 64-bit systems is that the VAS limits are substantially higher.
Where 32-bit systems only have 4 GB of Virtual Address Space, 64-bit systems have
16 exabytes (264) of VAS making it virtually unlimited in comparison to the amounts

141

Chapter 4: Memory Management

of physical RAM that can currently be installed in a server. In reality, managing this
much VAS poses significant challenges, and the sizes of the kernel mode and user mode
address spaces are currently limited to 8 TB each on x64 systems, and 7 TB each on IA64
(Itanium) systems.

This vastly higher VAS means that 64-bit SQL Server instances do not require any
additional configuration in order to allocate memory over 4 GB; the AWE enabled
option has no application for these instances. The Lock Pages in Memory option may,
however, still be relevant (discussed shortly).

High amounts of pageable memory under default
configuration

As with 32-bit SQL Server, the default behavior for 64-bit SQL Server is to allocate
VAS memory using the VirtualAlloc Windows function. This means that all of this
memory is not locked and is pageable. This caught many administrators off-guard; on
32-bit SQL Server they had up to 2 GB of user mode VAS-allocated memory, and then an
additional, larger amount that was enabled using AWE and so was locked. Now, on 64-bit
SQL Server, all memory can be committed using VAS only, making it all pageable, which
can create significant problems for SQL Server if the OS is under memory pressure and
decides to hard page out the SQL Server working set.

This was one of the problems that became apparent early on with 64-bit SQL Servers that
were installed using the default configuration and left to run. We'll discuss this issue in
more depth shortly, in the Lock pages in memory section.

No MemToLeave calculation for non-buffer pool allocations

The size of the Virtual Address Space on a 64-bit server guarantees that even after the
buffer pool memory has been allocated by SQL Server, there will still be sufficient user
mode VAS available to handle non-buffer pool memory requests. This means that the

142

Chapter 4: Memory Management

concept of a VAS Reservation (MemToLeave) for non-buffer pool allocations does not
apply to 64-bit SQL Servers (and so the –g startup parameter has no significance, either).
This issue is discussed in more detail shortly, with regard to setting max server memory
in 64-bit SQL Server, but basically the lack of VAS Reservation means that it's important
to account for non-buffer pool and non-SQL memory allocations by monitoring the
Memory/Available Mbytes counter to ensure it remains above 150–300 MB as you
gradually increase the value of max server memory.

Significantly larger procedure cache

Since the user mode VAS is significantly larger, the procedure cache in SQL Server, where
execution plans are stored, can allocate significantly more memory on 64-bit systems,
which was a surprise to many DBAs who upgraded their hardware while using SQL Server
2005 RTM or Service Pack 1. If their database had an ad hoc workload that generated a
large number of single use plans, they found that these plans began consuming as much
as half the memory available on their server.

Understanding changes to procedure cache sizing in SQL Server

The SQL Server Programmability Team blogged about the challenges associated with the sizing of the

procedure cache on 64-bit SQL Servers due to the size of the user mode VAS and how the cache sizing

algorithms were changed in SQL Server 2005 Service Pack 2 to reduce the problems associated with cache

bloat for ad hoc workloads on their blog post: "Changes in Caching Behavior between SQL Server 2000,

SQL Server 2005 RTM and SQL Server 2005 SP2" (http://blogs.msdn.com/b/sqlprogrammability/

archive/2007/01/22/3-0-changes-in-caching-behavior-between-sql-server-2000-sql-server-

2005-rtm-and-sql-server-2005-sp2.aspx).

http://blogs.msdn.com/b/sqlprogrammability/archive/2007/01/22/3-0-changes-in-caching-behavior-between-sql-server-2000-sql-server-2005-rtm-and-sql-server-2005-sp2.aspx
http://blogs.msdn.com/b/sqlprogrammability/archive/2007/01/22/3-0-changes-in-caching-behavior-between-sql-server-2000-sql-server-2005-rtm-and-sql-server-2005-sp2.aspx
http://blogs.msdn.com/b/sqlprogrammability/archive/2007/01/22/3-0-changes-in-caching-behavior-between-sql-server-2000-sql-server-2005-rtm-and-sql-server-2005-sp2.aspx

143

Chapter 4: Memory Management

Memory configuration options with 64-bit SQL
Server

The following sections cover special considerations for setting important memory config-
uration options when using 64-bit SQL Server, namely max (and min) server memory
and Lock Pages in Memory. It also briefly discusses a special Trace Flag (834) that, when
enabled on 64-bit servers, causes SQL Server to use Windows Large Page Allocations for
buffer pool allocations.

Min and max server memory

SQL Server offers two instance-level settings that can be used to control how memory
is allocated to, and removed from, the buffer pool: the min server memory and max
server memory sp_configure options. Note that in SQL Server 2000, 2005, 2008 and
2008 R2, these settings apply only to the buffer pool size and do not include the memory
that may be allocated by SQL Server outside of the buffer pool.

The min server memory option specifies the minimum size to which SQL Server can
shrink the buffer pool when under memory pressure; it does not specify the minimum
amount of memory that SQL Server will initially allocate. During memory ramp up,
the memory usage of an instance slowly increases and the buffer pool is grown to meet
the needs of the requests being executed. The max server memory option specifies
the maximum amount of memory that SQL Server can use for the buffer pool, which is
primarily used for caching data pages in memory.

144

Chapter 4: Memory Management

The appropriate setting for each of these configuration options depends on the SQL
Server implementation. It is common to find recommendations online that state
something along the lines of:

"If a SQL Server is dedicated to running only the SQL Server database engine then, generally, each of these

options can be configured to have the same value, so that the SQL Server allocates memory for the buffer pool

and then does not shrink its memory usage once that level has been met."

While this information is technically correct, it is not the recommended configuration
that I would make for a dedicated SQL Server. The problem I have with this configu-
ration is that, when Lock Pages in Memory is being used, this configuration limits how
far SQL Server can respond to OS low memory notifications by sweeping its caches and
reducing its memory usage to free memory back to the OS for use. This can result in
system instability issues and, for this reason, I would recommend that the min server
memory configuration be set lower than the max server memory configuration by a
couple of gigabytes of memory, to allow SQL Server to resize the buffer pool as needed to
respond to OS low memory notifications.

If the SQL Server also runs Reporting Services, Integration Services, or other applications
that require memory from Windows, these options should be configured with a range
so that the min server memory is configured at an acceptable lower limit for memory
allocated to the buffer pool and the max server memory is set a higher limit, allowing
the SQL Server to grow or shrink the memory usage within the established range as
needed while other processes are running.

One of the popular questions on online SQL Server forums is: "What is the proper max
server memory setting for a SQL Server with N gigabytes of installed RAM?" Unfortunately
there is no single setting that applies to every environment for this option; different
servers have different processes running and what is best for one server will not be the
same for a different server. The best answer is to set the initial value low enough to ensure
that the operating system doesn't have memory pressure issues and then monitor the
Memory\Available Mbytes performance counter on the server (along, possibly, with

145

Chapter 4: Memory Management

counters like Total Server Memory and Target Server Memory, covered later) to
determine the value for max server memory that leaves at least 150–300 MB of memory
available at all times for the memory requirements of non-buffer pool and non-SQL
memory allocations, for Windows and other applications.

As a general base configuration, for a dedicated SQL Server machine, reserve 1 GB of RAM
for the OS, 1 GB for each 4 GB of RAM installed from 4–16 GB, and then 1 GB for every 8
GB RAM installed above 16 GB RAM. This means that, for a server with 64 GB RAM, the
starting point for max server memory should be in the 54 GB range, and then tuned
higher based on monitoring the Memory\Available Mbytes performance counter.

Lock pages in memory

While the SQL Server process is designed to be self-tuning with regard to its own
memory allocation needs, it can't account for memory demands made by other processes
running on the server, or by operations such as file copies. Its self-tuning nature means
that it will respond to memory pressure, as and when signaled by the operating system.

This means that, ultimately, the operating system is in control of the response to memory
pressure, and one of the ways that the OS responds is by trimming, and possibly paging
out, the working set of processes that are consuming memory, including, of course, the
SQL Server process. When this occurs, memory allocations that are backed by physical
memory are written to virtual memory in the system page file on disk. If the process's
working set is relatively small, this is not generally a big problem, but on 64-bit SQL
Servers with large amounts of RAM installed, where all memory is committed using VAS
only and so is pageable, this can significantly impact performance.

If SQL Server experiences a working set trim, or memory gets paged out, SQL will write a
message in the error log as follows:

A significant part of sql server process memory has been paged out. This may result in a performance degrada-

tion. Duration: 0 seconds. Working set (KB): 16484, committed (KB): 6239692, memory utilization: 0%.

146

Chapter 4: Memory Management

If this message is frequently seen, it indicates there is a problem with SQL getting
paged out.

On 32-bit SQL Servers this wasn't generally a big issue since the pageable memory that
could be allocated by SQL Server was limited to 2 GB of user mode VAS. However, on
64-bit systems, the SQLOS can, by default, allocate all of the memory on the server
using calls to VirtualAlloc, which are non-locked and pageable. On a server with
16 GB of RAM, this can result in a significantly sized, pageable working set for the SQL
Server process. This was especially problematic on Windows Server 2003 where the
operating system responded aggressively to memory pressure by trimming working
sets. First, Windows would ask SQL Server to trim its working set, which would prompt
de-allocation of memory down to the min server memory setting. If SQL Server didn't
trim enough memory, or didn't trim fast enough, the OS could force part of SQL Server's
memory allocation out of physical memory and into the paging file. At this point, the
buffer cache is still allocated, but it is not backed by physical memory, it is backed by page
file on disk which is very slow and causes the performance issues.

To prevent this from happening on 64-bit SQL Servers, the Lock Pages in Memory
privilege can be assigned to the SQL Server service account, in which case memory is
allocated to the buffer pool using the Win32 function AllocateUserPhysicalPages,
which is provided by the AWE API. This is the same function that is used in 32-bit SQL
Servers that have AWE enabled in order to allocate memory above 4 GB. Even though
the same function is used to perform the memory allocations, it is important to note that
AWE is not being used by the 64-bit SQL Server and the 'awe enabled' sp_configure
option does not have to be set. The function is being used simply so that the allocated
pages are locked and cannot be paged to disk.

Do NOT enable AWE on 64-bit SQL Server

The ability to lock pages in 64-bit SQL Server requires only the Lock Pages in Memory privilege for

the service account; it does not require setting the 'awe enabled' sp_configure option, which is a

no-op in the SQL Server code for 64-bit systems.

147

Chapter 4: Memory Management

One of the problems that people often run into when running SQL Server using Lock
Pages in Memory is that the information returned by Task Manager no longer reflects
the total memory use by the sqlservr.exe process. The information shown in Task
Manager is only for the non-buffer pool memory usage by the sqlservr.exe process
and does not include the memory allocated to the buffer pool using locked pages, as
shown in Figure 4.3.

Figure 4.3: SQL Server Process memory usage (locked pages).

The server shown in Figure 4.3 has 64 GB of RAM installed in it, of which 97% is currently
allocated, primarily by SQL Server. To determine the total amount of memory that is
being used by SQL Server, the SQL Server:Memory Manager\Total Server Memory
performance counter should be used.

148

Chapter 4: Memory Management

Initially, in SQL Server 2005 and 2008, Lock Pages in Memory was an Enterprise-only
feature. However, it was added to SQL Server Standard Edition in SQL Server 2008 R2,
and can be used in SQL Server 2008 SP1 with Cumulative Update 2 or later, and in SQL
Server 2005 SP3 with Cumulative Update 4 or later. Having applied the appropriate
update to the server, the startup Trace Flag –T845 must be added to the SQL Server
service startup parameters for the instance, in order to begin using the feature. Since the
memory allocated using Lock Pages in Memory is locked and cannot be paged, it is
recommended that the max server memory sp_configure option be set to limit the
amount of memory that SQL Server can use, and so prevent starving the OS of memory.

Additional references for Lock Pages in Memory and how to reduce paging

How to reduce paging of buffer pool memory in the 64-bit version of SQL Server: http://support.

microsoft.com/kb/918483.

Support for locked pages on SQL Server 2005 Standard Edition 64-bit systems and on SQL Server 2008

Standard Edition 64-bit systems: http://support.microsoft.com/kb/970070.

Using Large Pages (-T834 startup parameter)

If this specific topic had not been addressed in a published Microsoft Knowledge Base
article (http://support.microsoft.com/kb/920093), and subsequently referenced by
VMware as a best practice for virtualized SQL Servers (http://www.vmware.com/files/
pdf/sql_server_virt_bp.pdf), it would probably never have made it into this book, and
I'm not going to discuss this complex issue in a lot of detail.

There is much debate regarding whether or not the use of Large Page Allocations (LPA)
with SQL Server is beneficial to a given workload, but I'll defer to Bob Ward, a Senior
Customer Support Services Engineer at Microsoft, who provides further information
about this feature on his blog (http://blogs.msdn.com/b/psssql/archive/2009/06/05/
sql-server-and-large-pages-explained.aspx), and concludes that you should "use
with caution."

http://support.microsoft.com/kb/918483
http://support.microsoft.com/kb/918483
http://support.microsoft.com/kb/970070
http://support.microsoft.com/kb/920093
http://www.vmware.com/files/pdf/sql_server_virt_bp.pdf
http://www.vmware.com/files/pdf/sql_server_virt_bp.pdf
http://blogs.msdn.com/b/psssql/archive/2009/06/05/sql-server-and-large-pages-explained.aspx
http://blogs.msdn.com/b/psssql/archive/2009/06/05/sql-server-and-large-pages-explained.aspx

149

Chapter 4: Memory Management

Even though the LPA option is used during TPC-related benchmarks by Microsoft, the
real truth is that any configuration option utilized during one of these benchmarks has to
be documented by the software manufacturer and, had this not been used to attain the
published results of the benchmark, it would probably never have been documented.

The problem with this is that the documentation breeds confusion about whether or not
this configuration option is truly beneficial to SQL Server or not. One of the constraints
associated with using Large Pages with SQL Server is that the buffer pool cannot be
dynamically sized when Large Pages are in use, and if a sufficient contiguous allocation of
physical memory does not exist to back the configuration of the 'max server memory'
sp_configure option, the amount of memory allocated to the buffer pool can be signif-
icantly lower than expected. The use of this feature of SQL Server should be thoroughly
evaluated to ensure that an actual benefit is realized for your specific workload prior
to this option being enabled on a production SQL Server, even when running under
VMware virtualization.

Diagnosing Memory Pressure

If SQL Server is forced to operate with an insufficient amount of memory, it will be able
to store fewer data pages in the buffer pool. As a result, higher physical I/O is needed to
bring data pages from disk into the buffer pool as they are requested, and performance
will degrade. These data pages may soon be subsequently flushed from the buffer pool, to
make room for other pages, only to be then read back into the buffer pool, in a repetitive
cycle known as buffer pool churn. The heightened disk I/O observed during buffer pool
churn often means that it's easily mistaken for a disk I/O subsystem problem, rather than
a memory pressure problem.

If a system consistently performs read operations that require more memory than is
available to SQL Server, each read of the data will result in flushing the buffer cache,
and cause physical I/O against the disk subsystem. In addition, if the workload requires
significant amounts of data in sort or aggregate operations during query processing, the

150

Chapter 4: Memory Management

data can spill over to tempdb work tables due to a lack of available memory to accom-
modate that processing, again further increasing the I/O demand on the system.

The best way to tell if SQL Server is under memory pressure and needs more memory
is to review a number of critical performance counters related to the health of the SQL
Server instance's buffer pool.

Memory-related counters

In this section, we'll review some of the critical performance counters related to memory
usage. It's important to realize that there is no single performance counter that can be
used in isolation to determine if SQL Server is under memory pressure, and there is no
single point-in-time snapshot of the counters that will allow you to diagnose the "health"
of the server in regard to memory use. Diagnosing memory pressure requires tracking
several counter values across a period of time (a day, week, or even a month) that repre-
sents the normal operations of the database.

SQL Server:Buffer Manager

There are a number of useful counters belonging to the SQL Server:Buffer Manager
object that, when monitored collectively, can help uncover problems relating to buffer
pool churn.

Buffer Cache Hit Ratio

The SQL Server:Buffer Manager\Buffer Cache Hit Ratio counter provides a
database-wide measure of how often SQL Server gets data from memory (buffer cache) as
opposed to disk. There are a ton of references on the Internet suggesting that this counter
should be greater than 95% for OLTP systems and greater than 90% for OLAP systems.

151

Chapter 4: Memory Management

Unfortunately, none of those references explain the meaning of this counter and how its
value is affected by read ahead pre-fetch operations performed by the database engine to
read pages into the buffer pool before they are actually used by an executing statement.
The fact that this counter shows a 95% hit rate for the buffer cache indicates nothing
more than the fact that SQL Server is working as designed to read pages into memory
before they are needed. To see a significant drop in the value of this counter, you'd have to
have some serious memory problems with SQL Server, and you'll spot this problem much
more easily and quickly using counters other than this one.

On its own, this performance counter doesn't tell you anything about the health of your
SQL Server, or whether or not it is under memory pressure.

Page Life Expectancy

The Page Life Expectancy counter provides the time in seconds that a page exists in
cache before being aged out to allow reuse of the cache space. Again, there are numerous
references out there on the Internet, suggesting that the value for this counter should
generally be greater than 300 (i.e. five minutes).

However, most of those references are based on a recommendation made by Microsoft
over a decade ago, for SQL Server 2000, in a time when 4 GB of RAM was considered to
be a lot of memory, and SQL Server was only allocating 1.6 GB of memory to the buffer
pool. If SQL Server has to read 1.6 GB of data from disk every five minutes, the impact
is minimal.

However, fast-forward ten years, and servers today commonly have 64 GB of RAM, or
more, and SQL Server is commonly configured to use a majority of this memory for the
buffer pool. If SQL Server has to read 50 GB or more of data from disk every five minutes,
then the impact to the I/O subsystem is going to be substantially greater than it would
have been when Microsoft made the original recommendation.

152

Chapter 4: Memory Management

The value of this counter reflects the Page Life Expectancy (PLE) at that exact point in
time, and it is not uncommon to see periodic drops in the value returned by this perfor-
mance counter, especially when a large query is executing a table scan, reading new pages
into the buffer pool from disk. This counter must be monitored over long periods of time
in order to properly identify normal trends.

Free Pages

The Free Pages counter reflects the total number of free pages that exist for the SQL
Server buffer pool, allowing for immediate allocations by an executing request without
having to release additional pages from cache to satisfy the request. The number of
free pages in the system should never reach zero. This counter should be monitored in
conjunction with the Page Life Expectancy counter and the Free List Stalls
counter, to gauge whether the system is actually under memory pressure. If the PLE
experiences drops in value that correlate to low or zero values for Free Pages, and the
system is also experiencing Free List Stalls at the same time, then these are a sure
sign that the instance is experiencing memory pressure and could benefit from having
addition memory allocated to the buffer pool.

Free List Stalls/sec

Free List Stalls occur whenever a request has to wait for a free page in the buffer pool. If
the number of stalls exceeds zero frequently or consistently over a period of time, this is a
sign of memory pressure.

Lazy Writes/sec

The Lazy Writes/sec counter reflects the number of buffer pages that have been
flushed by the Lazy Writer process, outside of a normal checkpoint operation, allowing
the buffer to be reused for other pages. If you observe Lazy Writes occurring in

153

Chapter 4: Memory Management

conjunction with a low PLE, a low number of free pages, and the occurrence of Free List
Stalls, this is a sign that the workload is exceeding the amount of memory that is available
to the buffer pool, and additional memory needs to be added to the server.

SQL Server:Memory Manager

The counters relating to the SQL Server:Memory Manager object provide useful insight
into overall memory consumption and memory management issues on the server.

Total Server Memory (KB) and Target Server Memory (KB)

Respectively, these counters represent the total amount of memory that has been
allocated by SQL Server and the amount of memory that SQL Server wants to commit.
When the Target Server Memory (KB) counter exceeds the Total Server Memory
(KB) counter, the SQL Server process wants to commit more memory than is available on
the server, which can be a sign of memory pressure.

Generally, SQL Server will reduce its memory demands to match the available memory on
the server, or what is specified by the 'max server memory' option of sp_configure,
so these two counters are not the first places to start, when looking to confirm a memory
pressure issue on SQL Server.

Memory Grants Outstanding

This counter measures the total number of processes that have successfully acquired a
workspace memory grant. Low values for this counter, under periods of high user activity
or heavy workload, may be a sign of memory pressure, especially if there are a high
number of memory grants pending.

154

Chapter 4: Memory Management

Memory Grants Pending

This counter measures the total number of processes that are waiting for a workspace
memory grant. If this value is non-zero, it is a sign that tuning or optimization of the
workload should be performed if possible, or that additional memory needs to be added
to the server.

Memory-related DMVs

There is also some information regarding memory-related waits and non-buffer pool
memory allocations and so on, that can be extracted from the DMVs, such as the sys.
dm_os_memory_* objects in the Operating System-related DMVs, or the sys.dm_
exec_query_memory_grants DMV. For example:

•	 sys.dm_exec_query_memory_grants can be used to find queries that are waiting
(or have recently had to wait) for a memory grant, especially those requesting relatively
large memory grants.

•	 sys.dm_os_memory_cache_counters provides a snapshot of current usage of
the memory cache. Includes the multi_pages_kb column showing the amount of
memory allocated by the multiple-page allocator.

•	 sys.dm_os_sys_memory summarizes the overall memory condition of the system,
including current levels of memory in the system, the cache, and so on.

•	 sys.dm_os_memory_clerks provides information related to memory
clerk processes that manage SQL Server memory. For example, significant
memory allocation in the buffer pool associated with the MEMORYCLERK_
SQLQERESERVATIONS may indicate insufficient memory in the buffer pool
for certain queries to execute.

We'll not discuss these objects any further here, since I've generally found the information
in these objects to be harder to analyze and interpret than that which is easily available

155

Chapter 4: Memory Management

from the memory counters. As a result, I always use the PerfMon memory counters, in
preference to these DMVs, in order to determine whether or not a SQL Server instance
has memory issues.

Common Memory-Related Problems

One of the hardest challenges in selecting a list of common problems was categorizing
the list of common problems as misconceptions, misconfigurations, or true problems in
SQL Server. In the end, only a few problems stood out in the myriad list of problems that
people report related to memory management and SQL Server.

The SQL Server memory leak myth

While this topic has already been addressed in this chapter, the prevalence of the notion
that SQL Server has a memory leak based on its memory consumption on a server
made it one of the top picks for common problems for memory management with SQL
Server. To oversimplify this subject, SQL Server does not have a memory leak. However,
it is possible for an extended stored procedure or in-process linked server driver to
have a memory leak that usually leads to system instability and service crashes. It is not
uncommon or abnormal for SQL Server to allocate as much memory as it possibly can, up
to and including the physical memory limit installed in the server on which SQL Server is
running. Further details about this were given earlier in this chapter.

Paging problems

Starting with SQL Server 2005 Service Pack 2, if a working set trim occurs SQL Server
will, as discussed earlier, write a message to the error log to the effect that "a significant
part of SQL Server process memory has been paged out."

156

Chapter 4: Memory Management

Whenever these messages appear in the error log, performance degradation has occurred
as a result of the working set for SQL being paged out to disk. There are a number of
causes of working set trims of the SQL Server process, but the most common ones are:

•	 incorrect settings for the max server memory sp_configure option, when Lock
Pages in Memory is not being used

•	 a large system cache in Windows caused by caching of non-buffered I/O operations
such as file copy operations

•	 hardware driver issues that result in memory leaks or excessive memory allocations by
the driver.

The fastest way to resolve problems related to the OS trimming the working set of the
SQL Server process is to use brute force, and enable Lock Pages in Memory for the SQL
Server service.

However, as recommended in the previous preference paper on reducing paging of
buffer pool memory in the 64-bit version of SQL Server (http://support.microsoft.
com/kb/918483), it is better to identify the actual root cause of the working set trim
issues, and resolve those problems, rather than falling back on Lock Pages in Memory.
Nevertheless, practical experience from the field has shown that enabling Lock Pages
in Memory may be the only way to resolve working set trim issues for the SQL Server
process.

OS instability due to Lock Pages in Memory plus
unlimited max server memory

When Lock Pages in Memory is being used for a SQL Server instance, the default
configuration for the max server memory sp_configure option must be changed to
limit the amount of memory that the SQL Server instance can allocate for the buffer pool.
If the max server memory configuration option is not set for the instance, under the

http://support.microsoft.com/kb/918483
http://support.microsoft.com/kb/918483

157

Chapter 4: Memory Management

default configuration the instance will allocate all of the memory available on the
server for use by the SQL Server buffer pool. The problem with this scenario is that
when the Windows OS gets into memory pressure (and it certainly will, as SQL Server
commits all of the memory available on the server), it can't page out or trim the SQL
Server working set in response to the memory pressure. This leaves the OS at the mercy
of SQL Server to respond to the memory pressure fast enough to prevent the Windows
OS from crashing. The same scenario can occur if an inappropriately high value has
been set for max server memory for the instance. For this reason, it is critical that
when Lock Pages in Memory is set for a SQL Server instance, the max server memory
configuration option should be set low enough to ensure that the Windows OS never
gets into memory pressure.

App Domain is marked for unload due to memory
pressure

This error is related to SQLCLR and can be triggered by a number of factors. It is
generally seen on 32-bit installations of SQL Server, though it may occur on 64-bit instal-
lations where the max server memory configuration of SQL Server limits the amount of
physical memory that can be allocated by SQLCLR. A majority of the times that this error
shows up the problem can be tracked to one of two problems: inefficient memory utili-
zation by the SQLCLR assembly or limitations of the VAS that is available for allocation
by the SQLCLR assembly.

When this error is encountered on 32-bit installations of SQL Server, the prevailing
recommendation is to upgrade the server to a 64-bit installation to realize the benefits
of the increased size of the user mode VAS provided by the 64-bit installation. However,
if the SQLCLR code excessively utilizes memory by using objects like a DataSet, which
uses excessive amounts of memory in the CLR stack to store all of the results from a
query's execution, over a SqlDataReader, even an upgrade from 32-bit to 64-bit is
unlikely to resolve the problem. One way to identify if this is the problem is to utilize

158

Chapter 4: Memory Management

the code of the SQLCLR assembly outside of the SQL Server process, in a Console or
WinForms application, and profile its memory usage.

Depending on the purpose of the SQLCLR assembly being affected, this error message in
the error log may be benign in nature, or could be significantly problematic. For example,
if a SQLCLR stores state across executions and its Code Access Security (CAS) declaration
is UNSAFE, then having it unload would lose the state information and cause significant
problems.

In either case, repeated App Domain unloads and reloads do impact performance
and they should be eliminated if possible. If a migration from a 32-bit installation to
a 64-bit installation is not immediately possible, one potential remediation is to use
the –g startup parameter, discussed earlier in this chapter to increase the size of the
MemToLeave VAS Reservation, providing additional Virtual Address Space to SQLCLR
for memory allocations.

Error 701 and FAILED_VIRTUAL_RESERVE

When SQL Server fails to allocate a contiguous region of VAS for an operation, it raises
a 701 error and outputs the information about the size of the allocation request into the
SQL Server error log. This problem generally only occurs on 32-bit SQL Servers, where
the VAS is limited, and can be associated with a number of different factors, including
backups that are using larger-than-default configuration values for maxtransfersize
and buffer count, as well as SQLCLR, XML, spatial data types, linked servers, or large
query plans being generated by the system. This error is not related to the buffer pool in
SQL Server, it is specific to allocation requests outside of the buffer pool that are generally
larger than 8 KB in size.

If a migration from a 32-bit installation to a 64-bit installation is not immediately
possible, one remediation is to use the –g startup parameter, discussed earlier, to increase

159

Chapter 4: Memory Management

the size of the MemToLeave VAS Reservation, providing additional VAS to the multi-page
allocator for memory allocations.

Over-provisioned virtual machines

In late 2008, Microsoft added virtualization support (Hyper-V) to SQL Server 2005 and
2008, then expanded its support to cover validated configurations using other virtual-
ization technologies, via its Server Virtualization Validation Program (SVVP). After that,
it was only a matter of time before virtualized SQL Server implementations became
common in business datacenters.

Depending on the hypervisor being used, advanced features like "memory overcommit"
can lead to problems for SQL Server, when the amount of memory allocated to the virtual
machines running on the hypervisor exceeds the actual physical memory installed in the
host server.

Hypervisors that support options such as "memory overcommit" implement additional
functionalities that allow the host server to respond to physical memory pressure, and
so stabilize the system. In general, there are two ways the hypervisors cope with physical
memory pressure on the host server: memory ballooning and memory paging.

Memory ballooning of the guest virtual machines is a process where a specialized
"balloon driver," installed as a part of the VM tools in each guest, begins acquiring
memory from the VM. This leads to memory pressure inside the VM, which causes
"low memory" resource notifications to be set by the Windows OS which, in turn,
forces processes running under the guest OS to release memory, which can then be
returned to the host server.

Memory ballooning is the preferred option, but when ballooning of the guest VMs
can't release memory fast enough to cope with the host-level memory pressure, the
alternative method used by hypervisors is to actively page the guest memory allocations

160

Chapter 4: Memory Management

out to disk, which results in severe degradation of performance of the paged-out guests
on the system.

SQL Servers that are running as VMs require special considerations with regard to their
memory configurations in the hypervisor, in order to minimize problems associated with
ballooning and paging when the host hypervisor comes under memory pressure.

When a SQL Server VM voluntarily reduces its memory usage as a result of ballooning,
this can, in extreme cases, result in SQL Server reducing its buffer pool allocations to the
point that little to no memory is being used by SQL Server for caching data. This, in turn,
will result in excessive physical disk I/O operations by the instance.

All of the hypervisors currently supported by Microsoft provide mechanisms for reserving
a minimum amount of memory for the VM that is hosting SQL Server, which prevents
the hypervisor from ballooning or paging the VM in the event that the host experiences
memory pressure. Setting the appropriate reservation for SQL Server is a recommended
best practice by the hypervisor vendors. In addition, setting the correct min server
memory configuration inside of SQL Server can allow for partial ballooning to occur,
while ensuring that SQL Server continues to allocate the buffer pool memory needed to
meet the environmental SLAs.

Memory settings for multiple instances

One of the selling points that Microsoft marketing uses for SQL Server is the ability to
install multiple named instances of SQL Server on a single, large server. Consolidating
multiple SQL Server instances onto a single server or a failover cluster can lead to a
substantial reduction in SQL Server licensing costs.

However, when multiple instances are being run on the same physical server, it is very
important that the min server memory and max server memory sp_configure
options are set appropriately for each instance, based on workload, in order to avoid

161

Chapter 4: Memory Management

competition for memory resources, and one instance starving others of memory. Each
of the instances should be monitored using the performance counters discussed in the
Diagnosing Memory Pressure section, to determine where the max server memory value
should be set. The aggregate total of the max server memory sp_configure options
for all of the instances on the server should be low enough to ensure that the Windows
OS still has sufficient available memory, as tracked by the Memory\Available Mbytes
counter, to prevent the OS low memory notifications.

It is also recommended that min server memory be configured for each instance, to
guarantee a minimum amount of memory to the buffer pool if the Windows OS sets the
low memory notification, and the SQL Server instances reduce their memory allocations
in response. If the min server memory configuration option is not set, a single instance
of SQL Server may voluntarily reduce its memory usage to the point that it experiences
performance degradation. Setting min server memory for all of the instances will
prevent this from occurring, and instead cause the other instances to reduce memory
usage appropriately, in response to the OS low memory notification.

Summary

Without a doubt, some of the most important configuration options for SQL Server
relate to memory management, and the advent of 64-bit SQL Server changed memory
management for SQL Server significantly.

When SQL Server is a 32-bit process, its memory usage for the buffer pool is limited to
2 GB, the size of the Virtual Address Space (VAS), minus the size of the Virtual Address
Space Reservation (also known as the MemToLeave) for non-buffer pool memory alloca-
tions for the SQL Server process. If the installed RAM is lower than 2 GB then memory
usage is limited to RAM minus the MemToLeave. This chapter discussed the two options
that will allow 32-bit SQL Server to utilize additional memory for buffer pool allocations,
either by decreasing the kernel mode VAS (VAS tuning), or by making available a separate,
larger area of PAE memory, using Address Windowing Extensions (AWE).

162

Chapter 4: Memory Management

When SQL Server is a 64-bit process, VAS is essentially unlimited but the physical
memory limitation still applies to the environment. We covered some of the significant
memory management changes, and their specific implications for configuration settings
and options such as max server memory, min server memory and Lock Pages
in Memory.

Memory management of SQL Server continues to be a confusing topic for most people,
but the guidelines suggested by this chapter should, in most cases, provide the best
practice configuration of SQL Server.

Nevertheless, memory-related problems still can (and probably will) arise, and this
chapter covered the most useful PerfMon counters to investigate some issues, as well as
some of the most commonly reported problems, and how to fix them.

163

Chapter 5: Missing Indexes

Indexes in SQL Server provide optimized access to data inside of a database, and one of
the common causes of performance problems with a SQL Server database is missing or
incorrect indexes on tables within the database.

Great strides have been made in SQL Server 2005 and 2008 to assist in identifying
missing indexes, via the use of:

•	 the Database Engine Tuning Advisor – analyses the execution plans generated for a
supplied workload, along with the physical characteristics of the database, and recom-
mends a set of indexes

•	 the Missing Index feature – provides information regarding potentially useful indexes,
stored in Dynamic Management Views and in XML Showplans.

However, the information provided by these tools, in particular the latter, can cause
problems when used incorrectly. We'll cover two of the most critical factors regarding the
appropriate structure of the indexes to be created, namely the index key column order
and the appropriate use of included columns. This will help you to evaluate and verify the
index recommendations made by these tools, in light of your knowledge of the data and
workload for the given database.

Finally, since indexes come with a maintenance cost, we'll discuss how to identify any
unnecessary indexes in your database, either duplicate indexes or those that are being
maintained but never used by any queries.

Note that this chapter focuses exclusively on identifying an appropriate set of indexes for
a given database; related index issues that could also affect query performance, such as
index fragmentation, are not covered.

164

Chapter 5: Missing Indexes

Index Selection and Design

Selecting the appropriate set of indexes for a database requires an understanding of how
the database is used, and the data it contains. An indexing strategy that may be applied
to a data warehouse or decision support system will be very different from the strategy
that would be appropriate for an online transaction processing (OLTP) system. However,
in any type of database, the general indexing strategy should be to establish indexes that
are not necessarily query specific, but instead provide the best performance for the overall
workload against the database.

In defining an appropriate set of indexes, you will ensure that the most significant queries
in your workload are able to read only the minimum required amount of data, and in a
logical, ordered fashion, enabling them to return that data quickly and efficiently, with
minimal read I/O.

Conversely, if a database lacks an appropriate set of indexes for the required workload,
then any searches against non-indexed columns will be resolved by performing Clustered
Index Scans or Table Scans, reading far more data than is necessary to return the required
result set, and leading to high associated read I/O costs.

To understand the overall workload, you have to first know the specific queries that will
be executed against the database, and then how frequently each of them will be executed.
An index that improves the performance of a single query that is executed once or twice
a day may not be worth creating if the query, when it runs, is not impacting the overall
performance of the server. If the same query ran a few thousand times an hour, however,
the impact of the index would likely be significant enough that creating it would be
beneficial.

Remember that, while indexes can improve the performance of specific queries in
SQL Server, they are not free. There is a cost associated with maintaining the records
contained in each index, and this cost must be balanced against the performance benefits
that each individual index provides. A database that has too many indexes will have

165

Chapter 5: Missing Indexes

a large write I/O cost associated with maintaining the indexes, for every INSERT and
DELETE operation, as well as any UPDATE operations that affect an indexed column.
Furthermore, as your indexes grow larger and more numerous, so the cost of performing
routine maintenance work, such as backups, index reorganization and rebuild, and DBCC
CHECKDB operations, will rise accordingly.

Index key column order

It is fairly common to find recommendations online that state the index key columns
should be ordered based on their cardinality (or selectivity), the idea being to reduce the
number of pages that have to be read to match a set of filtering or grouping columns.

However, selecting the appropriate key column order is never as straightforward as most
online content makes it seem, and you won't generally find a lot of guidance about when
and why you might choose to create an index that has the columns in an order that is
different from the cardinality order. For example, is it better to create multiple indexes,
where each individual index has the optimal key column order, based on column selec-
tivity, or to create a single index that covers multiple queries, but has a less selective
column order?

Ultimately, your decision should be based on the type of database for which the index
is being implemented. For a data warehouse, where there are significantly more read
operations than write operations, the multiple indexes option may be appropriate. For an
OLTP system, where there are more writes than reads, a less selective index that covers
multiple queries using a less than optimal column order may be most appropriate.

The most important point to understand though, regarding index key column order,
is that a query cannot seek on an index unless the query filters on a left-based subset
of the index key. To demonstrate this point, let's say we have the index and queries
shown in Listing 5.1.

166

Chapter 5: Missing Indexes

CREATE INDEX idx_Test ON TestTable (Col2, Col1, Col3)

SELECT 1
FROM TestTable
WHERE Col1 = @Var1
 AND Col2 = @Var2
 AND Col3 = @Var3

SELECT 1
FROM TestTable
WHERE Col1 = @Var1
 AND Col3 = @Var3

SELECT 1
FROM TestTable
WHERE Col2 = @Var2
 AND Col3 = @Var3

Listing 5.1: Various queries against a simple three-column index.

The first query can seek effectively on the index because it filters on all three columns of
the index (the order of clauses in the WHERE clause is irrelevant).

The second query cannot seek on that index; the leading column of the index is Col2 and
that query does not filter on Col2. The query can use that index, but only via a scan.

The third query can seek on the index, but the seek is not as efficient as it could be, as
SQL can only seek for Col2; it would have to do a secondary filter for Col3, since Col3 is
not the second column in the index.

If I wanted to create the minimum number of indexes that could allow SQL Server to
resolve all three queries as efficiently as possible, i.e. with index seeks, then I could create
an index for each query, or I could try several combinations of two indexes, with differing
index key ordering. The selectivity of the various columns would help choose which pair
were the most appropriate. Some of the options are shown in Listing 5.2.

167

Chapter 5: Missing Indexes

--3 possible pairs of indexes

CREATE INDEX idx_Test1
ON TestTable (Col1, Col3, Col2)
CREATE INDEX idx_Test1
ON TestTable (Col2, Col3)

--OR—

CREATE INDEX idx_Test
ON TestTable (Col2, Col3, Col1)
CREATE INDEX idx_Test1
ON TestTable (Col1, Col3)

--OR--

CREATE INDEX idx_Test
ON TestTable (Col3, Col1, Col2)
CREATE INDEX idx_Test1
ON TestTable (Col2, Col3)

Listing 5.2: Three possible pairs of indexes.

Let's look at a quick AdventureWorks example. Listing 5.3 shows three queries, each
with a different predicate in the WHERE clause.

SELECT BusinessEntityID ,
 PersonType ,
 FirstName ,
 MiddleName ,
 LastName ,
 EmailPromotion
FROM Person.Person AS p
WHERE FirstName = 'Carol'
 AND PersonType = 'SC'

SELECT BusinessEntityID ,
 FirstName ,
 LastName
FROM Person.Person AS p
WHERE PersonType = 'GC'

168

Chapter 5: Missing Indexes

 AND Title = 'Ms.'

SELECT BusinessEntityID ,
 PersonType ,
 EmailPromotion
FROM Person.Person AS p
WHERE Title = 'Mr.'
 AND FirstName = 'Paul'
 AND LastName = 'Shakespear'

Listing 5.3: Three queries against AdventureWorks.

We could create three indexes, each one perfectly suited to a single query, and in a data
warehouse environment that may indeed be the best option. In an OLTP environment
where the number of indexes should be kept low, in order to maintain good INSERT
performance, it may not be such a good idea.

In terms of selectivity, the LastName column is the most selective, followed closely by
FirstName. The Title and PersonType columns have a much lower selectivity, each
having only six distinct values in the table. In this case, we could create just the two
indexes shown in Listing 5.4, and have all the queries in Listing 5.3 perform very well.

CREATE INDEX idx_Person_FirstNameLastNameTitleType
ON Person.Person (FirstName, LastName, Title, PersonType)

CREATE INDEX idx_Person_TypeTitle
ON Person.Person (PersonType, Title)

Listing 5.4: Two indexes, designed based on column selectivity.

The first index satisfies the first and third queries. It's not perfect for the first one, but
given how selective the FirstName column is, it's likely to be good enough. I've chosen
to have FirstName as the leading column despite having slightly worse selectivity than
LastName, because if I put LastName as the leading column then the first query would
be unable to seek on it and I would need a third index to completely satisfy all queries.

169

Chapter 5: Missing Indexes

With the second index, the order of columns is arbitrary. Neither the queries nor the
selectivity shows a preferred order, so either way works. In a real environment, the order
would probably be decided by other indexes or queries.

It should be clear even from this relatively simple example that determining the optimal
order of columns for an index can be a complex process and is not something that should
be decided on without sufficient analysis and investigation.

More on index selectivity

SQL Server MVP, and Technical Reviewer for this book, Gail Shaw, discusses this topic in further detail

on her two blog posts: "Index columns, selectivity and equality predicates" (http://sqlinthewild.

co.za/index.php/2009/01/19/index-columns-selectivity-and-equality-predicates/) and "Index

columns, selectivity and inequality predicates" (http://sqlinthewild.co.za/index.php/2009/02/06/

index-columns-selectivity-and-inequality-predicates/).

Use of included columns

Many of the features described in the remainder of this chapter, for identifying missing
indexes in the databases of a SQL Server instance, will make recommendations regarding
the use of include columns, so a brief discussion of the benefits and impact of included
columns is necessary.

Included columns, a new feature in SQL Server 2005, allow creation of non-clustered
indexes that contain non-key columns as a part of the index definition, so that a single
index can cover more queries. The key columns of an index are stored at all levels of the
index, but the included columns are only stored at the leaf level of the index. The typical
usage for included columns is in creating indexes that cover queries. A covering index is
one that contains all of the columns needed by a query, as either key or non-key columns,
preventing the need to access the table or clustered index using lookup operations, and so
decreasing the number of I/O operations required to return the data.

http://sqlinthewild.co.za/index.php/2009/01/19/index-columns-selectivity-and-equality-predicates/
http://sqlinthewild.co.za/index.php/2009/01/19/index-columns-selectivity-and-equality-predicates/
http://sqlinthewild.co.za/index.php/2009/02/06/index-columns-selectivity-and-inequality-predicates/
http://sqlinthewild.co.za/index.php/2009/02/06/index-columns-selectivity-and-inequality-predicates/

170

Chapter 5: Missing Indexes

Included columns can only be created on non-clustered indexes, and the non-key
columns do not count towards the limitation of 900 byte key size or 16-columns
that exists in SQL Server. The non-key columns can use data types not allowed by
index key columns; all data types except the legacy text, ntext, and image are
supported. Additionally, in SQL Server 2008, varbinary (max) columns that have the
FILESTREAM attribute cannot be included in an index. While the new large object (LOB)
data types are supported as non-key columns, there are performance implications with
maintaining the included columns, since the column values are copied into the leaf
level of the non-clustered index that contains them. This will result in high disk space
requirements to store the index, and also an increase in I/O demands and lower buffer
cache efficiency.

Once again, the degree to which you use included columns in your indexing strategy
for a database depends on the usage characteristics of that database. The gains in query
performance that included columns can provide must be balanced against the cost of
higher disk space requirements, lower cache efficiency, and reduced performance of data
modification operations. In data warehouse environments, it may be acceptable to have
non-clustered indexes with long included column lists to cover the queries that may be
executed, if during the extract-transform-load process (ETL) the indexes may be disabled
or dropped to eliminate the impact of index maintenance during the data loading. In
contrast, transactional databases would generally use fewer included columns due to the
impact on the performance of data manipulation operations.

Creating a covering index for a query can be one of the best ways to get a query to
perform well, however not all queries can be covered, and not all queries should be
covered. In an OLTP environment, this is something that should be considered only for
critical queries, i.e. queries that execute often and must run as fast as possible. Trying to
cover all queries that run in an environment is almost certain to bloat the database size
significantly and have detrimental effects on data modification performance.

So, given that, let's take one of the earlier examples from AdventureWorks and see how
we can use included columns to make the query in Listing 5.5 even more efficient.

171

Chapter 5: Missing Indexes

SELECT BusinessEntityID ,
 FirstName ,
 LastName
FROM Person.Person AS p
WHERE PersonType = 'GC'
 AND Title = 'Ms.'

Listing 5.5: An AdventureWorks query.

The index that we decided on for this query is shown in Listing 5.6.

CREATE INDEX idx_Person_TypeTitle
ON Person.Person (Title, PersonType)

Listing 5.6: A non-covering index.

That index does not cover the query. While it has all the columns needed for the WHERE
clause, it does not have as part of the index the three columns in the SELECT. SQL Server
will have to do a lookup to the clustered index to fetch those columns.

Now, if we were to add those three columns to this index it would make the index
covering for this query. We don't want them as key columns; doing so would make the
key unnecessarily wide. Since those columns are not being filtered or joined on, there is
no need to have them as key columns, so we can make them included columns instead, as
shown in Listing 5.7.

CREATE INDEX idx_Person_TypeTitle
ON Person.Person (Title, PersonType)
INCLUDE (BusinessEntityID, FirstName, LastName)

Listing 5.7: Adding included columns to cover a query.

Now the index contains all the columns needed for the query, and the query is as efficient
as possible since it no longer needs to do lookups. The trade-off is that the index is

172

Chapter 5: Missing Indexes

slightly larger and that data modifications that affect any of the three include columns
have more work to do.

Index width

There is no strict rule governing the width of an index, and we won't discuss the topic in
detail here. However, in general, you want the index to be as narrow as possible while still
achieving accurate search results. This means that indexes will ideally comprise as few
columns as is practical, consisting of smaller rather than larger data types. Of course, the
latter is rather dependent on how intelligently the underlying tables have been designed.

While you certainly don't want any columns to be part of the key that don't need to be
there, neither is it at all wise to opt for a large number of single-column indexes. Gail
Shaw discusses the topic of a single multi-column index versus multiple single-column
indexes in further detail on her blog post, One wide index or multiple narrow indexes?
(http://sqlinthewild.co.za/index.php/2010/09/14/one-wide-index-or-multiple-
narrow-indexes/), proving in her example that the single, multi-column index is the
best approach.

Identifying Missing Indexes

SQL Server 2005 and later offers a number of features that can help identify indexes that
may be beneficial to the performance of a specific workload or query.

•	 Database Engine Tuning Advisor – a vastly-improved and expanded version of the old
Index Tuning Wizard, the DTA analyses the execution plans generated for a supplied
workload, along with the physical characteristics of the database, and recommends a
set of indexes.

http://sqlinthewild.co.za/index.php/2010/09/14/one-wide-index-or-multiple-narrow-indexes/
http://sqlinthewild.co.za/index.php/2010/09/14/one-wide-index-or-multiple-narrow-indexes/

173

Chapter 5: Missing Indexes

•	 Missing Index feature – during query optimization, the Query Optimizer identifies
indexes that it thinks would have been beneficial to the performance of the specific
query being optimized. This information is stored in two places:

•	 the Missing Index Dynamic Management Views – a group of four DMVs, identified
by sys.dm_db_missing_index_*, where* is details, columns, group_stats
or groups

•	 XML showplans – missing index information can also be extracted from the
MissingIndexGroup element of these showplans.

It is important to keep in mind that, while these features can be very useful in deter-
mining the indexes that may be beneficial to your databases, they can also be a double-
edged sword and do more harm than good when used incorrectly. Blindly implementing
the recommendations of any of these features will almost always result in duplicate or
overlapping indexes in the database, as well as too many, rather than too few, indexes.

Workload analysis with the Database Engine Tuning
Advisor

One of the easiest ways to identify the missing indexes for a SQL database, if you don't
understand the concepts behind index selection well enough to create indexes manually,
is to make use of the Database Engine Tuning Advisor (DTA).

The DTA can be used to analyze a single query or an entire database workload, in the
form of a trace file generated by SQL Server Profiler. Of course, this means that the
quality of the DTA's index analysis will only be as high as the quality of the workload that
is provided to the tool for analysis. If the workload is non-representative of the typical
workload for that database, and is missing significant queries, then the index suggestions
will likewise be incomplete, inaccurate, or just plain wrong.

174

Chapter 5: Missing Indexes

Collecting a workload trace

To get the best results and recommendations from the DTA, the workload trace must
contain a significant portion of the standard workload for the database being analyzed.
As part of its analysis, the DTA estimates the impact of any suggested index changes
on the performance of the workload as a whole. This helps it avoid recommending an
index that boosts performance for a certain individual query but has an overall negative
impact on the workload. As such, if you provide a single query to the DTA for analysis, the
recommendations provided by the DTA can be very different from what would be recom-
mended if the same query was analyzed as a part of a complete workload for the database.

SQL Server Profiler supplies a built-in SQL Trace template, the Tuning template, which
is designed to capture the necessary events for a workload for analysis by the DTA. To
use this template, open SQL Server Profiler and connect to the SQL Server instance.
In the Trace Properties window (Figure 5.1) select the Tuning template in the Use the
template dropdown.

Figure 5.1: SQL Profiler – Trace Properties window.

175

Chapter 5: Missing Indexes

It is possible to run the tuning trace directly from SQL Profiler and have it save the
captured events to a file, or trace table, However, collecting client-side Profiler traces can
cause performance deterioration of the server under analysis, due to the additional cost
of buffering the events to memory and the network traffic required to send the events to
SQL Server Profiler using the rowset provider.

Impact of the rowset provider on Profiler performance

For further information and analysis of this topic, see SQL Server MVP Grant Fritchey's blog post,

"Profiler Research" at (http://www.scarydba.com/2008/12/18/profiler-research/).

A much better way to capture a workload trace file for analysis by the Database Tuning
Advisor is to script the trace definition on the client machine, using Profiler, but then run
the trace server-side. To script the trace definition, manually start the tuning trace within
Profiler, but then immediately stop it. Next, from the Export option in the File Menu,
select Script Trace Definition | For SQL Server 2005 – 2008 (Figure 5.2).

Figure 5.2: SQL Profiler – Script Trace Definition.

http://www.scarydba.com/2008/12/18/profiler-research/

176

Chapter 5: Missing Indexes

This saves a trace definition (.sql) file containing all the code necessary to create and
start a server-side trace. This generated trace file can be edited as necessary, then run
manually, or scheduled as needed. Open the file in SSMS to edit it. Firstly, replace the @
FileName variable with the path and file name to be created on the server, and then
execute the script to start the trace (in Listing 5.8, add the path and file name where
the script says 'InsertFileNameHere'). Only the file name is necessary, as the .trc
extension will be added automatically.

Once the file has been saved, open the file in SQL Server Management Studio and edit it.
Next, change the @maxfilesize variable to a size that makes sense, based on the level
of activity of the database being traced. Additional options exist for the trace definition,
which are not included as a part of the scripted definition provided by SQL Profiler. The
@stoptime parameter of sp_trace_create can be used to specify an automatic stop
time for the trace collection. The @filecount parameter can be used to specify the
number of rollover files to maintain for the trace if the @options parameter has been
configured to allow rollover to occur.

When these additional options are specified, they must be specified in the exact order
that is listed in the Books Online topic for sp_trace_create (http://msdn.microsoft.
com/en-us/library/ms190362.aspx).

The finished script, shown in Listing 5.8, will output the traceid of the trace being
created, allowing it to be stopped and deleted using sp_trace_setstatus once the
collection period has completed.

DECLARE @rc INT
DECLARE @TraceID INT
DECLARE @maxfilesize BIGINT
SET @maxfilesize = 50
EXEC @rc = sp_trace_create @TraceID OUTPUT, 0, N'InsertFileNameHere',
 @maxfilesize, NULL
IF (@rc != 0)
 GOTO error
-- Client side File and Table cannot be scripted
-- Set the events

http://msdn.microsoft.com/en-us/library/ms190362.aspx
http://msdn.microsoft.com/en-us/library/ms190362.aspx

177

Chapter 5: Missing Indexes

DECLARE @on BIT
SET @on = 1
EXEC sp_trace_setevent @TraceID, 137, 15, @on
EXEC sp_trace_setevent @TraceID, 137, 1, @on
EXEC sp_trace_setevent @TraceID, 137, 13, @on

-- Set the Filters
DECLARE @intfilter INT
DECLARE @bigintfilter BIGINT
-- Set the trace status to start
EXEC sp_trace_setstatus @TraceID, 1
-- display trace id for future references
SELECT TraceID = @TraceID
GOTO finish
error:
SELECT ErrorCode = @rc
finish:
go

Listing 5.8: The complete, edited server-side tuning trace.

Analyzing a trace workload

The DTA can be opened from the Tools menu in SQL Server Management Studio; a new
tuning session is started automatically and the captured workload file can be uploaded.
The tuning session configuration screen has two tabs: General and Tuning Options. The
General tab (Figure 5.3) contains the name of the session that is running the DTA, the
type of workload to be consumed, the source location for the workload, a dropdown for
selecting the database to be analyzed, and a grid view to allow the selection of specific
databases and tables to tune based on the workload.

178

Chapter 5: Missing Indexes

Figure 5.3: Database Tuning Advisor – General tab.

The Tuning Options tab (Figure 5.4) contains the options that will be used during the
tuning analysis of the workload. Depending on the size of the workload trace file, the
tuning analysis may run for a long time. The Limit tuning time check box allows specifi-
cation of a stop time for the analysis.

In the following sections, you can specify the Physical Design Structures to be used by the
DTA when making recommendations (in this case indexes), whether or not partitioning
should be used, and which existing Physical Design Structures to keep in the database.

The Advanced Options button allows you to define the maximum disk space, in
megabytes, that can be used to store the various recommendations, as well as whether or
not the indexing recommendations are made for online or offline operations.

179

Chapter 5: Missing Indexes

Figure 5.4: Database Tuning Advisor – Tuning Options tab.

Once the appropriate options have been set, you can start the index analysis by clicking
Start Analysis in the DTA menu bar, and the DTA will begin analyzing the workload.
During this analysis, it will create and drop hypothetical indexes and statistics and
perform what-if analysis of the impact of each. The DTA tuning log will track the
progress of the tuning session, if the option was left checked on the General tab of the
DTA, and will output messages as the session progresses.

Reviewing index recommendations

When the tuning session completes, the DTA's recommendations regarding indexes
and associated statistics will populate the Recommendations tab (Figure 5.5). These
recommendations can be saved to a file for manual application at a later point in time or
applied immediately to the database by selecting the appropriate option in the Actions

180

Chapter 5: Missing Indexes

menu. Additionally, the DTA provides the ability to perform another what-if analysis of a
subset of the recommendations, allowing you to determine the impact to the estimated
improvement caused by removing (unchecking) some of the recommendations from the
analysis set. It is strongly recommended that any index recommendations made by the
DTA be tested in an isolated test environment before implementing them in production.
You can do this either manually, or by using the Actions | Evaluate Recommenda-
tions option of the DTA to apply the changes, and then evaluating their true impact by
rerunning the tuning analysis of the workload.

Figure 5.5: Database Tuning Advisor – Recommendations tab.

Missing index feature

In SQL Server 2005 and later, the database engine tracks information about indexes that
do not exist but that the optimizer could have used during query plan optimization to
improve the performance of a particular SQL statement.

181

Chapter 5: Missing Indexes

This information is stored in the missing index DMVs, and in the MissingIndexGroup
element of the XML showplan for a query, and can, in theory, be used to identify and
create beneficial indexes.

It is undoubtedly a useful feature, but I will state up front that if you blindly create all the
indexes recommended by this missing index feature, you will likely do more harm than
good to your database performance. The biggest problem is that, unlike those arising
from the DTA, these missing index recommendations are not workload based; they are
derived from the execution of individual queries and take no account of other index
recommendations arising from the execution of other queries. As such, it is very common
for the missing index feature to recommend overlapping and even duplicate indexes.

However, when used with due care, the missing index feature can help you to discover
the few indexes that really could make a big difference to the overall performance of your
workload, or those indexes that, with a small tweak to their definition, would cover many
more queries.

Missing index DMVs

The fastest way to retrieve the information related to missing indexes, as identified by
the query optimizer, is to query the missing index DMVs. There are four DMVs associated
with the missing index feature in SQL Server:

•	 sys.dm_db_missing_index_details – stores detailed information regarding
indexes the optimizer would have used had they been available, such as columns
that could have been used to resolve equality or inequality predicates, and suggested
INCLUDE columns for covering a query.

•	 sys.dm_db_missing_index_columns – accepts an index_handle and returns a
list of columns that would comprise the suggested index.

182

Chapter 5: Missing Indexes

•	 sys.dm_db_missing_index_group_stats – returns summary information
regarding the potential benefit of a "missing" index, based, for example, on the number
of seeks and scans that would have benefited.

•	 sys.dm_db_missing_index_groups – a join view between _group_stats and
_index_details.

These views, when joined together, can identify missing indexes and provide the cost
reduction, estimated by the optimizer, if the index was created. The sys.dm_db_
missing_index_group_stats and sys.dm_db_missing_index_groups views,
despite their names, do not actually contain groups of indexes; the groups (as of SQL
Server 2008 R2) relate to only one missing index tracked in the system.

The information stored in these DMVs is certainly useful, but there are a number of
limitations that you need to consider when basing your index choices on this data,
including the following:

•	 the information contained in these DMVs is in volatile storage; meaning that it only
exists in memory and doesn't exist beyond SQL service restarts, or changes to a
database state like restoring the database, detaching the database, taking the database
offline, or the database being closed by the AutoClose option.

•	 statistics are only stored for a maximum of 500 missing index groups.

•	 index key columns, specified by the equality and inequality column outputs of the
sys.dm_db_missing_index_details and sys.dm_db_missing_index_
columns DMVs, are not ordered according to cardinality.

As previously discussed in this chapter, it is often (though not always) best to order the
index key columns such that the most selective column is the first column in the index.
This reduces the number of database pages that must be read by the database engine
while traversing the index, in order to satisfy the query.

183

Chapter 5: Missing Indexes

However, unlike the DTA recommendations, the missing index recommendations stored
in the DMVs do not consider key column cardinality; in other words, they are not based
on the data contained in the key columns that it is recommending be created. As such, it
is necessary to perform additional manual analysis of the key column cardinality in order
to arrive at the optimal index structure.

These limitations mean that this tool is best used to identify gaping holes in an indexing
strategy, rather than as a fine-tuning tool. The recommended approach is to identify
potentially useful indexes, listing first those that offer the biggest potential performance
benefit according to the metrics stored in the sys.dm_missing_index_group_stats
DMV.

For example, in the sys.dm_missing_index_group_stats DMV, the user_seeks
and user_scans columns provide the number of seek and scan operations that would
have benefited from a particular index recommendation. The avg_total_user_cost
column provides the average reduction in query cost as a result of creating the index, and
the avg_user_impact column provides the percent reduction in query cost, had the
index existed.

Together, these columns can be used to generate an overall estimated performance
improvement associated with a specific missing index in the database. There are several
ways to calculate this estimated performance improvement, but the generally accepted
formula, shown in Listing 5.9, was provided by kind permission of Bart Duncan, one
of the members of the SQL Server product team at Microsoft, from his MSDN blog
post, Are you using SQL's Missing Index DMVs? (http://blogs.msdn.com/b/bartd/
archive/2007/07/19/are-you-using-sql-s-missing-index-dmvs.aspx).

SELECT migs.avg_total_user_cost * (migs.avg_user_impact / 100.0)
 * (migs.user_seeks + migs.user_scans) AS improvement_measure ,
 'CREATE INDEX [missing_index_'
 + CONVERT (VARCHAR, mig.index_group_handle) + '_'
 + CONVERT (VARCHAR, mid.index_handle) + '_'
 + LEFT(PARSENAME(mid.statement, 1), 32) + ']' + ' ON '
 + mid.statement

http://blogs.msdn.com/b/bartd/archive/2007/07/19/are-you-using-sql-s-missing-index-dmvs.aspx
http://blogs.msdn.com/b/bartd/archive/2007/07/19/are-you-using-sql-s-missing-index-dmvs.aspx

184

Chapter 5: Missing Indexes

 + ' (' + ISNULL(mid.equality_columns, '')
 + CASE WHEN mid.equality_columns IS NOT NULL
 AND mid.inequality_columns IS NOT NULL THEN ','
 ELSE ''
 END + ISNULL(mid.inequality_columns, '') + ')'
 + ISNULL(' INCLUDE ('
 + mid.included_columns
 + ')', '')
 AS create_index_statement ,
 migs.* ,
 mid.database_id ,
 mid.[object_id]
FROM sys.dm_db_missing_index_groups mig
 INNER JOIN sys.dm_db_missing_index_group_stats migs
 ON migs.group_handle = mig.index_group_handle
 INNER JOIN sys.dm_db_missing_index_details mid
 ON mig.index_handle = mid.index_handle
WHERE migs.avg_total_user_cost * (migs.avg_user_impact / 100.0)
 * (migs.user_seeks + migs.user_scans) > 10
ORDER BY migs.avg_total_user_cost * migs.avg_user_impact
 * (migs.user_seeks + migs.user_scans) DESC

Listing 5.9: Identifying missing indexes based on query cost benefit.

The calculated improvement_measure column provides the estimated improvement
value of each index recommendation, based on the average total reduction in query cost
that would result, the number of seek and scan operations that could be satisfied by the
index, and the percentage benefit the index would provide to the queries being executed.
This column makes it easier to focus on those indexers that offer the biggest cost benefit.

When analyzing the output of this query, I focus on the indexes with an impact value
higher than 50,000. I then analyze the recommendations carefully, since it's likely that
there will be a degree of overlap among the recommended indexes, with several indexes
differing only subtly in terms of their index key column definitions and column orders,
or included column definitions and orders. It's also likely that I can derive similar
performance benefit by modifying an existing index rather than creating a new one.
As discussed previously in the Index Selection and Design section, every index should be
tested, to ensure that it really is useful, before deploying it to production. The goal is to

185

Chapter 5: Missing Indexes

create as few indexes as possible that will satisfy as many as possible of the most signif-
icant queries that comprise the SQL Server workload.

Missing index information in XML showplans

When the query optimizer identifies a missing index during query plan generation, it
also stores this information within the ShowPlan XML data. This means that we can
retrieve this information for any execution plan in the plan cache, with the added bonus
that we can tie individual missing index recommendations directly to the statements and
execution plans that generated them. If the query that instigated the index recommen-
dation is one that occurs frequently in our normal workload, then it is much more likely
to offer a real performance benefit than a recommendation arising from a "one-off" query.

The only downside is that there is often a substantial CPU cost associated with queries
that search the plan cache for the entries that contain missing index information, and
then shred the ShowPlan XML data to retrieve the actual missing index information.

The ShowPlan XML in SQL Server is a schema-bound XML document, based on
Microsoft's published schema (http://schemas.microsoft.com/sqlserver/2004/07/
showplan). A review of the ShowPlan XML schema reveals that the missing index infor-
mation is captured in the XML document as a complex type, under the <MissingIn-
dexGroup/> element. A deeper analysis shows that this complex type can only occur
under the <QueryPlan/> element with a distinct and predictable relative path. Using
this predictable relative path, the individual missing index recommendations can be
parsed out of the plan cache and then sub-parsed using XQuery inside of SQL Server, as
demonstrated in Listing 5.10.

;
 WITH XMLNAMESPACES
 (DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/showplan')
 SELECT MissingIndexNode.value('(MissingIndexGroup/@Impact)[1]', 'float')
 AS impact ,
 OBJECT_NAME(sub.objectid, sub.dbid) AS calling_object_name ,

http://schemas.microsoft.com/sqlserver/2004/07/showplan
http://schemas.microsoft.com/sqlserver/2004/07/showplan

186

Chapter 5: Missing Indexes

 MissingIndexNode.value
 ('(MissingIndexGroup/MissingIndex/@Database)[1]',
 'VARCHAR(128)') + '.'
 + MissingIndexNode.value
 ('(MissingIndexGroup/MissingIndex/@Schema)[1]',
 'VARCHAR(128)') + '.'
 + MissingIndexNode.value
 ('(MissingIndexGroup/MissingIndex/@Table)[1]',
 'VARCHAR(128)') AS table_name ,
 STUFF((SELECT ',' + c.value('(@Name)[1]', 'VARCHAR(128)')
 FROM MissingIndexNode.nodes
 ('MissingIndexGroup/MissingIndex/
 ColumnGroup[@Usage="EQUALITY"]/Column')
 AS t (c)
 FOR
 XML PATH('')
), 1, 1, '') AS equality_columns ,
 STUFF((SELECT ',' + c.value('(@Name)[1]', 'VARCHAR(128)')
 FROM MissingIndexNode.nodes
 ('MissingIndexGroup/MissingIndex/
 ColumnGroup[@Usage="INEQUALITY"]/Column')
 AS t (c)
 FOR
 XML PATH('')
), 1, 1, '') AS inequality_columns ,
 STUFF((SELECT ',' + c.value('(@Name)[1]', 'VARCHAR(128)')
 FROM MissingIndexNode.nodes
 ('MissingIndexGroup/MissingIndex/
 ColumnGroup[@Usage="INCLUDE"]/Column')
 AS t (c)
 FOR
 XML PATH('')
), 1, 1, '') AS include_columns ,
 sub.usecounts AS qp_usecounts ,
 sub.refcounts AS qp_refcounts ,
 qs.execution_count AS qs_execution_count ,
 qs.last_execution_time AS qs_last_exec_time ,
 qs.total_logical_reads AS qs_total_logical_reads ,
 qs.total_elapsed_time AS qs_total_elapsed_time ,
 qs.total_physical_reads AS qs_total_physical_reads ,
 qs.total_worker_time AS qs_total_worker_time ,
 StmtPlanStub.value('(StmtSimple/@StatementText)[1]', 'varchar(8000)') AS
statement_text
 FROM (SELECT ROW_NUMBER() OVER

187

Chapter 5: Missing Indexes

 (PARTITION BY qs.plan_handle
 ORDER BY qs.statement_start_offset)
 AS StatementID ,
 qs.*
 FROM sys.dm_exec_query_stats qs
) AS qs
 JOIN (SELECT x.query('../../..') AS StmtPlanStub ,
 x.query('.') AS MissingIndexNode ,
 x.value('(../../../@StatementId)[1]', 'int')
 AS StatementID ,
 cp.* ,
 qp.*
 FROM sys.dm_exec_cached_plans AS cp
 CROSS APPLY sys.dm_exec_query_plan
 (cp.plan_handle) qp
 CROSS APPLY qp.query_plan.nodes
 ('/ShowPlanXML/BatchSequence/
 Batch/Statements/StmtSimple/
 QueryPlan/MissingIndexes/
 MissingIndexGroup') mi (x)
) AS sub ON qs.plan_handle = sub.plan_handle
 AND qs.StatementID = sub.StatementID

Listing 5.10: Parsing missing index information out of XML showplans.

This code example will return a similar output to the raw information provided by the
missing index DMVs, with the exception that this output will also include the statement
text from the plan cache and the associated execution statistics, which are tracked by the
sys.dm_exec_query_stats DMV.

This level of detail allows for a more focused implementation of the missing index details
than is easily available through the missing index DMVs, based on knowledge of the
actual SQL statement that was executed in order to generate the index recommendation,
as well as information about the query execution stats and impact on the system.

As discussed earlier, this analysis is not free; shredding the XML from the plan cache can
be an expensive operation, especially on servers with large amounts of memory installed,
and can significantly increase CPU usage.

188

Chapter 5: Missing Indexes

To minimize the impact on a production server, the execution plans containing the
missing index XML nodes can be written to a table, which can then be transferred to a
development or test server to perform the XML shredding operation.

Missing indexes on foreign keys

A very common source of performance issues in a SQL Server database is a lack of
indexes on FOREIGN KEY columns, which are commonly used to join two tables together.
Generally speaking, FOREIGN KEY columns represent parent/child relationships between
two tables as one-to-many relationships.

A good rule of thumb is for any FOREIGN KEY columns that are commonly used in JOIN
operations to have an associated index, either with the FOREIGN KEY column as the
leading column in the index, or as a column further down the index key, depending on
the queries.

The code in Listing 5.11 can be used to identify non-indexed FOREIGN KEY columns in
a database. The query will match the FOREIGN KEY column to any index with the same
column on the same table and returns columns with no matches at all. For a database
that is using single-column PRIMARY KEYs, this code can be very effective at identifying
any FOREIGN KEY that is potentially problematic for performance, due to the lack of a
supporting index on the JOIN. However, for a database with any composite multi-column
PRIMARY KEYs, the script will be only partially helpful since it doesn't check the existence
of all of the columns within the same index. For more complex key sets, this code can be
modified to return information about all of the FOREIGN KEY columns in the database to
allow manual validation of the indexing of these keys.

SELECT fk.name AS CONSTRAINT_NAME ,
 s.name AS SCHEMA_NAME ,
 o.name AS TABLE_NAME ,
 fkc_c.name AS CONSTRAINT_COLUMN_NAME
FROM sys.foreign_keys AS fk

189

Chapter 5: Missing Indexes

 JOIN sys.foreign_key_columns AS fkc
 ON fk.object_id = fkc.constraint_object_id
 JOIN sys.columns AS fkc_c
 ON fkc.parent_object_id = fkc_c.object_id
 AND fkc.parent_column_id = fkc_c.column_id
 LEFT JOIN sys.index_columns ic
 JOIN sys.columns AS c ON ic.object_id = c.object_id
 AND ic.column_id = c.column_id
 ON fkc.parent_object_id = ic.object_id
 AND fkc.parent_column_id = ic.column_id
 JOIN sys.objects AS o ON o.object_id = fk.parent_object_id
 JOIN sys.schemas AS s ON o.schema_id = s.schema_id
WHERE c.name IS NULL

Listing 5.11: Identifying single-column, non-indexed FOREIGN KEYs.

Identifying Unused Indexes

One of the side effects of adding and modifying indexes in a user database is the possi-
bility that existing indexes stop being used by SQL Server. These unneeded database
artifacts offer no benefit in terms of query performance but continue to consume
additional I/O operations during data manipulation operations, since any change to
the underlying data must also be made to the corresponding data stored in the index.
The sys.dm_db_index_usage_stats DMV in SQL Server 2005 and 2008 provides a
mechanism to determine how individual indexes in a specific database have been used.

This DMV provides information about the number of user_seeks, user_scans,
user_lookups, and user_updates that have been performed against each of the
indexes inside a specific database. However, the information contained in the DMV is
not persisted and the DMV data is lost whenever the instance is restarted, or the
database state changes, for example, being taken offline, restored, detached, or closed.
For this reason, the index usage statistics should only be evaluated when the database has
been online and under a standard workload that would make use of the indexes that are
being evaluated.

190

Chapter 5: Missing Indexes

What we are looking for, with the query shown in Listing 5.12, is any non-clustered
index that has never been used for a seek, scan, or lookup operation by SQL Server,
but is associated with a significant number of update operations. These indexes can be
considered to be unused and should be dropped from the database.

SELECT OBJECT_SCHEMA_NAME(i.object_id) AS SchemaName ,
 OBJECT_NAME(i.object_id) AS TableName ,
 i.name ,
 ius.user_seeks ,
 ius.user_scans ,
 ius.user_lookups ,
 ius.user_updates
FROM sys.dm_db_index_usage_stats AS ius
 JOIN sys.indexes AS i ON i.index_id = ius.index_id
 AND i.object_id = ius.object_id
WHERE ius.database_id = DB_ID()
 AND i.is_unique_constraint = 0 -- no unique indexes
 AND i.is_primary_key = 0
 AND i.is_disabled = 0
 AND i.type > 1 -- don't consider heaps/clustered index
 AND ((ius.user_seeks + ius.user_scans +
 ius.user_lookups) < ius.user_updates
 OR (ius.user_seeks = 0
 AND ius.user_scans = 0
)
)

Listing 5.12: Finding unused non-clustered indexes.

Note again that this code should only be used when the database has been online for
a significant period of time, in order to ensure that the appropriate workload has been
executed. Certain indexes may be used infrequently but when they are required, such as
when the weekly, monthly, or even quarterly reporting operations are run, they are vital!

191

Chapter 5: Missing Indexes

Identifying Duplicate Indexes

Duplicate indexes in a database incur maintenance costs that waste valuable resources on
a server. The process of identifying true duplicate indexes in SQL Server is nontrivial at
best and incredibly complex when you begin to account for various cases where seemingly
duplicate indexes actually aren't duplicate, due to the width and selectivity of the indexes.

Duplicate indexes are primarily a concern for OLTP systems where the performance of
INSERT operations is paramount, whereas for data warehouse systems the performance
of SELECT operations is critical, data loading occurs less frequently, and so one can have a
higher level of tolerance to duplicate indexes.

Many online articles state, incorrectly, that the key columns are the primary point of
analysis when identifying duplicate indexes in a database. The truth is that two indexes
can have similar key columns, but different width, selectivity, and purpose in a database,
and so not be duplicate indexes. To fully identify an index as a duplicate, the leaf level of
the index must be investigated to identify which columns are maintained at the leaf level,
which also maintains the included columns in the index. Key column order at the leaf
level matters, but included column order for the index does not.

Complications of identifying duplicate indexes in SQL Server

In her following two blog posts, Kimberly Tripp offers further insight into the complications of identifying

duplicate indexes, and provides a stored procedure for identifying and removing them: "How can you tell

if an index is REALLY a duplicate?" (http://sqlskills.com/BLOGS/KIMBERLY/post/Understand-

ingDuplicateIndexes.aspx) and "Removing duplicate indexes" (http://sqlskills.com/BLOGS/

KIMBERLY/post/RemovingDuplicateIndexes.aspx).

http://sqlskills.com/BLOGS/KIMBERLY/post/UnderstandingDuplicateIndexes.aspx
http://sqlskills.com/BLOGS/KIMBERLY/post/UnderstandingDuplicateIndexes.aspx
http://sqlskills.com/BLOGS/KIMBERLY/post/RemovingDuplicateIndexes.aspx
http://sqlskills.com/BLOGS/KIMBERLY/post/RemovingDuplicateIndexes.aspx

192

Chapter 5: Missing Indexes

Summary

Missing indexes in a SQL Server database can lead to many performance-related
problems, including higher than necessary disk I/O operations, excessive CPU usage,
caused by unnecessary sort operations, and reduced performance.

Periodic analysis of missing index information, using the available features in SQL
Server, will help ensure that the current indexing strategy meets the requirements of
the database and the workload being executed. However, due care must be taken when
implementing the indexing recommendations made by these features, to ensure that the
number of overlapping and duplicated indexes are minimized and that each index created
really will have a positive performance benefit. In this way, we can maximize query
performance while minimizing the performance impact on data modifications that can
arise from over-indexing the tables in a user database.

193

Chapter 6: Blocking

In a typical, busy database, many user transactions will be competing for simultaneous
access to various shared database resources (tables, indexes, and so on). By default,
SQL Server mediates access to these resources using various types of locks. These locks
prevent competing transactions from "destructively interfering" with each other, and so
ensure that each transaction can read and modify data in a consistent fashion.

This locking and blocking activity is a normal part the everyday operation of a database.
However, in conditions of highly concurrent user access, the number of locks being
taken will increase, and so will the potential for blocking. As the length of time for which
processes are blocked increases, so the overall performance of the database declines, and
users start to complain.

In systems with many concurrent transactions, some degree of blocking is probably
unavoidable, but the situation can be greatly exacerbated by queries that are longer or
more complex than they need to be, or read more data than they need to; or by poorly
designed databases that lack proper keys and indexing, or by transactions that need to
use more restrictive transaction isolation levels (such as REPEATABLE READ or SERIAL-
IZABLE). All of these factors can increase the number and durations of locks being held,
and so will increase the incidence of blocking.

This chapter will describe how to look into SQL Server to verify if a problem is due to
blocking, what process is being blocked, and what process is doing the blocking, and then
how to resolve some common causes of blocking.

194

Chapter 6: Blocking

Locks and Concurrency (a Brief Review)

By default, SQL Server uses pessimistic locking to enforce transactional concurrency,
whereby all operations in the database acquire locks. For example, when an operation
reads data, SQL Server acquires shared locks (S) on the rows or pages being accessed by
the SELECT statement. When an operation changes data, i.e. an INSERT, UPDATE, or
DELETE, then an exclusive (X) lock is acquired on the row or page in the clustered index
or table. An S lock will block another transaction from modifying the data while the
SELECT is running, but does not prevent other transactions reading the data. If a trans-
action holds an X lock on a resource, any other transaction that wishes to read or write
the same data will be blocked, until the X lock is released. This ensures that a transaction
doesn't read data that is in flux (i.e. "dirty reads" are prevented), and that two transactions
can't change the same row of data, or attempt to insert two rows of data into the same
location on a page.

A number of factors affect the type and mode of lock used by SQL Server during condi-
tions of competing access for a given resource, and exactly when these locks are taken and
released. In this section, we'll just briefly review some of the core concepts behind SQL
Server locking and concurrency.

Lock modes

SQL Server employs a number of different lock modes, in order to control how
concurrent transactions can access a shared resource. Some of the more commonly seen
locks are shared, update, exclusive and the associated intent locks.

Note that several other modes exist, a full discussion of which is out of scope for
this chapter. A complete list and descriptions can be found on MSDN (http://msdn.
microsoft.com/en-us/library/ms175519.aspx and http://msdn.microsoft.com/en-us/
library/ms186396.aspx).

http://msdn.microsoft.com/en-us/library/ms175519.aspx
http://msdn.microsoft.com/en-us/library/ms175519.aspx
http://msdn.microsoft.com/en-us/library/ms186396.aspx
http://msdn.microsoft.com/en-us/library/ms186396.aspx

195

Chapter 6: Blocking

Shared

A shared lock (shown as S) is a lock that is taken, by default, by queries that are reading
from a table or index. Shared locks are compatible with other shared locks and update
locks, but not with exclusive locks.

Update

An update lock (shown as U) is taken as part of an update operation. It is compatible with
shared locks but not with other update locks or exclusive locks.

Exclusive

An exclusive lock (shown as X) is taken for any data modification (insert, update, delete).
It is not compatible with any other lock.

For an update, SQL first takes an update lock and then converts it to an exclusive
lock to perform the actual update (the reasons for this are explained in Books Online,
http://msdn.microsoft.com/en-us/library/ms175519.aspx, and won't be discussed
further here).

Intent locks

Each lock mode has its associated Intent lock (shown as I). Hence you will see IS (Intent
Shared) locks, IU (Intent Update) locks and IX (Intent Exclusive) locks.

An intent lock is used to reduce the work SQL must do to tell if a lock can be granted. If
a row lock is needed by a query, SQL first takes the appropriate intent lock at the table
level, then an appropriate intent lock at the page level and then it will take the necessary
row lock.

http://msdn.microsoft.com/en-us/library/ms175519.aspx

196

Chapter 6: Blocking

IS locks are compatible with shared and update locks and all other intent locks. IU locks
are compatible with shared locks and other intent locks. IX locks are only compatible
with other intent locks.

Lock types

SQL Server can lock a number of different types of resource, the most obvious being
tables (OBJECT locks), pages (PAGE locks), and rows (RID or KEY locks), in order of
increasing granularity. Locks are granted and released on these objects as needed, in
order to satisfy the requirements of the isolation levels in use by the various sessions.
In the locking hierarchy, row and key locks are the lowest level, most granular, forms of
lock. The more granular the lock, the higher the degree of concurrent access which can
be supported. With that, however, comes a higher memory overhead, from having to
manage a large number of individual locks.

SQL Server automatically chooses locks of the highest possible granularity, suitable for
the given workload. However, if too many individual locks are being held on an index or
heap, or if forced to do so due to memory pressure, SQL Server may use lock escalation
to reduce the total number of locks being held. For example, a large number of individual
row locks may be escalated to a single table lock, or a number of page locks may be
escalated to a table lock (escalation is always to a table lock). While this will result in
lower overhead on SQL Server, the cost will be lower concurrency. Later in the chapter,
we'll show how to investigate lock escalation, and its impact on concurrency.

One other lock type that needs discussion here is the database-level lock. People are
often concerned when they see a large number of database-level locks listed in the results
returned by querying the lock-related DMVs (Dynamic Management Views). These will
be described later, in the Monitoring Blocking section. In reality this is of no concern at
all. Every session takes a shared database lock on the database to which it is connected.
This is to ensure that the database cannot be restored, dropped, closed, or detached

197

Chapter 6: Blocking

while there are still sessions using it. These will not cause blocking, except in the case of
restoring, dropping, altering, detaching or closing an in-use database.

Lock escalation

Lock escalation is the process in which SQL Server escalates a low-level, granular lock to
a higher-level lock. The locks can start as either row or page locks; it makes no difference
to the process of lock escalation. If SQL decides to escalate the locks it will in all cases
escalate straight to table locks (except when this behavior is explicitly altered using the
LOCK_ESCALATION option, discussed shortly). Locks do not, under any circumstances,
escalate from row to page and then to table.

In SQL Server, lock escalation is completely dynamic. The thresholds that SQL uses
for lock escalation are detailed in Books Online (http://msdn.microsoft.com/en-us/
library/ms184286.aspx). For the purposes of this chapter it is enough to say that SQL
will attempt to escalate locks when a certain number of locks have been obtained on the
table/index, or when the total number of locks, or the amount of lock memory, exceeds
configured limits.

In some cases, lock escalation can cause blocking because SQL has escalated locks, and so
locked the entire table, with the result that concurrent access to that table is restricted. To
identify lock escalations, SQL Trace or Profiler can be used with the Lock:Escalation
event, in conjunction with the SP:Started or T-SQL:StmtStarted and
SP:Completed or T-SQL:StmtCompleted events, to try to correlate the lock escalation
with currently executing statements and procedures.

If this event is logged and there is measurable blocking around the time of the event
being logged, then lock escalation may be causing problems, and the procedures that were
running at the time of the event being logged may need to be optimized to reduce the
amount or duration of the locking.

http://msdn.microsoft.com/en-us/library/ms184286.aspx
http://msdn.microsoft.com/en-us/library/ms184286.aspx

198

Chapter 6: Blocking

SQL Server 2008 introduced a new option for altering the way lock escalation occurs in
SQL Server. The ALTER TABLE statement now has the LOCK_ESCALATION option. The
options for this setting are AUTO, TABLE (default) and DISABLE. Prior to SQL 2008, lock
escalation was only to the table level.

The TABLE setting is the default behavior; locks are escalated only to table level. The
DISABLE setting completely disables lock escalation on this table. This can be useful in
some circumstances but must be used with care. Altering lock escalation is discussed
later, in the section entitled Hints, Trace Flags and Other Last Resorts.

The AUTO setting is the one of interest. If a table is partitioned, the LOCK_ESCALATION
option is set to AUTO, and if SQL decides to escalate locks, any locks that are held on
the table will escalate to the partition level, not the table level. This can be useful when
dealing with a partitioned table where data modifications are confined to one partition
but reads are done across many partitions. If the modifications caused an escalation to
table level, the reads would be blocked, but if the modifications just escalate to partition
level then the reads may not be affected at all. Some caution does need to be employed
when considering this setting, as it can, in some cases, result in deadlocks. For an example
of such a deadlock see http://www.sqlskills.com/blogs/paul/post/SQL-Server-2008-
Partition-level-lock-escalation-details-and-examples.aspx.

Concurrency and the transaction isolation levels

The degree to which concurrent sessions can access the same resource simultaneously
is dictated by the transaction isolation levels in force for the database sessions that are
accessing the database.

In the ANSI standards, the isolation levels are defined by what data anomalies they
allow, not the manner they are enforced. Each isolation level (from the least restrictive
to the most restrictive) allows fewer data anomalies. SERIALIZABLE must allow no data
anomalies; REPEATABLE READ is defined as an isolation level that only allows phantom

http://www.sqlskills.com/blogs/paul/post/SQL-Server-2008-Partition-level-lock-escalation-details-and-examples.aspx
http://www.sqlskills.com/blogs/paul/post/SQL-Server-2008-Partition-level-lock-escalation-details-and-examples.aspx

199

Chapter 6: Blocking

rows; READ COMMITTED is identified as an isolation level that allows phantom rows and
non-repeatable reads; READ UNCOMMITTED is identified as an isolation level that allows
phantom rows, non-repeatable reads and dirty reads.

As the isolation level becomes more restrictive, so SQL Server will acquire different
modes of lock and hold them for longer periods, in order to ensure the required level is
enforced. We'll briefly cover the isolation levels here, and Craig Freedman's blog (http://
blogs.msdn.com/b/craigfr/archive/tags/isolation+levels/) is a good source of
further reading on this topic.

READ UNCOMMITTED

In this isolation level SQL Server takes no shared locks at all. Since it takes no locks, a
session will not get blocked by exclusive locks. Update and exclusive locks are still taken
when modifying data. Because no shared locks are taken, this isolation level allows dirty
reads (reads of uncommitted data) as well as all of the data anomalies of the higher
isolation levels.

READ COMMITED

This is the default mode of operation. SQL Server will prevent "dirty reads" (i.e. it will
ensure that transactions can only return committed data). To do this, SQL Server will
acquire short-lived S locks on each row that is read, releasing the lock as processing
of the statement moves on to the next row, although it may hold these locks till the
whole statement has finished processing, should that be necessary in order to guarantee
consistent results. The shared locks are retained for, at most, the duration of the
executing statement, even if the transaction of which the statement is a part is still active.
So if the same statement is run again, as part of the same transaction, it could return
different results. This is the data anomaly known as a "non-repeatable read."

http://blogs.msdn.com/b/craigfr/archive/tags/isolation+levels/
http://blogs.msdn.com/b/craigfr/archive/tags/isolation+levels/

200

Chapter 6: Blocking

REPEATABLE READ

Shared locks are held for longer; for the duration of whole transaction. So, if a statement
runs again within the same transaction, you'll get the same result. Hence this isolation
level no longer allows non-repeatable reads. It still allows for new rows to have been
inserted in the meantime that match the query criteria. These new rows that appear
within a result set are known as phantom rows.

SERIALIZABLE

Transaction A will never see any of the effects of Transaction B for the entire duration
of Transaction A. In order to enforce this level, Transaction A will cause SQL Server to
acquire key-range locks on rows that have been read, which prevents any other trans-
action from modifying them, or inserting new rows, until Transaction A completes. The
SERIALIZABLE isolation level allows for no data anomalies at all, at the cost of severely
restricting the degree to which the database can support concurrent access.

Optimistic concurrency using row versioning

In addition to the traditional isolation levels discussed in the previous section, SQL
Server 2005 introduced two additional isolation levels that use optimistic rather than
pessimistic concurrency. Both of these use row versioning rather than locks for
concurrency enforcement.

There's far more to row versioning than can be covered here, so this is just a brief
summary. For full details on how optimistic concurrency works see the article SQL Server
2005 Row Versioning-Based Transaction Isolation at http://msdn.microsoft.com/en-us/
library/ms345124(v=sql.90).aspx. Despite being written for SQL 2005, it is still valid for
SQL 2008.

http://msdn.microsoft.com/en-us/library/ms345124(v=sql.90).aspx
http://msdn.microsoft.com/en-us/library/ms345124(v=sql.90).aspx

201

Chapter 6: Blocking

There are two optimistic concurrency isolation levels: READ_COMMITTED_SNAPSHOT
and SNAPSHOT. They are often confused with each other, so I will try to touch on the
significant differences here. Both of these isolation levels use row versions for read
consistency, not locks. So read queries take no locks. Therefore, instead of blocking when
they encounter a row that is subject to an exclusive lock, they will simply "read around"
the lock, retrieving from the version store (in TempDB) the version of the row consistent
with a certain point in time, either the time the statement started, or the time at which
the parent transaction started.

READ_COMMITTED_SNAPSHOT is an optimistic concurrency version of the READ
COMMITTED isolation level, so it allows the same data anomalies. However, as discussed
earlier, if a statement running under the traditional READ COMMITTED isolation level
encounters data that is being modified by another transaction, it must wait until those
changes are either committed or rolled back before it can acquire a shared lock and
proceed. In the READ_COMMITTED_SNAPSHOT isolation level, when a locked row is
encountered, SQL Server fetches the version of the row from the version store, as it
existed when the statement began. In other words, data returned will reflect only what
was committed at the time the current statement began. This means that consistency is
guaranteed within the statement, not within the transaction as a whole.

SNAPSHOT isolation is an optimistic concurrency version of the SERIALIZABLE isolation
level. As such, it allows no data anomalies at all. In this isolation level, when a locked row
is encountered, SQL fetches the latest row version as it existed when the transaction
began. In other words, data returned will reflect only what was committed at the time the
current transaction began.

The other difference between the two levels is in how they are enabled. If the database
option READ_COMMITTED_SNAPSHOT is enabled, then the database's default isolation
level becomes READ_COMMITTED_SNAPSHOT, and hints or explicit SET TRANSACTION
ISOLATION LEVEL statements will be needed to get the READ COMMITTED isolation level
(which will use locks). If the database option ALLOW_SNAPSHOT_ISOLATION is enabled,
then all that happens is that sessions may request the SNAPSHOT isolation using a SET
TRANSACTION ISOLATION LEVEL statement.

202

Chapter 6: Blocking

Maximizing concurrency

In a busy database, SQL Server must maintain a large number of different types of lock,
in order to mediate access to shared resources and ensure consistent results, with
minimal blocking. However, even a relatively small number of concurrent sessions
can result in the acquisition of a surprisingly high number of locks, however fleetingly
held. This is especially true when you consider that it's rarely as simple for SQL Server
as acquiring "a single lock on a single target row of data." Consider, for example, that if
a modification affects a column that is a part of a non-clustered index, either as a key
column or an included column, then the non-clustered index must also be changed to
reflect the data change, and this requires an additional exclusive lock on the rows or pages
affected by the change.

In general, however, SQL Server will manage all of this seamlessly and will automatically
choose the modes and types of locks appropriate for the isolation level in use, the type
and number of operations being performed, and so on.

We can help it out by, for example, writing fast, efficient SQL, providing useful indexes,
and using the least restrictive isolation level compatible with business requirements.
This will allow SQL Server to acquire the minimum necessary number of locks, for the
shortest duration, and so minimize blocking and maximize concurrent access. However,
beyond this, it is only rarely advisable to directly influence the sort of locks that SQL
Server acquires. On those rare occasions, SQL Server does provide a number of lock hints
that can be used to dictate which locks SQL Server acquires for certain operations and
even, for example, to "disallow" page and row locks on a given index. These options will
be discussed later in the chapter, in the Resolving Blocking section.

203

Chapter 6: Blocking

Latches and latch contention

Latches can be thought of as light-weight, short-lived locks. Where locks are used to
protect the logical and transactional consistency of rows, latches are typically used to
protect the physical consistency of pages or memory structures. There are three types of
latches that can be encountered in the SQL engine.

For further details see http://blogs.msdn.com/b/psssql/archive/2009/07/08/q-a-on-
latches-in-the-sql-server-engine.aspx):

•	 Latch – used to protect various memory structures within SQL Server.

•	 Page Latch – used when SQL is modifying the structure of the page. So, when the page
header gets modified, or a row is added to a page, SQL would take a Page Latch before
starting and release it once complete.

•	 Page I/O Latch – used when pages are moving between disk and memory. So a Page
I/O Latch would be taken before a page is fetched from disk, and released once the
page is in the cache.

Latches (usually Page Latch or Page I/O Latch) can cause blocking in much the same
way as locks. However, since latches are usually short-lived it is much rarer to encounter
blocking due to latches than to locks.

The details around causes and resolutions to latch contention are outside the scope of
this chapter, and some specific cases are mentioned elsewhere in the book. For further
information, see http://sqlcat.com/sqlcat/b/whitepapers/archive/2011/07/05/
diagnosing-and-resolving-latch-contention-on-sql-server.aspx.

http://blogs.msdn.com/b/psssql/archive/2009/07/08/q-a-on-latches-in-the-sql-server-engine.aspx
http://blogs.msdn.com/b/psssql/archive/2009/07/08/q-a-on-latches-in-the-sql-server-engine.aspx
http://sqlcat.com/sqlcat/b/whitepapers/archive/2011/07/05/diagnosing-and-resolving-latch-contention-on-sql-server.aspx
http://sqlcat.com/sqlcat/b/whitepapers/archive/2011/07/05/diagnosing-and-resolving-latch-contention-on-sql-server.aspx

204

Chapter 6: Blocking

Monitoring Blocking

In this section, we'll cover some of the important tools and techniques that can be used to
diagnose, troubleshoot, and resolve blocking issues in a SQL Server database. We'll cover
techniques that can be employed to resolve "live" instances of blocking, where important
business processes are blocked from proceeding, normal business function is impeded,
and end-users (and managers) are complaining. Usually, in such cases, the problem
manifests itself as poor performance or timeouts inside the application.

When blocking is actively occurring at the time you are notified, there are several DMVs
(or system views, back on SQL 2000) and system stored procedures that can be used to
troubleshoot the problem. We'll also look at ways of getting cumulative or aggregated
locking, and log wait statistics, to get an overall view of the severity of blocking within
the instance.

Of course, our ultimate goal is to monitor possible blocking issues on an ongoing basis,
and deal with them before they affect end-users. To that end, we'll move on to discuss
ongoing monitoring, using DMVs as well as event notifications, and the blocked_
process_report and lock_escalation events, to get automatic notification when a
blocking event occurs.

Before we begin, it's worth briefly noting the way in which the various locks show up in
the system views and DMVs, when they appear as wait types. The wait type for locks has
the form LCK_M_<lock type>. So, a wait to acquire a shared lock appears as LCK_M_S
(note there's no indication of the lock granularity, only the type requested), a wait for an
exclusive lock will appear as LCK_M_X, and a wait for an intent shared lock will appear as
LCK_M_IS. This format can be extrapolated to the other lock types.

205

Chapter 6: Blocking

Using sysprocesses (SQL Server 2000 and later)

In SQL Server 2000, we can use the sysprocesses system view to find blocking as well
as blocked processes, as shown in Listing 6.1.

SELECT spid ,
 status ,
 blocked ,
 open_tran ,
 waitresource ,
 waittype ,
 waittime ,
 cmd ,
 lastwaittype
FROM master.dbo.sysprocesses
WHERE blocked <> 0

Listing 6.1: Using sysprocesses to find blocking.

The Blocked column shows the SPID that is causing the blocking, as shown in Figure
6.1, and is the primary indicator of blocking events. It will have a value of 0 for any session
that is not blocked.

Figure 6.1: SPID 52 is blocking a shared lock request by SPID 53.

206

Chapter 6: Blocking

Note that the system procedures sp_who and sp_who2 are simply views onto the
sysprocesses system view and can be used in much the same way. Once we have the
SPIDs of the blocking and blocked sessions, we can take a look at what they are running
using DBCC INPUTBUFFER, which will return the first 4,000 characters of the batch that
each session is running, as shown in Figure 6.2.

Figure 6.2: Using DBCC INPUTBUFFER to return the text of the queries involved in blocking.

If we want to know what locks SPID 52 is holding that are preventing SPID 53 from
getting the shared read lock that it wants, we can query the syslockinfo system table,
or use the sp_lock system stored procedure. The latter is a lot less cryptic and far easier
to understand.

If we run the sp_lock procedure for SPID 52 then, among all the other locks, we can see
from the output in Figure 6.3 that SPID 52 holds an IX lock on page 1:1961 in database 5.
This is the page that SPID 53 is blocked from accessing, as seen from the waitresource
column in sysprocesses (Figure 6.1). The IX lock held by SPID 52 is not compatible
with the S lock that SPID 53 requested. Hence, SPID 53 must wait until that IX lock is
released before it can acquire the S lock that it wants.

207

Chapter 6: Blocking

Figure 6.3: Using the sp_lock stored procedure.

Prior to SQL Server 2000 SP4, a SPID would only be displayed in the blocked column
in the sysprocesses view if that session was causing lock waits. Post-SP4, the SPID
is shown for sessions causing both lock and latch waits; in other words, if SPID 53 were
waiting to acquire a latch rather than a lock, it would not appear in the blocked column
pre-SP4, but would appear post-SP4.

In most cases, this appears much the same way as with blocking, except that the
waittype column shows a Latch, Page Latch or Page I/O Latch wait rather than a LCK
wait. In some cases, specifically certain I/O-related latches, the value in the blocked
column is the value for the blocked session's SPID instead of the blocking SPID, so it
appears to be self-blocking.

208

Chapter 6: Blocking

For more resources on the changes to SQL Server 2000 blocking and the sysprocesses
system view, refer to: The blocked column in the sysprocesses table is populated for latch waits
after you install SQL Server 2000 SP4 at http://support.microsoft.com/kb/906344.

Cumulative wait statistics with DBCC SQLPERF
(waitstats)

In SQL Server 2000, the cumulative wait statistic information for the instance was only
available through the DBCC SQLPERF(waitstats) command. It provides the total
waiting tasks and total wait time since the instance was started or since the wait stats
were cleared using the DBCC SQLPERF(waitstats, clear) command.

While this command cannot help diagnose individual blocking problems, it can be
used to get an overall picture of the most common waits in the system. This can help in
ensuring that it is the actual problem that gets investigated, rather than something that
has been incorrectly assumed to be the problem. When blocking is prevalent in one of
the databases running in an instance, one of the top wait types for the instance will be a
LCK_* wait type, which is a wait while attempting to acquire a specific type of lock.

Dynamic Management Views

Although the sysprocesses system view, and the DBCC SQLPERF(waitstats)
command, can still be used to find active blocking in SQL Server 2005 and 2008, Dynamic
Management Views (DMVs) offer more in-depth information for troubleshooting the
blocking problem.

In order to see this in action, we'll need to create a blocking event in the database. For the
purposes of this demo, I'm using the AdventureWorks 2008 database (downloadable
from http://sqlserversamples.codeplex.com/).

http://support.microsoft.com/kb/906344
http://sqlserversamples.codeplex.com/

209

Chapter 6: Blocking

DECLARE @SalesOrderHeaderID INT

BEGIN TRANSACTION

INSERT INTO Sales.SalesOrderHeader
 (RevisionNumber, OrderDate, DueDate, ShipDate, Status,
 OnlineOrderFlag, PurchaseOrderNumber, AccountNumber, CustomerID,
 SalesPersonID, TerritoryID, BillToAddressID, ShipToAddressID,
 ShipMethodID, CreditCardID, CreditCardApprovalCode,
 CurrencyRateID, Comment, rowguid, ModifiedDate)
VALUES
 (5, ‘2011/06/20', ‘2011/06/25', ‘2011/06/30', 5, 0, NULL,
 ‘10-4030-018749', 18749, NULL, 6, 28374, 28374, 1, 8925,
 ‘929849Vi46003', NULL, NULL, NEWID(), GETDATE()
)

SET @SalesOrderHeaderID = @@IDENTITY

INSERT INTO Sales.SalesOrderDetail
 (SalesOrderID, CarrierTrackingNumber, OrderQty, ProductID,
 SpecialOfferID, UnitPrice, UnitPriceDiscount, rowguid,
 ModifiedDate)
VALUES (@SalesOrderHeaderID, ‘4911-403C-98', 15, 722, 1, 2039.994, 0,
 NEWID(), GETDATE()),
 (@SalesOrderHeaderID, ‘4911-403C-98', 4, 709, 1, 5.70, 0,
 NEWID(), GETDATE()),
 (@SalesOrderHeaderID, ‘4911-403C-98', 24, 716, 1, 28.8404, 0,
 NEWID(), GETDATE())

Listing 6.2: An uncommitted INSERT transaction in AdventureWorks 2008.

Note that I've left the transaction uncommitted. Hence, the exclusive locks taken on the
two tables are still being held. For the sake of a realistic example, we can say that either
there's a long-running SELECT after that, or something else that will run for a while, or
maybe an error caused the batch to abort leaving the transaction open.

Now, open a new SSMS window and connect to the AdventureWorks 2008
database and run a simple report against one of those tables that was involved in
the INSERT transaction.

210

Chapter 6: Blocking

SELECT FirstName ,
 LastName ,
 SUM(soh.TotalDue) AS TotalDue ,
 MAX(OrderDate) AS LastOrder
FROM Sales.SalesOrderHeader AS soh
 INNER JOIN Sales.Customer AS c ON soh.CustomerID = c.CustomerID
 INNER JOIN Person.Person AS p ON c.PersonID = p.BusinessEntityID
WHERE soh.OrderDate >= ‘2011/01/01'
GROUP BY c.CustomerID ,
 FirstName ,
 LastName

Listing 6.3: A query against the SalesOrderHeader table.

Right away, we will see that the SELECT statement will "hang" whereas, in the absence of
blocking, it would complete in milliseconds. Now let's look at the DMVs to see how we
would detect that if it were a real system with a real blocking problem.

Using the sys.dm_exec_requests and sys.dm_exec_
sessions DMVs

One of the first places to look is the DMV that shows currently executing tasks. This is
the replacement for sysprocesses in SQL Server 2005 and above, and shows much the
same information that sysprocesses did (and a fair bit more).

The script in Listing 6.4 will show a list of all blocked sessions as well as the sessions that
are blocking them. This can be very useful when there is a long blocking chain.

SELECT er.session_id ,
 host_name , program_name , original_login_name , er.reads ,
 er.writes ,er.cpu_time , wait_type , wait_time , wait_resource ,
 blocking_session_id , st.text
FROM sys.dm_exec_sessions es
 LEFT JOIN sys.dm_exec_requests er
 ON er.session_id = es.session_id
 OUTER APPLY sys.dm_exec_sql_text(er.sql_handle) st
WHERE blocking_session_id > 0

211

Chapter 6: Blocking

UNION
SELECT es.session_id , host_name , program_name , original_login_name ,
 es.reads , es.writes , es.cpu_time , wait_type , wait_time ,
 wait_resource , blocking_session_id , st.text
FROM sys.dm_exec_sessions es
 LEFT JOIN sys.dm_exec_requests er
 ON er.session_id = es.session_id
 OUTER APPLY sys.dm_exec_sql_text(er.sql_handle) st
WHERE es.session_id IN (SELECT blocking_session_id
 FROM sys.dm_exec_requests
 WHERE blocking_session_id > 0)

Listing 6.4: Find blocking with sys.dm_exec_requests and sys.dm_exec_sessions.

The output of this query, for the simulated blocking that we set up earlier, is shown in
Figure 6.4.

Figure 6.4: Details of the blocked and blocking sessions.

This shows the blocked and blocking session. The NULLs visible in the blocking session
(52) indicate that it is not currently running any queries and hence has no entry in sys.
dm_exec_requests. We can get the last command that it ran by querying sys.dm_
exec_connections and using the most_recent_sql_handle column as a parameter
to sys.dm_exec_sql_text, as shown in Listing 6.5.

SELECT ec.session_id ,
 ec.connect_time ,
 st.dbid AS DatabaseID ,
 st.objectid ,
 st.text
FROM sys.dm_exec_connections ec
 CROSS APPLY sys.dm_exec_sql_text(ec.most_recent_sql_handle) st
WHERE session_id = 52

Listing 6.5: Finding the command that caused blocking via sys.dm_exec_connections.

212

Chapter 6: Blocking

This is enough to identify the source of the blocking query, the machine, the login name,
and the application name. If this was an ad hoc query run by someone who simply doesn't
know better, then the resolution could be as simple as asking that person to stop running
the query and to teach them, so that the problem won't reoccur.

If the query is coming from an application, then between the application name and the
query text it should be possible to identify the source of the problematic code with a view
to fixing it (some options for fixing are given later in the chapter).

Using the sys.dm_os_waiting_tasks DMV

The sys.dm_os_waiting_tasks DMV is primarily used to show all waiting tasks
currently active or blocked. In order to take full advantage of this DMV, JOIN on the sys.
dm_exec_requests DMV and CROSS APPLY to sys.dm_exec_sql_text.

SELECT blocking.session_id AS blocking_session_id ,
 blocked.session_id AS blocked_session_id ,
 waitstats.wait_type AS blocking_resource ,
 waitstats.wait_duration_ms ,
 waitstats.resource_description ,
 blocked_cache.text AS blocked_text ,
 blocking_cache.text AS blocking_text
FROM sys.dm_exec_connections AS blocking
 INNER JOIN sys.dm_exec_requests blocked
 ON blocking.session_id = blocked.blocking_session_id
 CROSS APPLY sys.dm_exec_sql_text(blocked.sql_handle)
 blocked_cache
 CROSS APPLY sys.dm_exec_sql_text(blocking.most_recent_sql_handle)
 blocking_cache
 INNER JOIN sys.dm_os_waiting_tasks waitstats
 ON waitstats.session_id = blocked.session_id

Listing 6.6: Investigating blocking using the sys.dm_os_waiting_tasks DMV.

The results for our simulated blocking case are shown in Figure 6.5.

213

Chapter 6: Blocking

Figure 6.5: Results of the sys.dm_os_waiting_tasks query.

In the results from the query that takes any match by having a valid blocked SPID entry
for a SPID and matching entry in sys.dm_os_waiting_tasks, we can see session
53 is being blocked by session 52. This doesn't give us much more information than the
previous query (the additional columns returned in the previous section can be added
here too, and were omitted solely for clarity), though it provides more detail on the
resource on which blocking is occurring.

We could then use that information to help resolve the problem and stop it from
reoccurring. For more on sys.dm_os_waiting_tasks refer to Books Online
(http://msdn.microsoft.com/en-us/library/ms188743.aspx).

Using the sys.dm_tran_locks DMV

This is not necessarily the first DMV that someone would look at when diagnosing
blocking, as it's certainly not as easy to use as the DMVs discussed previously. This is the
replacement for the syslockinfo system table. It provides a snapshot of the state of
locking in a SQL Server instance, across all databases. It returns a row for every currently
active request to the lock manager for a lock that has been granted or is waiting to be granted.
The columns provided offer information regarding both the resource on which the lock is
being held (or has been requested), and the owner of the request.

The main use of this DMV is to get further information on the locks held by processes
that are known to be blocking each other. Using Listing 6.7, we can take a look at the
locks held and requested by the two processes that we already know are blocking.

http://msdn.microsoft.com/en-us/library/ms188743.aspx

214

Chapter 6: Blocking

SELECT request_session_id ,
 resource_type ,
 DB_NAME(resource_database_id) AS DatabaseName ,
 resource_associated_entity_id ,
 resource_description ,
 request_mode ,
 request_status
FROM sys.dm_tran_locks AS dtl
WHERE request_session_id IN (52, 53)
 AND resource_type NOT IN (‘DATABASE', ‘METADATA')

Listing 6.7: Querying the sys.dm_tran_locks DMV.

This reveals details of all the locks held and requested by those two sessions, as shown in
Figure 6.6.

Figure 6.6: Detailed locking information from the sys.dm_tran_locks DMV.

215

Chapter 6: Blocking

Just for those two simple queries there are 84 locks at the object, page, or key level. This is
why I say this is probably not the first place to look, but a place to look for further infor-
mation once a problem is identified.

The highlighted line (the sole lock with a wait status) and the row above show the
problem in the simulated example. Session 53 wants a shared lock on page 1:1961, but
session 52 already has an IX lock on that page and, as mentioned earlier, IX locks are only
compatible with other intent locks, not with a shared lock. Hence session 53 will have to
wait until session 52 releases that IX lock.

Cumulative wait statistics using sys.dm_os_wait_stats

Any time an executing task is forced to wait for a resource in the engine, the time spent
waiting is tracked, accumulatively, by SQL Server 2005 (and later), in the sys.dm_os_
wait_stats DMV. The values provided in this DMV are running totals, accumulated
across all sessions since the server was last restarted or the statistics were manually reset
using the DBCC SQLPERF command, as shown in Listing 6.8.

DBCC SQLPERF("sys.dm_os_wait_stats",CLEAR);

Listing 6.8: Clearing existing wait statistics using DBCC SQLPERF.

While the information in this DMV cannot be used on its own to diagnose individual
blocking problems, it can be used to find out whether locking waits are one of the most
common waits in the system. Simply run the query in Listing 3.2 (Chapter 3) and look for
high incidences of the LCK_* wait types, which are a sign that a task had to wait for locks
held by another task to be released, before continuing to execute. For example, having
cleared the existing wait statistics, we can re-create our previous blocking simulation
(listings 6.2 and 6.3). As we repeatedly simulate this blocking, we should see rising counts
for the LCK_M_IX wait event, as shown in Figure 6.7.

216

Chapter 6: Blocking

Figure 6.7: Investigating the LCK_M_IX wait event.

In general, high wait time could originate from a single instance of a high wait, from very
many processes with very low individual waits, or from a few processes with moderate
waits. The sys.dm_os_wait_stats DMV can provide a picture of overall, instance-
wide behavior.

Performance Monitor

I'm not going to go into much detail here but it is just worth noting that Performance
Monitor (PerfMon) has a number of counters that can be used to monitor locking and
blocking within a SQL instance. As with the aggregated wait statistics, PerfMon data
can be used to indicate that there may be a problem, but it is insufficient on its own to
identify the cause of the problem. Identifying the cause requires use of the DMVs or of
some of the automated reporting (discussed next). The main use of these counters is to
establish a baseline level of activity for these events, so that we can establish "normal"
behavior, and thus quickly spot abnormal behavior. The main counters of interest
are Avg Wait Time (ms), Lock Waits/sec, and Number of Deadlocks/sec, as
shown in Figure 6.8.

The Lock requests/sec counter can also be traced, but since the acquisition of a
large number of locks is quite normal behavior in SQL Server, it may not tell you
anything of value.

217

Chapter 6: Blocking

Figure 6.8: Monitoring locking-related PerfMon counters.

Automated Detection and Notification of
Blocking

Automatic detection and notification requires some form of job or scheduled process that
polls the server at regular intervals. While this is effective in detecting blocking, running a
process against the server will consume processing resources and should be done strategi-
cally, to minimize the footprint of the process of gathering the information itself.

In SQL Server 2000 the only option in this area was the sp_blocker_pss80 procedure,
but things have improved significantly in SQL Server 2005 and later, with the emergence
of the Blocked Process Report and Lock Escalation event classes, along with event
notifications.

218

Chapter 6: Blocking

The Sp_blocker_pss80 process

In SQL Server 2000, the only available option for automated detection and notifi-
cation was to run the procedure sp_blocker_pss80 using either an infinite loop and
WAITFOR DELAY, or a job or scheduled task with a very short interval. The sp_blocker_
pss80 procedure will log information about the blocking process and blocked process,
along with gathering the batch statement, and lock and wait statistics during the time of
the blocking event.

The Sp_blocker_pss80 process

Sp_blocker_pss80 is a Microsoft-provided solution for investigating blocking on SQL Server 7.0

and 2000 and is well documented. To learn more about setting up and utilizing this process, refer to KB

article 271509 at http://support.microsoft.com/kb/271509/.

If the sp_blocker_pss80 is not used, a custom script can be written using
sysprocesses or sp_who2 to do much the same thing.

SQL Trace

SQL Trace is a powerful feature that allows for the creation of event traces within SQL
Server, using a set of stored procedures. These procedures are the same ones that
SQL Profiler uses to run its traces. The events that SQL Trace collects range from
deadlock events, to ALTER commands, security or blocking, to complete SQL Batch
events. SQL Trace should be utilized only when there is a need to capture events for
troubleshooting. Events such as SP:Stmt* or Lock* will occur very frequently on a busy
server and traces that capture these events will consume a great deal of resources in order
to log all the events.

http://support.microsoft.com/kb/271509/

219

Chapter 6: Blocking

Troubleshooting blocking with SQL Trace can be extremely effective when used strategi-
cally to capture both the queries that are blocked and those that are causing the blocking.
While the blocked process report (discussed in the next section) was only introduced in
SQL Server 2005, monitoring of locks and query statistics from SQL Trace in SQL Server
2000 is still a powerful tool in finding and resolving blocking and other events.

The best, least resource-intensive way to capture traces is to run a server-side trace,
with output directed to a file on a fast, local drive. The easiest way to create a server-side
script is to use Profiler to set up the initial trace and the export it (all the details for how
to do this are in Chapter 5). For automatic detection of blocking, the most likely event to
trace is the blocked process report, although tracing for statement or batch completion,
lock escalation or lock timeouts may also be of use. Again, be very careful when tracing
frequently occurring events, such as Lock Acquired, as those may result in a trace that
has a severe impact on the server.

The blocked process report

The blocked process report is implemented as an event that fires when a non-system
task has been blocked by a deadlock detectable lock. An event is fired every time blocking
occurs that exceeds in duration the threshold value, configured by the "blocked process
threshold" sp_configure option. The limitation that it must be a deadlock detectable
lock stems from the implementation of the event in the database engine, which uses the
background deadlock monitor (covered in the next chapter) to walk through the list of
waiting tasks that exceed the defined threshold limit.

The default value for the "blocked process threshold" is zero, meaning that the database
engine doesn't perform the additional checks of waiting tasks and won't generate the
blocked process reports. The value for the option is an integer between 0 and 86,400,
and determines the number of seconds that a task must have been waiting for a locked
resource before the report generates. Multiple reports can be generated for the same
blocking chain if the value for the threshold is exceeded multiple times. So for example, if
we set the threshold to 5 seconds and a task is blocked for 18 seconds then three blocked

220

Chapter 6: Blocking

process reports would be generated. For further information on setting up and using
the blocked process report event, see http://www.simple-talk.com/content/article.
aspx?article=671 or http://bit.ly/qC6zz3.

Listing 6.9 shows how to enable the blocked process report, and sets the threshold to 2
seconds, using the sp_configure procedure (this would generally be considered rather
low for most systems, but I've set it there just for demo purposes).

sp_configure ‘show advanced options', 1
go
RECONFIGURE
go
sp_configure ‘blocked process threshold', 2
go
RECONFIGURE
go

Listing 6.9: Enabling the blocked process report and setting the threshold.

The blocked process report can be captured in a number of ways. SQL Server Profiler can
be used to actively capture the Blocked Process Report event class, or alternatively
you can create a server-side SQL Trace script, using the sp_trace_* stored procedures
as explained earlier.

When the blocked process threshold is met, the trace will log the event in the trace file.
The fn_trace_gettable function can be used to read the file into a tabular format in
SSMS, as shown in Figure 6.9.

http://www.simple-talk.com/content/article.aspx?article=671
http://www.simple-talk.com/content/article.aspx?article=671
http://bit.ly/qC6zz3

221

Chapter 6: Blocking

Figure 6.9: Reading the blocked process report using fn_trace_gettable.

Each event is logged with the session ID, end time and, as shown in Figure 6.9, the
duration of blocking. The session ID is of little interest, as it is the ID of the system task
that is checking the waiting tasks, not that of the blocked or blocking sessions. In SSMS,
clicking on the XML will open a new window with the XML nicely formatted. In the
first row from Figure 6.9, the results logged are from the blocking simulation performed
earlier in this chapter, and are shown in Listing 6.10.

<blocked-process-report>
 <blocked-process>
 <process id="process5a4f708" taskpriority="0" logused="0" waitresource="PAGE:
5:1:1961" waittime="2143" ownerId="94338" transactionname="SELECT"
lasttranstarted="2011-08-24T18:43:59.553" XDES="0x84fbf1e0" lockMode="S"
schedulerid="8" kpid="2588" status="suspended" spid="53" sbid="0" ecid="0"
priority="0" trancount="0" lastbatchstarted="2011-08-24T18:43:59.543"
lastbatchcompleted="2011-08-24T18:43:57.873" clientapp="Microsoft SQL Server
Management Studio - Query" hostname="AMachine" hostpid="4344" loginname="SomeLogin"
isolationlevel="read committed (2)" xactid="94338" currentdb="5"
lockTimeout="4294967295" clientoption1="671090784" clientoption2="390200">
 <executionStack>
 <frame line="1" sqlhandle="0x02000000314f4a04e43e9f09208ee7f0f3b4ddd93bd13

222

Chapter 6: Blocking

3f8"/>
 </executionStack>
 <inputbuf>
SELECT FirstName, LastName,
 SUM(soh.TotalDue) AS TotalDue, MAX(OrderDate) AS LastOrder
 FROM Sales.SalesOrderHeader AS soh
 INNER JOIN Sales.Customer AS c ON soh.CustomerID = c.CustomerID INNER JOIN
Person.Person AS p ON c.PersonID = p.BusinessEntityID WHERE soh.OrderDate >=
'2011/01/01'
 GROUP BY c.CustomerID, FirstName, LastName
 </inputbuf>
 </process>
 </blocked-process>
 <blocking-process>
 <process status="sleeping" spid="52" sbid="0" ecid="0" priority="0" trancount="1"
lastbatchstarted="2011-08-24T18:43:43.493" lastbatchcompleted="2011-08-
24T18:43:44.817" clientapp="Microsoft SQL Server Management Studio - Query"
hostname=" AMachine " hostpid="4344" loginname="SomeLogin" isolationlevel="read
committed (2)" xactid="93835" currentdb="5" lockTimeout="4294967295"
clientoption1="671090784" clientoption2="390200">
 <executionStack/>
 <inputbuf>
DECLARE @SalesOrderHeaderID INT

BEGIN TRANSACTION

INSERT INTO Sales.SalesOrderHeader
 (RevisionNumber, OrderDate, DueDate, ShipDate, Status,
 OnlineOrderFlag, PurchaseOrderNumber, AccountNumber, CustomerID,
 SalesPersonID, TerritoryID, BillToAddressID, ShipToAddressID,
 ShipMethodID, CreditCardID, CreditCardApprovalCode, CurrencyRateID,
 Comment, rowguid, ModifiedDate)
VALUES
 (5, '2011/06/20', '2011/06/25', '2011/06/30', 5,
0, NULL,
 '10-4030-018749', 18749, NULL, 6, 28374, 28374, 1, 8925,
 '929849Vi46003', NULL, NULL, NEWID(), GETDATE()
)

SET @SalesOrderHeaderID = @@IDENTITY

INSERT INTO Sales.SalesOrderDetail
 (SalesOrderID, CarrierTrackingNumber, OrderQty, ProductID,
 SpecialOfferID, UnitPrice, UnitPriceDiscount, rowguid,

223

Chapter 6: Blocking

 ModifiedDate)
VALUES
 (@SalesOrderHeaderID, '4911-403C-98', 15, 722, 1, 2039.994, 0,
 NEWID(), GETDATE()),
 (@SalesOrderHeaderID, '4911-403C-98', 4, 709, 1, 5.70, 0,
 NEWID(), GETD </inputbuf>
 </process>
 </blocking-process>
</blocked-process-report>

Listing 6.10: Output of the blocked process report.

The blocked process is shown as the SELECT statement while the blocking process is the
open transaction with uncommitted INSERTs.

Some blocking events may happen only periodically throughout a normal day or week of
operations in SQL Server. The blocked process report, captured by a server-side trace, can
be used to log these events automatically. The trace information can later be imported
into SQL and used in Reporting Services or other reporting containers for analysis and
resolution of these types of performance problems.

Event notifications

Event notifications have been available since SQL Server 2005 and offer the ability
to capture, in real-time, most DDL events and trace events in SQL Server. Event notifi-
cations use Service Broker queues in order to capture log the events that you wish to
monitor. When used in conjunction with the BLOCKED_PROCESS_REPORT event and
 the LOCK_ESCALATION event (SQL 2008 only), this would allow for instances of both
events to be logged, asynchronously, as they happen. This asynchronous model means
that event logging has a lower impact on overall server performance than when using
SQL Trace or Profiler.

To set up event notifications we need to first configure and enable Service Broker in the
database that we wish to monitor. Once Service Broker is ready, a queue and a service,

224

Chapter 6: Blocking

based on the queue, are created. Finally, we can create the event notification that will
use the service. If you haven't done so already, enable the BLOCKED_PROCESS_REPORT
event as was shown in Listing 6.9. Next, ensure Service Broker is enabled as shown in
Listing 6.11.

ALTER DATABASE AdventureWorks SET ENABLE_BROKER
GO

Listing 6.11: Enable Service Broker.

Set up the queue:

CREATE QUEUE systemeventqueue
GO

Listing 6.12: Create the Service Broker queue.

Set up the service:

CREATE SERVICE systemeventservice
ON QUEUE systemeventqueue ([http://schemas.microsoft.com/SQL/Notifications/
PostEventNotification])
GO

Listing 6.13: Create the Service Broker service.

Create the event notification on the service:

CREATE EVENT NOTIFICATION notification_blocking
ON SERVER
WITH FAN_IN
FOR blocked_process_report
TO SERVICE ‘systemeventservice', ‘current database' ;
GO

Listing 6.14: Create the event notification for blocking events.

225

Chapter 6: Blocking

All that's left now is to receive any blocked event messages that are logged in the queue,
converting the MESSAGE_BODY column to XML format as shown in Listing 6.15.

RECEIVE CAST(message_body AS XML), * FROM systemeventqueue

Listing 6.15: Retrieving messages from the Service Broker queue.

The output of this query, for the blocking example that we've used throughout the
chapter, is shown in Figure 6.10.

Figure 6.10: Event notification for the blocked process report.

Notice that multiple entries have been inserted into the queue, due to the fact that we set
the threshold for the event to two seconds. So, if a blocking event lasted for ten seconds,
five unique rows would be logged in the systemeventqueue.

Creating an event notification session for the LOCK_ESCALATION event is done in
exactly the same manner, as shown in Listing 6.16.

CREATE EVENT NOTIFICATION notification_lockescalation
ON SERVER
WITH FAN_IN
FOR lock_escalation
TO SERVICE ‘systemeventservice', ‘current database' ;
GO

Listing 6.16: Create an event notification for lock escalation events.

226

Chapter 6: Blocking

Extended Events

In SQL Server 2008 there are no Extended Events for detecting blocking. However, in
Denali (the next major version of SQL Server), the sqlserver.blocked_process_
report event has been added. This, like the blocked process trace event and the blocked
process event notification, require that the server configuration setting blocked
process threshold be set using sp_configure.

The Extended Event session can be set up with the Denali Extended Events wizard, as
shown in Figure 6.11.

Figure 6.11: Setting up an Extended Event session.

227

Chapter 6: Blocking

The events can be sent to a memory buffer, as in this example, but in a production
environment would more likely be sent to disk, as we did when using SQL Trace. For
quick monitoring, the data can also be viewed live, as shown in Figure 6.12.

Figure 6.12: Viewing Extended Event data.

For more information on Extended Events, Jonathan's An XEvent a day series is well worth
reading: http://www.sqlskills.com/blogs/jonathan/category/XEvent-a-Day-Series.
aspx.

http://www.sqlskills.com/blogs/jonathan/category/XEvent-a-Day-Series.aspx
http://www.sqlskills.com/blogs/jonathan/category/XEvent-a-Day-Series.aspx

228

Chapter 6: Blocking

Resolving Blocking

The manner in which we resolve blocking will vary depending on the particular reason
for the block and, in some cases, the version and edition of SQL Server that is being used.
As noted earlier in this chapter, blocking is most often caused by long-running queries
that hold certain locks on a row, table, page, or even database. In cases where T-SQL
statements are causing locks to be set and held for long periods, the only real answer to
the problem is to tune the queries to ensure they run as fast as possible. This may not
eradicate blocking completely, but your goal is certainly to see, for example, a significant
reduction in the number of recorded blocked process report events, as locks are acquired
and released faster, and fewer instances of blocking reach the configured threshold for
the event.

To all databases, and the applications that use them, are attached a specific set of require-
ments and expected response times. What's considered "normal" for one application
may be considered very worrying in another. For example, one application may trigger a
lengthy process that requires an exclusive lock on a table for its entire duration, and still
be considered an acceptable part of normal business operating procedures. Conversely,
another process, one that never holds locks for more than a few seconds, may be cause
for concern.

In short, before you go in and start tuning, you need to know what's normal and expected
behavior, and how this is reflected in execution times and locking periods. It may be that
your blocking threshold is set at a level that is catching blocking events for processes that
are behaving perfectly normally; make sure this threshold is set appropriately for your
system (see Listing 6.9).

229

Chapter 6: Blocking

Bad database design

A database that is poorly normalized, such that data changes have to be made in a number
of places instead of one, will result in transactions that run for longer than necessary.
Modification transactions acquire exclusive locks, and the the risk of blocking rises the
more that are acquired, and the longer they are held.

This is not something that is easily fixed after the database is in production; proper
normalization is an issue that should be kept in mind during the design phase.

Denormalization and OLTP systems

People often claim that denormalizing a database improves performance. The real story is that

denormalization can improve read performance at the expense of write performance. This is why denor-

malization may be useful for data warehouse or decision-support systems, but is seldom appropriate for

OLTP-type systems.

Inappropriate isolation level

A fairly common cause of severe blocking is the use of an inappropriately high isolation
level, often without the knowledge of the application developer. I've seen more than one
data access library that, by default, requests an isolation level of SERIALIZABLE when
connecting to SQL Server. This results in a huge number of rows being locked for long
periods, for just about any operation. In many cases, the degree of transaction isolation
needed by the application does not warrant the use of SERIALIZABLE; if it is causing
issues then the application needs to be examined to see if the level can be lowered
to REPEATABLE READ or even READ COMMITTED, or whether one of the SNAPSHOT
isolation levels can be used. This is something that needs to be evaluated on a case-by-
case basis; there is no single isolation level that's appropriate for all applications.

230

Chapter 6: Blocking

One of the most effective ways, on SQL Server 2005 or above, to deal with applica-
tions and databases that are highly prone to blocking is to either use READ COMMITTED
SNAPSHOT isolation on the entire database, or to enable SNAPSHOT isolation and use it in
the most affected areas. The overhead of maintaining the row version store in TempDB is
often not severe, especially in light of the considerable advantages of having read queries
that don't block writers and vice versa.

Of course, testing needs to be done before making a change as radical as switching the
entire database over to READ COMMITTED SNAPSHOT, but it should be a serious consid-
eration if dealing with an application prone to severe blocking.

Poorly written queries

Queries that are written inefficiently will hold locks for longer than necessary. When
there are multiple such queries running concurrently there is a good chance that severe
blocking will occur. Full coverage of how to write efficient queries would require at least
one book on its own; two good ones are: Inside SQL Server 2005 Query Tuning and Optimi-
zation (http://www.amazon.com/Inside-Microsoft®-SQL-Server-2005/dp/0735621969)
and SQL Server 2008 Query Performance Tuning Distilled (http://www.amazon.com/
Server-Performance-Tuning-Distilled-Experts/dp/1430219025). Here, we'll stick to a
few general principles:

•	 Keep transactions as short as possible (but no shorter). For example, if a select does not
need to be run within the transaction, put it outside.

•	 Ensure that columns that are compared/joined have the same data type to avoid
implicit conversion problems.

•	 Keep queries as simple as possible. Test whether splitting a complex query up and
using temp tables to hold intermediate results will be faster or not.

•	 Use set-based methods as much as possible. They are faster than row-by-row
processing in the vast majority of cases.

http://www.amazon.com/Inside-Microsoft�-SQL-Server-2005/dp/0735621969
http://www.amazon.com/Server-Performance-Tuning-Distilled-Experts/dp/1430219025
http://www.amazon.com/Server-Performance-Tuning-Distilled-Experts/dp/1430219025

231

Chapter 6: Blocking

Missing indexes

If SQL is missing an index that would be useful to the query, then that query will take
longer to run than necessary, holding locks longer than necessary, and it will read more
data than is necessary, in this way taking and releasing many more locks than it would in
the presence of the index. This increases the chances of the query either blocking another
query or being blocked itself. For more on preventing, finding and fixing duplicate and
missing indexes, refer to Chapter 5.

Poor application design

Often, poor application design imposes on the database a process flow that can hugely
increase the prevalence of blocking events in the database. Fixing problems caused
by application design is never easy, as it usually demands close cooperation between
DBAs, developers and vendors. Nevertheless, if the application is really the source of the
problem, it has to be done.

Some of the classic application design malpractices that can cause blocking are: user
input within transactions; applications that read far more information than they need;
and overly-chatty applications. I'll spend a couple of paragraphs on each.

User input within transactions

This happens when an application starts a transaction, does some work and then waits
for the user to confirm an action, or to input data, or similar. This is a potentially serious
problem, because the transaction is open and the locks are held until the user acts. Tales
are rife of users going to lunch or leaving for the day with transactions left open and locks
held in the database, causing severe blocking problems.

232

Chapter 6: Blocking

The solution is to never allow any form of user interaction within a database transaction.
A database transaction should be started and committed (or rolled back) in a single trip to
the database.

Reading too much data

A few years ago, I saw an application that, in order to get a filtered set of matching rows
from two tables, fetched to the front end the entire contents of both tables, looped
through them to get the rows that matched, and then filtered out the ones it didn't need.
It would read several hundred thousand rows from the database server in order to get the
ten rows it needed.

This caused huge problems, not least of which was the huge numbers of locks that it
took as a result. The general rule here is that an application should read just what is
necessary and no more. Let the database do the work of joining and filtering; that's
what it's good at.

Chatty applications

If an application repeatedly and frequently queries the database for data that it either
already has or doesn't really need, this can cause serious difficulties, including huge
locking problems on the database. An example of this would be an application that, on a
search screen, fires off a database query for each key pressed, rather than when the user
has completed entering details of the required search.

Outdated hardware

In rare cases, outdated hardware, with insufficient CPU, memory and disk I/O capacity,
will be the cause of the blocking problems. If all other avenues have been investigated,
and blocking issues remain, it may simply be that the application has outgrown its
hardware and you'll need to upgrade.

233

Chapter 6: Blocking

Hints, Trace Flags and Other Last Resorts

If nothing else works, there are hints and Trace Flags that influence SQL Server's locking
behavior. These should be used only as short-term, temporary measures while more
permanent solutions are investigated.

Locking hints

There are a number of hints that affect in various ways how SQL Server takes locks. They
can be divided into three main groups, as follows:

•	 isolation level hints

•	 lock mode hints

•	 lock granularity hints.

Isolation level hints

The isolation level hints change the effective isolation level used for locks on a table that
is being accessed within a query. These hints are per table, not for the entire query. The
available isolation level hints are as follows:

•	 ReadUncommitted/Nolock – the READ UNCOMMITTED isolation level.

•	 ReadCommitted – the READ COMMITTED isolation level using locks or row versions,
depending on the READ_COMMITTED_SNAPSHOT setting in the database.

•	 ReadCommittedLock – the READ COMMITTED isolation level, using locks.

•	 RepeatableRead – the REPEATABLE READ isolation level.

•	 Serializable – the SERIALIZABLE isolation level.

234

Chapter 6: Blocking

Lock mode hints

The lock mode table hints dictate a mode (e.g. shared, update, exclusive) for the locks
taken on table during processing of a query. There are only two lock mode hints:

•	 UPDLOCK – takes locks on that table as Update (U) locks.

•	 XLOCK – takes locks on that table as Exclusive (X) locks.

One very important point to note is that this hint just specifies the lowest (i.e. least
restrictive) mode that can be used; SQL can and will take a higher lock mode if necessary.
For example, if a table in a DELETE query is given the UPDLOCK hint and that is the table
from which the rows are being deleted, SQL will still take exclusive locks, as an update
lock is not sufficient for a delete.

The main use for these hints is to take more restrictive locks on read queries to reduce the
chance of deadlocks later in a transaction.

Lock granularity hints

The lock granularity hints dictate to SQL Server the granularity of the lock that should
initially be taken on a given table. SQL is still free to escalate locks if necessary. The lock
granularity hints are as follows:

•	 ROWLOCK – locks on that table start as row locks.

•	 PAGLOCK – locks on that table start as page locks.

•	 TABLOCK – locks on that table start as table locks.

There is also a TABLOCKX hint which is equivalent to a combination of TABLOCK
and XLOCK.

235

Chapter 6: Blocking

Index locking options

There are two lock-related options that can be set on indexes and they are both ON by
default.

•	ALLOW_ROW_LOCKS

•	ALLOW_PAGE_LOCKS

These two control whether or not the particular granularities of lock may be taken on the
index. If ALLOW_ROW_LOCKS is OFF, SQL Server can only take page and table-level locks
on that index. If ALLOW_PAGE_LOCKS is OFF, SQL Server can only take row and table-
level locks on that index. If both are OFF, SQL can only take table-level locks.

There are few valid reasons for messing with these options and they should never be
changed without significant testing, as there will be side effects. For example, an index
that has ALLOW_PAGE_LOCKS set to OFF cannot be reorganized, it can only be rebuilt.

Sometimes disabling row locks on indexes can resolve deadlocks caused by key
lookups, but it is by no means a guaranteed fix. Another reason for disabling page
locks is when there are very, very frequent single-row INSERTs on the table and there's
contention on the lock manager, as described at http://blog.kejser.org/2011/05/30/
diagnosing-and-fixing-sos_object_store-spins-for-singleton-inserts/.

Trace Flags 1211 and 1224

If lock escalation is persistent and problematic, the lock escalation process can be altered
by using Trace Flags 1211 and 1224.

Trace Flag 1211 provides the ability to disable lock escalation altogether. This Trace Flag
should only be used if all other attempts to troubleshoot lock escalation have failed.
Disabling lock escalation itself can cause an impact on SQL Server by allowing for many

http://blog.kejser.org/2011/05/30/diagnosing-and-fixing-sos_object_store-spins-for-singleton-inserts/
http://blog.kejser.org/2011/05/30/diagnosing-and-fixing-sos_object_store-spins-for-singleton-inserts/

236

Chapter 6: Blocking

low-level locks and causing long-holding locks. If lock memory grows to 60% of total
dynamically allocated memory, further lock requests will fail.

Trace Flag 1224 is more flexible than 1211, since it restricts lock escalation at the statement
level, and based only on the number of locks that are being held. However, SQL Server
still has the flexibility to escalate locks if locked memory exceeds 40% of total memory.
These Trace Flags should be enabled only after careful consideration and testing, and
any instances with them enabled needs to be carefully monitored. With Trace Flag 1211,
in particular, it is possible for SQL Server to run out of lock memory because it is not
allowed to escalate locks. If that happens, no more locks can be taken and every single
query against that SQL instance will fail, with the following message, until some lock
memory becomes available.

Server: Msg 1204, Level 19, State 1, Line 1
The SQL Server cannot obtain a LOCK resource at this time. Rerun your statement
when there are fewer active users or ask the system administrator to check the SQL
Server lock and memory configuration.

For more information on setting these and other Trace Flags, refer to: http://msdn.
microsoft.com/en-us/library/ms188396.aspx.

Summary

Blocking is one of the most common performance problems in SQL Server. Given the
tools and monitoring steps covered, blocking can be quickly identified and resolved. DBAs
should always actively monitor for blocking, especially as and when new queries and
applications are added to SQL Server in response to new business requirements.

http://msdn.microsoft.com/en-us/library/ms188396.aspx
http://msdn.microsoft.com/en-us/library/ms188396.aspx

237

Chapter 7: Handling Deadlocks

A deadlock is defined in the dictionary as "a standstill resulting from the action of equal
and opposed forces," and this turns out to be a reasonable description of a deadlock in
SQL Server: two or more sessions inside of the database engine end up waiting for access
to locked resources held by each other. In a deadlock situation, none of the sessions can
continue to execute until one of those sessions releases its locks, so allowing the other
session(s) access to the locked resource. Multiple processes persistently blocking each
other, in an irresolvable state, will eventually result in a halt to processing inside the
database engine.

A common misconception is that DBAs need to intervene to "kill" one of the processes
involved in a deadlock. In fact, SQL Server is designed to detect and resolve deadlocks
automatically, through the use the Lock Monitor, a background process that is initiated
when the SQL Server instance starts, and that constantly monitors the system for
deadlocked sessions. However, when deadlocks are reported, the DBA must inves-
tigate their cause immediately. Many of the same issues that cause severe blocking in
the database, such as poor database design, lack of indexing, poorly designed queries,
inappropriate isolation level and so on (all discussed in Chapter 6), are also common
causes of deadlocking. This chapter will provide the tools, techniques and tweaks you
need to diagnose and prevent deadlocks, and to ensure that they are handled gracefully if
they ever do occur. Specifically, it will cover:

•	 how to capture deadlock graphs using a variety of techniques, including Trace Flags,
the Profiler deadlock graph event, and service broker event notifications

•	 how to read deadlock graphs to locate the sessions, queries and resources that are
involved

•	 common types of deadlock and how to prevent them

•	 using server- or client-side TRY…CATCH error handling for deadlocks, to avoid
UnhandledException errors in the application.

238

Chapter 7: Handling Deadlocks

The Lock Monitor

When the Lock Monitor performs a deadlock search and detects that one or more
sessions are embraced in a deadlock, one of the sessions is selected as a deadlock victim
and its current transaction is rolled back. When this occurs, all of the locks held by the
victim's session are released, allowing any previously blocked other sessions to continue
processing. Once the rollback completes, the victim's session is terminated, returning a
1205 error message to the originating client.

SQL Server selects the deadlock victim based on the following criteria:

1. Deadlock priority – the assigned DEADLOCK_PRIORITY of a given session deter-
mines the relative importance of it completing its transactions, if that session is
involved in a deadlock. The session with the lowest priority will always be chosen as
the deadlock victim. Deadlock priority is covered in more detail later in this chapter.

2. Rollback cost – if two or more sessions involved in a deadlock have the same
deadlock priority, then SQL Server will choose as the deadlock victim the session that
has lowest estimated cost to roll back.

Capturing Deadlock Graphs

When 1205 errors are reported, it is important that the DBA finds out why the deadlock
happened and takes steps to prevent its recurrence. The first step in troubleshooting and
resolving a deadlocking problem is to capture the deadlock graph information.

A deadlock graph is an output of information regarding the sessions and resources that
were involved in a deadlock. The means by which you can capture a deadlock graph have
diversified and improved over recent versions of SQL Server. If you are still running SQL
Server 2000, then you are stuck with a single, somewhat limited, Trace Flag (1204). SQL
Server 2005 added a new Trace Flag (1222), provided the XML Deadlock Graph event in

239

Chapter 7: Handling Deadlocks

SQL Server Profiler, and enabled deadlock graph capture via Service Broker event notifi-
cations, and the WMI (Windows Management Instrumentation) Provider for Server
Events. In each case, the deadlock graph contains significantly more information about
the nature of the deadlock than is available through Trace Flag 1204. This minimizes the
need to gather, manually, additional information from SQL Server in order to under-
stand why the deadlock occurred; for example, resolving the pageid for the locks being
held to the objectid and indexid, using DBCC PAGE, and using SQL Trace to walk
the deadlock chain and find out which currently executing statements are causing the
problem. SQL Server 2008 provides all of these facilities, plus the system_health
Extended Events Session.

To allow you to work through each section, and generate the same deadlock graphs that
are presented and described in the text, the resource materials for this book (http://
www.simple-talk.com/RedGateBooks/JonathanKehayias/TroubleshootingSQL-
Server_Code.zip) include example code to generate a deadlock in SQL Server.

Trace Flag 1204

Trace Flags in SQL Server enable alternate "code paths" at key points inside the database
engine, allowing additional code to execute when necessary. If you are seeing queries
failing with deadlock errors on a SQL Server instance, Trace Flags can be enabled for a
single session or for all of the sessions on that instance. When Trace Flag 1204 is enabled
for all sessions on a SQL Server instance, any deadlock detected by the deadlock monitor
will cause a deadlock graph to be written to the SQL Server error log.

In SQL Server 2000, this Trace Flag is the only means by which to capture a deadlock
graph, which makes troubleshooting deadlocking in SQL Server 2000 quite challenging,
though still possible. In later SQL Server versions, this Trace Flag is still available
although superseded by Trace Flag 1222.

http://www.simple-talk.com/RedGateBooks/JonathanKehayias/TroubleshootingSQLServer_Code.zip
http://www.simple-talk.com/RedGateBooks/JonathanKehayias/TroubleshootingSQLServer_Code.zip
http://www.simple-talk.com/RedGateBooks/JonathanKehayias/TroubleshootingSQLServer_Code.zip

240

Chapter 7: Handling Deadlocks

Trace Flag 1204, like all Trace Flags, can be enabled and disabled on an ad hoc basic using
the DBCC TRACEON and DBCC TRACEOFF database console commands. Listing 7.1 shows
how to enable Trace Flag 1204, for a short term, at the server-level (specified by the -1
argument) so that all subsequent statements run with this Trace Flag enabled.

DBCC TRACEON(1204, -1)

Listing 7.1: Turning on Trace Flag 1204 for all sessions.

Alternatively, Trace Flags can be turned on automatically, using the –T startup parameter.
To add a startup parameter to SQL Server, right-click on the Server Node in Enterprise
Manager and open the Server Properties page. Under the General tab, click the Startup
Parameters button, and then add the startup parameter to the server as shown in
Figure 7.1.

Figure 7.1: Using the –T startup parameter.

In cases where it is possible to perform an instance restart, using a startup parameter can
be helpful when you want to capture every deadlock that occurs from the server, over a
long period of time. However, once deadlock troubleshooting has been completed, the

241

Chapter 7: Handling Deadlocks

Trace Flag should be removed from the startup parameters. Since the Trace Flag enables
the instance to write the deadlock graph to the SQL Server error log, the only way to
retrieve the graph is to read the error log file and then extract the events from the log file
for analysis.

Trace Flag 1222

SQL Server 2005 added Trace Flag 1222 to capture the deadlock graphs in an easier-to-
read and more comprehensive format than was available with the 1204 flag. It captures
and presents the information in a manner that makes it much easier to identify the
deadlock victim, as well as the resources and processes involved in the deadlock (covered
in detail in the Reading Deadlock Graphs section).

Trace Flag 1204 is still available, for backwards compatibility reasons, but when using
Trace Flags to capture deadlock graphs in SQL Server 2005 or later, you should always
use Trace Flag 1222 in preference to Trace Flag 1204. Trace Flag 1222 is enabled in the
same manner as 1204, using DBCC TRACEON(), as shown in Listing 7.1 or the –T startup
parameter, as shown in Figure 7.1.

SQL Profiler XML Deadlock Graph event

New to SQL Server 2005, the Deadlock Graph event in SQL Trace captures the deadlock
graph information, without writing it to the SQL Server Error Log. The Deadlock Graph
event is part of the Locks event category and can be added to a SQL Server Profiler trace
by selecting the event in Profiler's Trace Properties dialog, as shown in Figure 7.2.

242

Chapter 7: Handling Deadlocks

Figure 7.2: Selecting Deadlock Graph event in the Trace Properties dialog.

SQL Profiler can be configured to save the deadlock graphs separately, into XDL files, as
shown in Figure 7.3.

Figure 7.3: Saving deadlock graphs.

An XDL file is a standard XML file. Management Studio recognizes the file extension
when opening the file and displays the deadlock information graphically, rather than
as XML.

243

Chapter 7: Handling Deadlocks

If you prefer to work directly with server-side traces, removing the overhead of the
Profiler client, then you can capture the deadlock graph information directly from your
scripts, using the SP_TRACE_* set of system stored procedures. The captured graphs will
be written to a SQL Trace file on the SQL Server. The easiest way to generate a script for
a server-side trace is to first create the trace in SQL Profiler, and then export it to a script
using File | Export | Script Trace Definition, as described in detail in Chapter 5.

A server-side trace file can be read using the system function fn_trace_gettable,
or by opening it inside of SQL Profiler. When using SQL Profiler to view the trace file
contents, the deadlock events can be exported to individual XDL files that can be opened
up graphically using SQL Server Management Studio, through the File | Export | Extract
SQL Server Events | Extract deadlock Events menu item.

Service Broker event notifications

Also new in SQL Server 2005, event notifications allow the capture of deadlock graph
information using SQL Server Service Broker, by creating a service and queue for the
DEADLOCK_GRAPH trace event. The information contained in the deadlock graph
captured by event notifications is no different than the information contained in the
deadlock graph captured by SQL Trace; the only difference is the mechanism of capture.

Setting up an event notification to capture deadlock graph information requires three
Service Broker objects:

•	 A QUEUE to hold the DEADLOCK_GRAPH event messages

•	 A SERVICE to route the messages to the queue

•	 An EVENT NOTIFICATION to capture the deadlock graph and package it in a message
that is sent to the Service.

244

Chapter 7: Handling Deadlocks

Listing 7.2 shows how to create these objects using T-SQL. Note that you need to create
the objects in a broker-enabled database, like msdb. The Master database is not enabled
for broker, by default.

USE msdb;

-- Create a service broker queue to hold the events
CREATE QUEUE DeadlockQueue
GO

-- Create a service broker service receive the events
CREATE SERVICE DeadlockService
ON QUEUE DeadlockQueue ([http://schemas.microsoft.com/SQL/Notifications/
PostEventNotification])
GO

-- Create the event notification for deadlock graphs on the service
CREATE EVENT NOTIFICATION CaptureDeadlocks
ON SERVER
WITH FAN_IN
FOR DEADLOCK_GRAPH
TO SERVICE 'DeadlockService', 'current database' ;
GO

Listing 7.2: Creating the Service Broker service, queue, and event notification objects.

With the objects created, deadlock graphs will be collected in the queue, as deadlocks
occur on the server. While the queue can be queried using a SELECT statement, just as
if it were a table, the contents remain in the queue until they are processed using the
RECEIVE command, as demonstrated in Listing 7.3.

USE msdb ;
-- Cast message_body to XML and query deadlock graph from TextData
SELECT message_body.valuequery('(/EVENT_INSTANCE/TextData/
 deadlock-list)[1]', 'varchar(128)')
 AS DeadlockGraph
FROM (SELECT CAST(message_body AS XML) AS message_body
 FROM DeadlockQueue
) AS sub ;

245

Chapter 7: Handling Deadlocks

GO

-- Receive the next available message FROM the queue
DECLARE @message_body XML ;

RECEIVE TOP(1) -- just handle one message at a time
 @message_body=message_body
 FROM DeadlockQueue ;

-- Query deadlock graph from TextData
SELECT @message_body.valuequery('(/EVENT_INSTANCE/TextData/
 deadlock-list)[1]','varchar(128)')
 AS DeadlockGraph
GO

Listing 7.3: Query and processing DEADLOCK_GRAPH event messages in the queue.

Since Event Notifications utilize a service broker queue for processing, additional actions
can be performed when the deadlock event fires. When a deadlock event occurs, Service
Broker can "activate" a stored procedure that processes the message and responds appro-
priately, for example, by sending an email notification using Database Mail, logging the
event in a table, or gathering additional information, like the execution plans for both
statements, from SQL Server, based on the information contained inside of the deadlock
graph. Full coverage of this topic is beyond the scope of this chapter. However, a full
example of how to use queue activation to completely automate deadlock collection can
be found in the code download file for this book.

WMI Provider for server events

Also new to SQL Server 2005, the WMI Provider for Server Events allows WMI to be used
to monitor SQL Server events as they occur. Any event that can be captured through
event notifications has a corresponding WMI Event Object, and any WMI management
application can subscribe to these event objects.

246

Chapter 7: Handling Deadlocks

SQL Server Agent was updated to manage WMI events, through the use of WMI Query
Language (WQL), a query language similar to T-SQL that is used with WMI and Agent
Alerts for WMI events.

A full example of how to create a SQL Agent alert to capture and store deadlock graphs
is out of scope for this chapter, and can be found in the Books Online Sample, Creating
a SQL Server Agent Alert by Using the WMI Provider for Server Events (http://msdn.
microsoft.com/en-us/library/ms186385.aspx). However, in essence, it involves creating,
via the WMI Event Provider, a SQL Agent alert to monitor deadlock graph events.
The alert queries for events using WQL, and when it receive notification that one has
occurred, it fires a job that captures the deadlock graph in a designated SQL Server table.

To capture deadlock graphs using the WMI Event Provider and a SQL Agent alert in this
manner requires that the "Replace tokens for all job responses to alerts" in SQL Server
Agent Alert System properties must be enabled. It also requires that Service Broker (which
processes the notification messages) is enabled in msdb as well as the database in which
the deadlock graphs are stored.

WMI event provider bug

It is worth noting that there is a known bug in the WMI Event Provider for server names that exceed

fourteen characters; this was fixed in Cumulative Update 5 for SQL Server 2005 Service Pack 2.

Extended Events

Prior to SQL Server 2008, there was no way to retroactively find deadlock information.
Obtaining deadlock graphs required that a SQL Trace was actively running, or that Trace
Flag 1222 or 1205 was turned on for the instance. Since tracing deadlocks by either of
these methods can be resource intensive, this usually meant that a series of deadlocks had
to occur to prompt starting a trace or enabling the Trace Flags.

http://msdn.microsoft.com/en-us/library/ms186385.aspx
http://msdn.microsoft.com/en-us/library/ms186385.aspx

247

Chapter 7: Handling Deadlocks

SQL Server 2008 includes all of the previously discussed techniques for capturing
deadlock graphs, and adds one new one, namely collecting the deadlock information
through the system_health default event session in Extended Events. This default
event session (akin, in concept, to the default trace) is running by default on all instal-
lations of SQL Server 2008 and collects a range of useful troubleshooting information
for errors that occur in SQL Server, including deadlocks. Deadlock graphs captured by
Extended Events in SQL Server 2008 have the unique ability to contain information
about multi-victim deadlocks (deadlocks where more than session was killed by the Lock
Monitor to resolve the conflict).

More on Extended Events

We can't cover Extended Events in detail in this book but, for a good overview of the topic, read Paul

Randal's article, "SQL 2008: Advanced Troubleshooting with Extended Events" (http://technet.

microsoft.com/en-us/magazine/2009.01.sql2008.aspx).

The system_health session uses a ring_buffer target which stores the information
collected by events firing in memory as an XML document in the sys.dm_xe_session_
targets DMV. This DMV can be joined to the sys.dm_xe_sessions DMV to get the
session information along with the data stored in the ring_buffer target, as shown in
Listing 7.4.

SELECT CAST(target_data AS XML) AS TargetData
FROM sys.dm_xe_session_targets st
 JOIN sys.dm_xe_sessions s ON s.address = st.event_session_address
WHERE name = 'system_health'

Listing 7.4: Retrieving system_health session information.

http://technet.microsoft.com/en-us/magazine/2009.01.sql2008.aspx
http://technet.microsoft.com/en-us/magazine/2009.01.sql2008.aspx

248

Chapter 7: Handling Deadlocks

The query in Listing 7.5 shows how to retrieve a valid XML deadlock graph from the
default system_health session using XQuery, the target_data column, and a CROSS
APPLY to get the individual event nodes. Note that, due to changes in the deadlock
graph to support multi-victim deadlocks, and to minimize the size of the event data, the
resulting XML cannot be saved as an XDL file for graphical representation.

SELECT CAST(event_data.value('(event/data/value)[1]',
 'varchar(max)') AS XML) AS DeadlockGraph
FROM (SELECT XEvent.query('.') AS event_data
 FROM (-- Cast the target_data to XML
 SELECT CAST(target_data AS XML) AS TargetData
 FROM sys.dm_xe_session_targets st
 JOIN sys.dm_xe_sessions s
 ON s.address = st.event_session_address
 WHERE name = 'system_health'
 AND target_name = 'ring_buffer'
) AS Data -- Split out the Event Nodes
 CROSS APPLY TargetData.nodes('RingBufferTarget/
 event[@name="xml_deadlock_report"]')
 AS XEventData (XEvent)
) AS tab (event_data)

Listing 7.5: Retrieving an XML deadlock graph.

Note, also, that there is a bug in the RTM release of SQL Server 2008 that causes deadlock
graphs not to be captured and retained in an Extended Events session. This bug was fixed
in Cumulative Update 1 for SQL Server 2008 and is also included in the latest Service
Pack. An additional bug exists for malformed XML in the deadlock graph generated by
Extended Events, which was corrected in Cumulative Update Package 6 for SQL Server
2008 Service Pack 1. It is still possible to generate a valid XML document in these earlier
builds, by hacking the deadlock graph being output by Extended Events. However, since
the fix to SQL Server has already been released, the specifics of the work-around will not
be covered in this chapter.

249

Chapter 7: Handling Deadlocks

Changes to Extended Events in SQL Server Denali

At the time of the final edits of this chapter, SQL Server Denali CTP3 was released, with changes associ-

ated to how the Extended Events targets store XML data inside of the value element of the Event XML

output. Listing 7.5 shows the use of the .value() method from XML in SQL Server, but in Denali CTP3,

a .query() method has to be used to retrieve the deadlock graph from the Event XML output.

Reading Deadlock Graphs

The precise format of the deadlock graph in SQL Server has changed from version
to version, and mainly for the better. In general, it now contains better information
in an easier-to-digest format, such as the graphical display provided in SQL Server
Management Studio and SQL Profiler, so allowing us to more easily troubleshoot
deadlocks.

Even with the changes to the deadlock graph XML that is output by Extended Events, in
SQL Server 2008, the fundamentals of how to interpret the graph are the same as for any
other XML deadlock graph.

Interpreting Trace Flag 1204 deadlock graphs

Perhaps one of the most difficult aspects of troubleshooting deadlocks in SQL Server
2000 is interpreting the output of Trace Flag 1204. The process is complicated by the
need to query the sysobjects and sysindexes system tables to find out exactly what
objects are involved in the deadlock.

Listing 7.6 shows an example deadlock graph that was generated by enabling Trace Flag
1204, and then creating a deadlock situation (the code to do this is provided as part of the
code download for this book).

250

Chapter 7: Handling Deadlocks

Deadlock encountered Printing deadlock information

Wait-for graph

Node:1
KEY: 13:1993058136:2 (08009d1c9ab1) CleanCnt:2 Mode: S Flags: 0x0
 Grant List 0::
 Owner:0x567e7660 Mode: S Flg:0x0 Ref:1 Life:00000000 SPID:54 ECID:0
 SPID: 54 ECID: 0 Statement Type: SELECT Line #: 3
 Input Buf: Language Event: WHILE (1=1)
BEGIN
 INSERT INTO #t1 EXEC BookmarkLookupSelect 4
 TRUNCATE TABLE #t1
END

 Requested By:
 ResType:LockOwner Stype:'OR' Mode: X SPID:55 ECID:0 Ec:(0x26F7DBD8)
Value:0x58f80880 Cost:(0/3C)

Node:2
KEY: 13:1993058136:1 (040022ae5dcc) CleanCnt:2 Mode: X Flags: 0x0
 Grant List 1::
 Owner:0x58f80940 Mode: X Flg:0x0 Ref:0 Life:02000000 SPID:55 ECID:0
 SPID: 55 ECID: 0 Statement Type: UPDATE Line #: 4
 Input Buf: Language Event: SET NOCOUNT ON
WHILE (1=1)
BEGIN
 EXEC BookmarkLookupUpdate 4
END

 Requested By:
 ResType:LockOwner Stype:'OR' Mode: S SPID:54 ECID:0 Ec:(0x2F881BD8)
Value:0x567e76c0 Cost:(0/0)

Victim Resource Owner:
 ResType:LockOwner Stype:'OR' Mode: S SPID:54 ECID:0 Ec:(0x2F881BD8)
Value:0x567e76c0 Cost:(0/0)

Listing 7.6: Sample deadlock graph from Trace Flag 1204, involving KEY locks.

The first thing to pay attention to in the graph output is that there are two nodes, each
node representing a locked resource. The first line of output for each node shows the

251

Chapter 7: Handling Deadlocks

resource on which the lock is held, and then the Grant List section provides details of the
deadlocking situation, including:

•	 Mode of the lock being held on the resource

•	 SPID of the associated process

•	 Statement Type the SPID is currently running

•	 Line # (line number) that marks the start of the currently executing statement

•	 Input Buf, the contents of the input buffer for that SPID (the last statement sent).

So, for Node 1, we can see that a shared read (S) lock is being held by SPID 54 on an index
KEY of a non-clustered index (:2) on an object with ID 1993058136. Node 2 shows that
an exclusive (X) lock is being held by SPID 55 on an index key of the clustered index (:1)
of the same object.

Further down, for each node, is the Requested By section, which details any resource
requests that cannot be granted, due to blocking. For Node 1, we can see that that SPID
55 is waiting for an exclusive lock on the non-clustered index key (it is blocked by the S
lock held by SPID 54). For Node 2, we can see that SPID 54 is waiting to acquire a shared
read lock on the clustered index key (it is blocked by the exclusive lock held by SPID 55).

Furthermore, back in the Grant List section, we can see that SPID 54 has issued the
SELECT statement on Line # 3 of the BookmarkLookupSelect stored procedure (but
is unable to acquire a shared read lock) and SPID 55 has issued the UPDATE statement on
Line # 4 of the BookmarkLookupUpdate stored procedure (but is unable to acquire an
exclusive lock).

This is a classic deadlock situation, and happens to be one of the more common types
of deadlock, covered in more detail later in this chapter, in the section titled Bookmark
lookup deadlock.

252

Chapter 7: Handling Deadlocks

Finally, in the Victim Resource Owner section we can find out which SPID was chosen
as the deadlock victim, in this case, SPID 54. Alternatively, we can identify the deadlock
victim by matching the binary information in the Value to the binary information in the
Owner portion of the Grant List.

We've discussed a lot about the deadlocking incident, but so far we know only that
it occurred on an object with an ID of 1993058136. In order to identify properly the
object(s) involved in the deadlock, the information in the KEY entry for each node
needs to be used to query sysobjects and sysindexes. The KEY entry is formatted
as databaseid:objected:indexid. So, in this example, SPID 54 was holding a
Shared (S) lock on index id 2, a non-clustered index, with objectID 1993058136.
The query in Listing 7.7 shows how to determine the table and index names associated
with the deadlock.

SELECT o.name AS TableName ,
 i.name AS IndexName
FROM sysobjects AS o
 JOIN sysindexes AS i ON o.id = i.id
WHERE o.id = 1993058136
 AND i.indid IN (1, 2)

Listing 7.7: Finding the names of the objects associated with the deadlock.

If a deadlock involves a PAG lock instead of a KEY lock, the deadlock graph might look as
shown in Listing 7.8.

Wait-for graph

Node:1
PAG: 8:1:96 CleanCnt:2 Mode: X Flags: 0x2
 Grant List 0::
 Owner:0x195fb2e0 Mode: X Flg:0x0 Ref:1 Life:02000000
 SPID: 56 ECID: 0 Statement Type: UPDATE Line #: 4
 Input Buf: Language Event: SET NOCOUNT ON
WHILE (1=1)
BEGIN

253

Chapter 7: Handling Deadlocks

 EXEC BookmarkLookupUpdate 4
END

 Requested By:
 ResType:LockOwner Stype:'OR' Mode: S SPID:55 ECID:0 Ec:(0x1A5E1560)
Value:0x1960dba0 Cost:(0/0)

Listing 7.8: Page lock example, generated by Trace Flag 1204.

Notice now that the lock reference is of the form databaseid:fileid:pageid. In
order to identify the object to which this page belongs, we need to enable Trace Flag 3604,
dump the page header information to the client message box DBCC PAGE(), and then
disable the Trace Flag, as shown in Listing 7.9.

DBCC TRACEON(3604)
DBCC PAGE(8,1,96,1)
DBCC TRACEOFF(3604)

Listing 7.9: Identifying the objects involved in a deadlock involving page locks.

The output of the DBCC PAGE() command will include a PAGE HEADER section, shown in
Listing 7.10, which contains the IDs of the object (m_objId field) and index (m_indexId)
to which the page belongs.

Page @0x1A5EC000

m_pageId = (1:96) m_headerVersion = 1 m_type = 1
m_typeFlagBits = 0x0 m_level = 0 m_flagBits = 0x4
m_objId = 1977058079 m_indexId = 0 m_prevPage = (0:0)
m_nextPage = (1:98) pminlen = 116 m_slotCnt = 66
m_freeCnt = 110 m_freeData = 7950 m_reservedCnt = 0
m_lsn = (912:41:3) m_xactReserved = 0 m_xdesId = (0:0)
m_ghostRecCnt = 0 m_tornBits = 2

Listing 7.10: Page Header section from the output of the DBCC PAGE().

254

Chapter 7: Handling Deadlocks

Understanding the statements that are being executed along with the indexes and objects
involved in the deadlock is critical to troubleshooting the problem. However, there are
situations where the currently executing statement may not be the actual statement
that caused the deadlock. Multi-statement stored procedures and batches that enlist an
explicit transaction will hold all of the locks acquired under the transaction scope until
the transaction is either committed or rolled back. In this situation, the deadlock may
involve locks that were acquired by a previous statement that was executed inside the
same transaction block. To completely troubleshoot the deadlock it is necessary to look
at the executing batch from the Input Buf as a whole, and understand when locks are
being acquired and released.

Bart Duncan is the definitive source for interpreting SQL Server deadlock graphs.
For additional information on reading the output of Trace Flag 1204, see his blog
post Interpreting Trace Flag 1204 Output (http://blogs.msdn.com/b/bartd/
archive/2006/09/09/deadlock-troubleshooting_2c00_-part-1.aspx).

Interpreting Trace Flag 1222 deadlock graphs

The format of the information, as well as the amount of information, returned by Trace
Flag 1222 is very different than the output from Trace Flag 1204. Listing 7.11 shows the
Trace Flag 1222 output, in SQL Server 2005, for an identical deadlock to the one previ-
ously seen for the Trace Flag 1204 output, from SQL Server 2000.

deadlock-list
 deadlock victim=process8d8c58

 process-list
 process id=process84b108 taskpriority=0 logused=220 waitresource=KEY:
34:72057594038452224 (0c006459e83f) waittime=5000 ownerId=899067977
transactionname=UPDATE lasttranstarted=2009-12-13T00:22:46.357 XDES=0x157be250
lockMode=X schedulerid=1 kpid=4340 status=suspended spid=102 sbid=0
ecid=0 priority=0 transcount=2 lastbatchstarted=2009-12-13T00:13:37.510
lastbatchcompleted=2009-12-13T00:13:37.507 clientapp=Microsoft SQL Server
Management Studio - Query hostname=SQL2K5TEST hostpid=5516 loginname=sa

http://blogs.msdn.com/b/bartd/archive/2006/09/09/deadlock-troubleshooting_2c00_-part-1.aspx
http://blogs.msdn.com/b/bartd/archive/2006/09/09/deadlock-troubleshooting_2c00_-part-1.aspx

255

Chapter 7: Handling Deadlocks

isolationlevel=read committed (2) xactid=899067977 currentdb=34
lockTimeout=4294967295 clientoption1=673187936 clientoption2=390200
 executionStack
 frame procname=DeadlockDemo.dbo.BookmarkLookupUpdate line=4 stmtstart=260
stmtend=394 sqlhandle=0x03002200e7a4787d08a10300de9c00000100000000000000
UPDATE BookmarkLookupDeadlock SET col2 = col2-1 WHERE col1 = @col2
 frame procname=adhoc line=4 stmtstart=82 stmtend=138 sqlhandle=0x020000002a709
3322fbd674049d04f1dc0f3257646c4514b
EXEC BookmarkLookupUpdate 4
 inputbuf
SET NOCOUNT ON
WHILE (1=1)
BEGIN
 EXEC BookmarkLookupUpdate 4
END
 process id=process8d8c58 taskpriority=0 logused=0 waitresource=KEY:
34:72057594038386688 (0500b49e5abb) waittime=5000 ownerId=899067972
transactionname=INSERT EXEC lasttranstarted=2009-12-13T00:22:46.357
XDES=0x2aebba08 lockMode=S schedulerid=2 kpid=5864 status=suspended
spid=61 sbid=0 ecid=0 priority=0 transcount=1 lastbatchstarted=2009-12-
13T00:22:46.347 lastbatchcompleted=2009-12-13T00:22:46.343 clientapp=Microsoft
SQL Server Management Studio - Query hostname=SQL2K5TEST hostpid=5516
loginname=sa isolationlevel=read committed (2) xactid=899067972 currentdb=34
lockTimeout=4294967295 clientoption1=673187936 clientoption2=390200
 executionStack
 frame procname=DeadlockDemo.dbo.BookmarkLookupSelect line=3 stmtstart=118
stmtend=284 sqlhandle=0x03002200ae80847c07a10300de9c00000100000000000000
SELECT col2, col3 FROM BookmarkLookupDeadlock WHERE col2 BETWEEN @col2 AND @col2+1
 frame procname=adhoc line=3 stmtstart=50 stmtend=146 sqlhandle=0x02000000e00b6
6366c680fabe2322acbad592a896dcab9cb
INSERT INTO #t1 EXEC BookmarkLookupSelect 4
 inputbuf
WHILE (1=1)
BEGIN
 INSERT INTO #t1 EXEC BookmarkLookupSelect 4
 TRUNCATE TABLE #t1
END

 resource-list
 keylock hobtid=72057594038386688 dbid=34 objectname=DeadlockDemo.dbo.
BookmarkLookupDeadlock indexname=cidx_BookmarkLookupDeadlock id=lock137d65c0 mode=X
associatedObjectId=72057594038386688
 owner-list
 owner id=process84b108 mode=X

256

Chapter 7: Handling Deadlocks

 waiter-list
 waiter id=process8d8c58 mode=S requestType=wait
 keylock hobtid=72057594038452224 dbid=34 objectname=DeadlockDemo.dbo.
BookmarkLookupDeadlock indexname=idx_BookmarkLookupDeadlock_col2 id=lock320d5900
mode=S associatedObjectId=72057594038452224
 owner-list
 owner id=process8d8c58 mode=S
 waiter-list
 waiter id=process84b108 mode=X requestType=wait

Listing 7.11: Sample deadlock graph, generated by Trace Flag 1222.

The new format breaks a deadlock down into sections that define the deadlock victim,
the processes involved in the deadlock (process-list), and the resources involved in
the deadlock (resource-list). Each process has an assigned process id that is used
to uniquely identify it in the deadlock graph. The deadlock victim lists the process that
was selected as the victim and killed by the deadlock monitor. Each process includes
the SPID as well as the hostname and loginname that originated the request, and the
isolation level under which the session was running when the deadlock occurred. The
execution stack section, for each process, displays the entire execution stack, starting
from the most recently executed (deadlocked) statement backwards to the start of the
call stack. This eliminates the need to perform additional steps to identify the statement
being executed.

The resource-list contains all of the information about the resources involved
in the deadlock and is generally the starting point for reading a deadlock graph. The
index names are included in the output and each resource displays the owner process
and the type of locks being held, as well as the waiting process and the type of locks
being requested.

As with the Trace Flag 1204 output, the definitive source for understanding the
output from Trace Flag 1222 is Bart Duncan. He has a three-part series on
troubleshooting deadlocks with the output from Trace Flag 1222 on his blog,
starting with Deadlock Troubleshooting, Part 1 (http://blogs.msdn.com/bartd/
archive/2006/09/09/747119.aspx).

http://blogs.msdn.com/bartd/archive/2006/09/09/747119.aspx
http://blogs.msdn.com/bartd/archive/2006/09/09/747119.aspx

257

Chapter 7: Handling Deadlocks

Using the same technique employed in these posts, we can construct a description of the
deadlock described, as shown in Listing 7.12.

SPID 102 (process84b108) is running this query (line 4 of the BookmarkLookupUpdate
sproc):
 UPDATE BookmarkLookupDeadlock SET col2 = col2-1 WHERE col1 = @col2

SPID 61 (process8d8c58)is running this query (line 3 of BookmarkLookupSelect
sproc):
 SELECT col2, col3 FROM BookmarkLookupDeadlock WHERE col2
 BETWEEN @col2 AND @col2+1

SPID 102 is waiting for an Exclusive KEY lock on the idx_BookmarkLookupDeadlock_
col2 index (on the BookmarkLookupDeadlock table).
 (SPID 61 holds a conflicting S lock)

SPID 61 is waiting for a Shared KEY lock on the index cidx_BookmarkLookupDeadlock
(on the BookmarkLookupDeadlock table)..
 (SPID 102 holds a conflicting X lock)

Listing 7.12: Deadlock analysis, constructed from the Trace Flag 1222 deadlock graph.

As we can see from the deadlock list section of Listing 7.11, SPID 61, attempting to run
the SELECT statement against cidx_BookmarkLookupDeadlock, is chosen as the
deadlock victim.

Interpreting XML deadlock graphs

The information contained in XML deadlock graph, obtained from SQL Profiler, or
Service Broker Event notifications, and so on, is essentially the same as that obtained
from the output of Trace Flag 1222, and it is interpreted in exactly the same way.
However, the format in which the information is presented is very different. The XML
deadlock graph can be displayed graphically in Management Studio by saving the XML to
a file with a .XDL extension and then opening the file in Management Studio (although,

258

Chapter 7: Handling Deadlocks

as discussed earlier, the XML generated by Extended Events can't be displayed graphically,
in this manner).

Figure 7.4 displays graphically the same deadlock graph that we saw for the two
Trace Flags.

Figure 7.4: SSMS graphical deadlock graph.

In the graphical display, the deadlock processes are displayed as ovals. The process infor-
mation is displayed inside of the oval, and includes a tooltip, which pops up when the
mouse hovers over the process, and displays the statement being executed, as shown in
Figure 7.5. The deadlock victim process is shown crossed out.

Figure 7.5: SSMS graphical deadlock graph: the victim process.

259

Chapter 7: Handling Deadlocks

The resources contributing to the deadlock are displayed in rectangular boxes in the
center of the graphical display. The locks, and their respective modes, are displayed by
arrows between the processes and the resources. Locks owned by a process are shown
with the arrow pointed towards the process, while locks being requested are shown with
the arrow pointed towards the resource as shown in Figure 7.6.

Figure 7.6: SSMS graphical deadlock graph: processes and resources.

A visual display like this makes it much easier to understand the circular blocking that
caused the deadlock to occur.

Common types of deadlock and how to eliminate
them

When troubleshooting any type of problem in SQL Server, you learn with experience how
to recognize, from a distance, the particular varieties of problem that tend to crop up on
a regular basis. The same is true of deadlocks; the same types of deadlock tend to appear
with predictable regularity and, once you understand what patterns to look for, resolving
the deadlock becomes much more straightforward.

260

Chapter 7: Handling Deadlocks

This section assumes knowledge of basic locking mechanisms inside SQL Server (see
Chapter 6) and examines how to resolve the most common types of deadlock, namely
the bookmark lookup deadlock, the serializable range scan deadlock, the cascading
constraint deadlock, the intra-query parallelism deadlock and the accessing objects in
different orders deadlock.

Bookmark lookup deadlock

Bookmark lookup deadlocks are one of the most common deadlocks in SQL Server.
Fortunately, although they have a habit of appearing randomly, without any changes to
the database or the code inside of it, they are also one of the easiest types of deadlock
to troubleshoot.

Bookmark lookup deadlocks generally have a SELECT statement as the victim, and
an INSERT, UPDATE, or DELETE statement as the other contributing process to the
deadlock. They occur partly as a general consequence of SQL Server's pessimistic locking
mechanisms for concurrency, but mainly due to the lack of an appropriate covering index
for the SELECT operation.

When a column is used in the WHERE clause to filter the SELECT statement and a
non-clustered index exists on that column, then the database engine takes a shared
lock on the required rows or pages in the non-clustered index. In order to return any
additional columns from the table, not covered by the non-clustered index, the database
engine performs an operation known as KEY, or RID, lookup (in SQL Server 2000, the
term "bookmark lookup" was used). This operation uses either the Clustered Index Key
or RID (in the case of a heap) to look up the row in the table data and retrieve the
additional columns.

When a lookup operation occurs, the database engine takes additional shared locks on
the rows or pages needed from the table. These locks are held for the duration of the

261

Chapter 7: Handling Deadlocks

SELECT operation, or until lock escalation is triggered to increase the lock granularity
from row or page to table.

The deadlock occurs, as we have seen in previous sections, when an operation that
changes the data in a table (for example, an INSERT, UPDATE, or DELETE operation)
occurs simultaneously with the SELECT. When the data-changing session executes, it
acquires an exclusive lock on the row or page of the clustered index or table, and performs
the data change operation. At the same time the SELECT operation acquires a shared
lock on the non-clustered index. The data-changing operation requires an exclusive lock
on the non-clustered index to complete the modification, and the SELECT operation
requires a shared lock on the clustered index, or table, to perform the bookmark lookup.
Shared locks and exclusive locks are incompatible, so if the data-changing operation and
the SELECT operation affect the same rows then the data-changing operation will be
blocked by the SELECT, and the SELECT will be blocked by the data change, resulting
in a deadlock.

One of the most common online recommendations for curing this type of deadlock is to
use a NOLOCK table hint in the SELECT statement, to prevent it from acquiring shared
locks. This is bad advice. While it might prevent the deadlock, it can have unwanted side
effects, such as allowing operations to read uncommitted changes to the database data,
and so return inaccurate results.

The correct fix for this type of deadlock is to change the definition of the non-clustered
index so that it contains, either as additional key columns or as INCLUDE columns (see
Chapter 5), all the columns it needs to cover the query. Columns returned by the query
that are not used in a JOIN, WHERE, or GROUP BY clause, can be added to the index as
INCLUDE columns. Any column used in a JOIN, the WHERE clause, or in a GROUP BY
should ideally be a part of the index key but, in circumstances where this exceeds the
900-byte limit, addition as an INCLUDE column may work as well. Implementing
the covering index will resolve the deadlock without the unexpected side effects of
using NOLOCK.

262

Chapter 7: Handling Deadlocks

A shortcut to finding the appropriate covering index for a query is to run it through the
Database Engine Tuning Advisor (DTA). However, as discussed in Chapter 5, the DTA
recommendations are only as good as the supplied workload, and repeated single-query
evaluations against the same database can result in an excessive number of indexes, which
often overlap. Manual review of any index recommendation made by the DTA should
be made to determine if modification of an existing index can cover the query without
creating a new index. A good video example, Using the DTA to Assist in Performance
Tuning, can be found on the SQL Share website (http://www.sqlshare.com/using-the-
dta-to-assist-in-performance-tuning_599.aspx).

Range scans caused by SERIALIZABLE isolation

The SERIALIZABLE isolation level is the most restrictive isolation level in SQL Server
for concurrency control, ensuring that every transaction is completely isolated from the
effects of any other transaction.

To accomplish this level of transactional isolation, range locks are used when reading
data, in place of the row or page level locking used under READ COMMITTED isolation.
These range locks ensure that no data changes can occur that affect the result set,
allowing the operation to be repeated inside the same transaction with the same result.
While the default isolation level for SQL Server is READ COMMITTED, certain providers,
like COM+ and BizTalk, change the isolation to SERIALIZABLE when connections
are made.

Range locks have two components associated with their names, the lock type used to
lock the range and then the lock type used for locking the individual rows within the
range. The four most common range locks are shared-shared (RangeS-S), shared-update
(RangeS-U), insert-null (RangeI-N), and exclusive (RangeX-X). Deadlocks associated
with SERIALIZABLE isolation are generally caused by lock conversion, where a lock of
higher compatibility, such as a RangeS-S or RangeS-U lock, needs to be converted to a
lock of lower compatibility, such as a RangeI-N or RangeX-X lock.

http://www.sqlshare.com/using-the-dta-to-assist-in-performance-tuning_599.aspx
http://www.sqlshare.com/using-the-dta-to-assist-in-performance-tuning_599.aspx

263

Chapter 7: Handling Deadlocks

A common deadlock that occurs under SERIALIZABLE isolation has a pattern that
involves a transaction that checks if a row exists in a table before inserting or updating
the data in the table. A reproducible example of this deadlock is included in the code
examples for this chapter. This type of deadlock will generally produce a deadlock graph
with a resource-list similar to the one shown in Listing 7.13.

 <resource-list>
 <keylock hobtid="72057594050969600" dbid="5" objectname="AdventureWorks.
Sales.SalesOrderHeader" indexname="IX_SalesOrderHeader_CustomerID" id="lock35bcc80"
mode="RangeS-U" associatedObjectId="72057594050969600">
 <owner-list>
 <owner id="processad4d2e8" mode="RangeS-U" />
 <owner id="process9595b8" mode="RangeS-S" />
 </owner-list>
 <waiter-list>
 <waiter id="processad4d2e8" mode="RangeI-N" requestType="convert" />
 <waiter id="process9595b8" mode="RangeI-N" requestType="convert" />
 </waiter-list>
 </keylock>
 </resource-list>

Listing 7.13: Extract from a deadlock graph for a SERIALIZABLE range scan deadlock.

In this example, two processes have acquired compatible shared locks, RangeS-S and
RangeS-U, on the SalesOrderHeader table. When one of the processes requires a
lock conversion to a lock type that is incompatible with the lock being held by the other
process, in this case a RangeI-N, it is blocked. If both processes require a lock conversion
to RangeI-N locks, the result is a deadlock since each session is waiting on the other to
release its high compatibility lock.

There are several possible solutions to this type of deadlock and the most appropriate
one depends on the database and the application it supports. If it is not necessary for the
database to maintain the range locks acquired during the SELECT operation that checks
for row existence and the SELECT operation can be moved outside of the transaction that
performs the data change, then the deadlock can be prevented.

264

Chapter 7: Handling Deadlocks

If the operation doesn't require the use of SERIALIZABLE isolation, then changing the
isolation level to a less restrictive isolation level, for example READ COMMITTED, will
prevent the deadlock and allow a greater degree of concurrency.

If neither of these solutions is appropriate, the deadlock can be resolved by forcing the
SELECT statement to use a lower-compatibility lock, through the use of an UPDLOCK
or XLOCK table hint. This will block any other transactions attempting to acquire locks
of higher compatibility. This fix is specific to this particular type of deadlock due to the
usage of SERIALIZABLE isolation. Using UPDLOCK hints under READ COMMITTED may
result in deadlocks occurring more frequently under certain circumstances.

Cascading constraint deadlocks

Cascading constraint deadlocks are generally very similar to a Serializable Range Scan
deadlock, even though the isolation level under which the victim transaction was running
isn't SERIALIZABLE. To enforce cascading constraints, SQL Server has to traverse the
FOREIGN KEY hierarchy to ensure that orphaned child records are not left behind, as the
result of an UPDATE or DELETE operation to a parent table. To do this requires that the
transaction that modifies the parent table be isolated from the effects of other transac-
tions, in order to prevent a change that would violate FOREIGN KEY constraints, when
the cascade operation subsequently completes.

Under the default READ COMMITTED isolation, the database engine would acquire and
hold, for the duration of the transaction, Exclusive locks on all rows that had to be
changed. This blocks users from reading or changing the affected rows, but it doesn't
prevent another session from adding a new row into a child table for the parent key being
deleted. To prevent this from occurring, the database engine acquires and holds range
locks, which block the addition of new rows into the range affected by the cascading
operation. This is essentially an under-the-cover use of SERIALIZABLE isolation, during
the enforcement of the cascading constraint, but the isolation level for the batch is not
actually changed; only the type of locks used for the cascading operation are changed.

265

Chapter 7: Handling Deadlocks

When a deadlock occurs during a cascading operation, the first thing to look for is
whether or not non-clustered indexes exist for the FOREIGN KEY columns that are used
(see Chapter 5 for more on Indexing Foreign Keys). If appropriate indexes on the FOREIGN
KEY columns do not exist, the locks being taken to enforce the constraints will be held for
longer periods of time, increasing the likelihood of a deadlock between two operations, if
a lock conversion occurs.

Intra-query parallelism deadlocks

An intra-query parallelism deadlock occurs when a single session executes a query that
runs with parallelism, and deadlocks itself. Unlike other deadlocks in SQL Server, these
deadlocks may actually be caused by a bug in the SQL Server parallelism synchronization
code, rather than any problem with the database or application design. Since there are
risks associated with fixing some bugs, it may be that the bug is known and won't be fixed,
since it is possible to work around it by reducing the degree of parallelism for that the
query, using the MAXDOP query hint, or by adding or changing indexes to reduce the cost
of the query or make it more efficient.

The deadlock graph for a parallelism deadlock will have the same SPID for all of the
processes, and will have more than two processes in the process-list. The resource-
list will have threadpool, exchangeEvent, or both, listed as resources, but it won't
have lock resources associated with it. In addition, the deadlock graph for this type of
deadlock will be significantly longer than any other type of deadlock, depending on the
degree of parallelism and the number of nodes that existed in the execution plan.

Additional information about this specific type of deadlock can be found on Bart
Duncan's blog post, Today's Annoyingly-Unwieldy Term: "Intra-Query Parallel Thread
Deadlocks" (http://blogs.msdn.com/bartd/archive/2008/09/24/today-s-annoyingly-
unwieldy-term-intra-query-parallel-thread-deadlocks.aspx).

http://blogs.msdn.com/bartd/archive/2008/09/24/today-s-annoyingly-unwieldy-term-intra-query-parallel-thread-deadlocks.aspx
http://blogs.msdn.com/bartd/archive/2008/09/24/today-s-annoyingly-unwieldy-term-intra-query-parallel-thread-deadlocks.aspx

266

Chapter 7: Handling Deadlocks

Accessing objects in different orders

One of the easiest deadlocks to create, and consequently one of the easiest to prevent, is
caused by accessing objects in a database in different operation orders inside of T-SQL
code, inside of transactions, as shown in Listings 7.14 and 7.15.

BEGIN TRANSACTION

UPDATE TableA
SET Column1 = 1

SELECT Column2
FROM TableB

Listing 7.14: Transaction1 updates TableA then reads TableB.

BEGIN TRANSACTION

UPDATE TableB
SET Column2 = 1

SELECT Column1
FROM TableA

Listing 7.15: Transaction2 updates TableB then reads TableA.

Transaction1's UPDATE against TableA will result in an exclusive lock being held on the
table until the transaction completes. At the same time, Transaction2 runs an UPDATE
against TableB, which also results in an exclusive lock being held until the transaction
completes. After completing the UPDATE to TableA, Transaction1 tries to read TableB
but is blocked and unable to acquire the necessary shared lock, due to the exclusive lock
being held by Transaction2. After completing its UPDATE to TableB, Transaction2 reads
TableA and is also blocked, unable to acquire a shared lock due to the exclusive lock held
by Transaction1. Since the two transactions are both blocking each other, the result is a

267

Chapter 7: Handling Deadlocks

deadlock and the Lock Monitor will kill one of the two sessions, rolling back its trans-
action to allow the other to complete.

When using explicit transactions in code, it is important that objects are always accessed
in the same order, to prevent this type of deadlock from occurring.

Handling Deadlocks to Prevent Errors

In most cases, the same issues that cause severe blocking in the database, such as poor
database design, lack of indexing, poorly designed queries, inappropriate isolation level
and so on (all discussed in Chapter 6), are also the common causes of deadlocking. In most
cases, by fixing such issues, we can prevent deadlocks from occurring. Unfortunately,
by the time deadlocks become a problem, it may not be possible to make the necessary
design changes to correct them.

Therefore, an important part of application and database design is defensive
programming; a technique that anticipates and handles exceptions as a part of the general
code base for an application or database. Defensive programming to handle deadlock
exceptions can be implemented in two different ways:

•	 database-side, through the use of T-SQL TRY…CATCH blocks

•	 application-side, through the use of application TRY…CATCH blocks.

In either case, proper handling of the 1205 exception raised by SQL Server for the
deadlock victim can help avoid UnhandledException errors in the application and the
ensuing end-user phone calls to Help Desk or Support.

268

Chapter 7: Handling Deadlocks

T-SQL TRY…CATCH blocks

Depending on how an application is designed, and whether there is separation
between application code and database code, the simplest implementation of deadlock
error handling could be via the use of BEGIN TRY/CATCH blocks inside of the T-SQL
being executed.

This technique is most applicable in cases where an application calls stored procedures
for all of its data access. In such cases, changing the code in a stored procedure so that it
handles the deadlock exception doesn't require changes to application code, or recom-
piling and redistribution of the application. This greatly simplifies the implementation of
such changes.

The best way to deal with a deadlock, within your error handling code, will depend
on your application and its expected behavior in the event of a deadlock. One way of
handling the deadlock would be to retry the transaction a set number of times before
actually raising an exception back to the application for handling. The cross-locking
situation associated with a deadlock generally only lasts a very short duration, usually
timed in milliseconds so, more often than not, a subsequent attempt at executing the
T-SQL code selected as a victim will succeed, and there will be no need to raise any excep-
tions to the application.

However, it is possible that the deadlock will continue to occur, and we need to avoid
getting into an infinite loop, attempting repeatedly to execute the same failing code. To
prevent this, a variable is used to count down from a maximum number of retry attempts;
when zero is reached, an exception will be raised back to the application. This technique
is demonstrated in Listing 7.16.

DECLARE @retries INT ;
SET @retries = 4 ;

WHILE (@retries > 0)
 BEGIN

269

Chapter 7: Handling Deadlocks

 BEGIN TRY
 BEGIN TRANSACTION ;

 -- place sql code here
 SET @retries = 0 ;

 COMMIT TRANSACTION ;
 END TRY
 BEGIN CATCH
 -- Error is a deadlock
 IF (ERROR_NUMBER() = 1205)
 SET @retries = @retries - 1 ;

 -- Error is not a deadlock
 ELSE
 BEGIN
 DECLARE @ErrorMessage NVARCHAR(4000) ;
 DECLARE @ErrorSeverity INT ;
 DECLARE @ErrorState INT ;

 SELECT @ErrorMessage = ERROR_MESSAGE() ,
 @ErrorSeverity = ERROR_SEVERITY() ,
 @ErrorState = ERROR_STATE() ;

 -- Re-Raise the Error that caused the problem
 RAISERROR (@ErrorMessage, -- Message text.
 @ErrorSeverity, -- Severity.
 @ErrorState -- State.
) ;
 SET @retries = 0 ;
 END

 IF XACT_STATE() <> 0
 ROLLBACK TRANSACTION ;
 END CATCH ;
 END ;
GO

Listing 7.16: TRY…CATCH handling of deadlock exceptions, in T-SQL.

270

Chapter 7: Handling Deadlocks

Handling ADO.NET SqlExceptions in .NET code

While it is possible to handle deadlocks in SQL Server 2005 and 2008, using BEGIN TRY
and BEGIN CATCH blocks, the same functionality doesn't exist in SQL Server 2000, and
in any event it may not be acceptable to have the database engine retry the operation
automatically. In either case, the client application should be coded to handle the
deadlock exception that is raised by SQL Server.

There isn't much difference between the error handling in .NET and the error handling
in T-SQL. A TRY…CATCH block is used to execute the SQL call from the application and
catch any resulting exception raised by SQL Server. If the code should reattempt the
operation in the event of a deadlock, a maximum number of retries should be set by a
member variable that is decremented each time a deadlock is encountered.

The example in Listing 7.17 shows how to catch the SqlException in C#, but can be
used as a model to handle deadlocks in other languages as well.

int retries = 4;
while (retries > 0)
{
 try
 {
 // place sql code here
 retries = 0;
 }
 catch (SqlException exception)
 {
 // exception is a deadlock
 if (exception.Number == 1205)
 {
 // Delay processing to allow retry.
 Thread.Sleep(500);
 retries --;
 }
 // exception is not a deadlock
 else
 {

271

Chapter 7: Handling Deadlocks

 throw;
 }
 }
}

Listing 7.17: TRY…CATCH handling of deadlock exceptions, in C#.

Rather than retrying the operation, it may be desirable to log the exception in the
Windows Application Event Log, or perhaps display a MessageBox dialog and determine
whether or not to retry the operation, based on user input. These are two examples of
how handling the deadlock exception in the application code allows for more flexibility
over handling the deadlock in the database engine.

Controlling Deadlock Behavior with Deadlock
Priority

There are circumstances (for example, a critical report that performs a long running
SELECT that must complete even if it is the ideal deadlock victim) where it may be
preferable to specify which process will be chosen as the deadlock victim in the event
of a deadlock, rather than let SQL Server decide based purely on the cost of rollback. As
demonstrated in Listing 7.18, SQL Server offers the ability to set, at the session or batch
level, a deadlock priority using the SET DEADLOCK PRIORITY option.

-- Set a Low deadlock priority
SET DEADLOCK_PRIORITY LOW ;
GO

-- Set a High deadlock priority
SET DEADLOCK_PRIORITY HIGH ;
GO

-- Set a numeric deadlock priority
SET DEADLOCK_PRIORITY 2 ;

Listing 7.18: Setting deadlock priority.

272

Chapter 7: Handling Deadlocks

A process running in a batch or session with a low deadlock priority will be chosen as the
deadlock victim over one that is running with a higher deadlock priority. Like all other
SET options in SQL Server, the DEADLOCK PRIORITY is only in effect for the current
execution scope. If it is set inside of a stored procedure, then when the stored procedure
execution completes, the priority returns to the original priority of the calling execution
scope.

Note that SQL Server 2000 offers only two deadlock priorities; Low and Normal. This
allows the victim to be determined by setting its priority to Low. SQL Server 2005 and
2008 however, have three named deadlock priorities; Low, Normal, and High, as well
as a numeric range from -10 to +10, for fine-tuning the deadlock priority of different
operations.

The deadlock priority is set at execution time, and all users have the permission to set a
deadlock priority. This can be a problem if users have ad hoc query access to SQL Server,
and set their deadlock priority higher than other processes, in order to prevent their own
process from being selected as a victim.

Summary

This chapter has covered how to capture and interpret deadlock graph information in
SQL Server to troubleshoot deadlocking. The most common deadlocks have also been
covered to provide a foundation for troubleshooting other types of deadlocks that might
occur. Most often, deadlocks are the result of a design problem in the database or code
that can be fixed to prevent the deadlock from occurring. However, when changes to
the database are not possible to resolve the deadlock, adding appropriate error handling
in the application code reduces the impact caused by a deadlock occurring. The infor-
mation included in this chapter should allow rapid and efficient troubleshooting of most
deadlocks in SQL Server.

273

Chapter 8: Large or Full Transaction
Log

A transaction log is a physical file in which SQL Server stores a record of all the trans-
actions and data modifications performed on the database with which the log file is
associated. It is arguably the single most important component of a SQL Server database,
since the SQL Server engine uses it to ensure transaction durability (all valid, committed
data will be preserved) and transaction rollback (the effects of any partial, uncommitted
transactions, in the data file, can be "undone"), and the SQL Server DBA can use it to
restore a database to a previous point in time, in the event of a disaster.

Unfortunately, however, it is also one of the most misunderstood and mismanaged
components of SQL Server and the resulting problems are a frequent source of questions
and pleas for help in the online technical forums. This chapter will examine, briefly, how
the transaction log works, and then discuss the most common problems and forms of
mismanagement that lead to runaway growth of the transaction log, including:

•	 performing index maintenance

•	 operating a database in FULL recovery mode, without taking log backups

•	 long-running or uncommitted transactions that prevent space in the transaction log
from being reused.

Of course, if runaway growth is left unchecked your log file may expand until it eats up all
of your disk space, at which point you'll receive the infamous 9002 (transaction log full)
error, and the database will become read-only. We'll cover the correct ways to respond to
runaway log growth and the 9002 error, and also explain why commonly given advice to
truncate the log and shrink it is often dangerous.

274

Chapter 8: Large or Full Transaction Log

Finally, we'll cover strategies for ensuring smooth and predictable growth of your log file,
while minimizing problems associated with log fragmentation. In a busy database, a large
transaction log may be a simple fact of life and, managed properly, this is not necessarily a
bad thing, even if the log file space is unused a majority of the time.

Note that in order to focus on the topic of diagnosing and curing a runaway or full trans-
action log, we assume prior knowledge of related topics such as database recovery models.
If you need a refresher, a good source is Gail Shaw's Recovery Models article, at http://
www.sqlservercentral.com/articles/Administration/75461/.

How the Transaction Log Works

Whenever a change is made to a database object or the data it contains, not only is the
data or object updated in the data file, but also details of the change are recorded as a
sequence of log records in the transaction log. Each log record contains the details of a
specific change that has been made to the database, allowing that change to be performed
again as a part of REDO, or undone as a part of UNDO, during crash recovery. Other log
records contain details regarding the ID of the transaction that performed the change,
when that transaction started and ended, which pages were changed, the data changes
that were made, and so on.

SQL Server, like most transactional relational database systems, utilizes the Write-Ahead
Logging (WAL) protocol for all data modifications that occur in all databases.

The WAL protocol

This is described by Chunder Mohan in the paper, "ARIES: A Transaction Recovery Method

Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging"

(http://www.cs.berkeley.edu/~brewer/cs262/Aries.pdf).

http://www.sqlservercentral.com/articles/Administration/75461/
http://www.sqlservercentral.com/articles/Administration/75461/
http://www.cs.berkeley.edu/~brewer/cs262/Aries.pdf

275

Chapter 8: Large or Full Transaction Log

The WAL protocol dictates that before a data page is changed in non-volatile storage,
the information describing the change to the data page must first be written to stable
storage, allowing the change to be redone or undone in the event of a failure. SQL Server
implements this protocol by logging the information describing changes to database
objects and data pages using log records in the transaction log. Before a transaction that
changes data in the database completes, the log records describing the changes must
first be hardened to disk. Changes made to the data pages in the buffer cache are then
subsequently written out to permanent storage in the database files at checkpoint, or
by the Lazy Writer process when the instance is under memory pressure in the buffer
pool. Uncommitted changes can also be written to the data file by the CHECKPOINT or
Lazy Writer processes, as long as the log records describing those changes have been first
written to the transaction log file.

By always writing changes to the log file first, SQL Server has the basis for a mechanism
that can guarantee that the effects of all committed transactions will ultimately be
reflected in the data files, and that any data modifications on disk that originate from
incomplete transactions, i.e. those for which neither a COMMIT nor a ROLLBACK have
been issued, are ultimately not reflected in the data files.

This process of reconciling the contents of the data and log files occurs during the
database recovery process (sometimes called crash recovery), which is initiated automati-
cally whenever SQL Server restarts, or as part of the RESTORE command.

Any transactions that were committed, and therefore recorded in the transaction log,
before the service was interrupted, or before the time to which the database is being
manually restored, but are not reflected in the data files, will be "rolled forward" (redone).
Likewise, any data changes in the database that are associated with uncommitted transac-
tions will be "rolled back" (undone), by reading the relevant operations from the log file,
and performing the reverse physical operation on the data.

276

Chapter 8: Large or Full Transaction Log

In these ways, SQL Server ensures that either all the actions associated with a transaction
succeed as a unit, or that they all fail, allowing SQL Server to return the database to a
consistent state with regard to a particular point in time. As such, the transaction log
represents one of the fundamental means by which SQL Server ensures data consistency
and integrity during normal operation.

How SQL Server writes to the transaction log

The way in which SQL Server writes to the transaction log is basically different from
the way it writes to data files. Writes to data files occur in a random fashion, since data
changes affect random pages stored in the database. As such, the disk on which a data file
is stored is regularly subject to multiple seek operations, which reposition the head to the
correct disk cylinder in order to write the changes. Write performance can be improved
by writing to the data files in a striped fashion utilizing a proportional fill methodology,
where the amount of data written to a specific file is proportionate to the amount of free
space in the file, compared to the amount of free space in other files in the filegroup.

By contrast, SQL Server writes to the transaction log sequentially, one record after
another, and so a disk storing only a transaction log will rarely need to perform random
seek operations. Certain operations, such as transaction log backups, Change Data
Capture jobs and the replication log reader agent, will read the transaction log in a
"random" fashion, but writing operations are generally sequential and can be much faster.
This is why the recommended best practice is to segregate the log file from the data files
and store the former on physical disks that are configured for high-speed sequential
writes, as discussed in Chapter 2, Disk I/O Configuration.

The fact that writes are always sequential also means that SQL Server will only ever
write to one transaction log file at a time. There is therefore no advantage, in terms of
log writing performance, to having multiple transaction log files. The only reason to have
more than one log file is if space considerations dictate the need for multiple log files, on
different disks, in order to achieve the necessary log size for a database.

277

Chapter 8: Large or Full Transaction Log

Understanding log truncation

Log truncation is the mechanism through which SQL Server marks the space inside
of the transaction log as available for reuse by the database. The allocated space inside
of a transaction log file is internally divided into smaller segments known as virtual
log files (VLFs), and the process of log truncation is simply the act of marking a VLF as
"inactive" and so making the space in that VLF available for reuse. It does not, as the term
"truncation" might suggest, reduce the physical size of the transaction log.

A VLF can only be considered inactive if it contains no part of what is termed the active
log. A full discussion of transaction log architecture is out of scope but, briefly, any log
record relating to an open transaction is required for possible rollback and so must
be part of the active log. In addition, there are various other activities in the database,
including replication, mirroring and CDC (Change Data Capture) that use the transaction
log and need transaction log records to remain around until they have been processed.
These records will also be part of the active log.

As discussed previously, transaction log files are sequential files and each log record
inserted into the log file is stamped with a Logical Sequence Number (LSN). The log
record with the lowest LSN (MinLSN) is defined as the oldest log record that may still be
required for some database operation or activity, and this record marks the start of the
active log. The log record with the highest LSN (i.e. the most recent record added) marks
the end of the active log.

A log record is no longer part of the active log if each of the following three conditions
is met:

1. It relates to a transaction that is committed, and so is no longer required for rollback.

2. It is no longer required by any other database process, including a transaction log
backup when using FULL or BULK LOGGED recovery models.

3. It is older (i.e. has a lower LSN) than the MinLSN record.

278

Chapter 8: Large or Full Transaction Log

Any VLF that contains no part of the active log is inactive and can be truncated, although
the point at which this truncation occurs depends on the recovery model in use. In the
SIMPLE recovery model, truncation can occur immediately upon CHECKPOINT; cached
data pages are flushed to disk (after first writing the transaction details) and any VLFs that
contain no part of the active log are truncated.

In the FULL (or BULK LOGGED) recovery model, once a full backup of the database has
been taken, the inactive portion of the log is not marked as reusable on CHECKPOINT,
because it is necessary to maintain a complete LSN chain, and so allow point-in-time
recovery of the database. Truncation can only occur upon a BACKUP LOG operation. In
this case, once the log backup has backed up the log, it marks any VLFs that are no longer
necessary as inactive and hence reusable.

Later in the chapter, in the section entitled Lack of log space reuse, we'll discuss factors,
such as uncommitted or long-running transactions, which can prevent space reuse and
cause the log file to grow rapidly in size.

Sizing and growing the log

Whenever a log file needs to grow, and additional space is allocated, this space is divided
evenly into VLFs, based on the amount of space that is being allocated. When additional
space is allocated in small blocks, for example using a default ten percent auto-growth
setting, the resulting transaction log may have a large number of small VLFs. When
additional space is allocated in larger sizes, for example when initially sizing the log to 16
GB in a single operation, the resulting transaction log has a small number of larger VLFs.

279

Chapter 8: Large or Full Transaction Log

Transaction Log VLFs – too many or too few?

SQL Server MVP Kimberly Tripp discusses the impact of VLF sizes and provides guidance for how to

properly manage VLF size in her blog post, "Transaction Log VLFs – too many or too few?" (http://

www.sqlskills.com/BLOGS/KIMBERLY/post/Transaction-Log-VLFs-too-many-or-too-few.

aspx).

A very high number of small VLFs, known as log file fragmentation, can have a consid-
erable impact on performance, especially for crash recovery, restores and backups,
particularly log backups; in other words, operations that read the log file. Conversely, if
the database has only a few VLFs which are large in size, this can lead to problems related
to rapid log growth in cases where truncation is delayed, for some reason (see the Lack
of log space reuse section). For example, let's assume that each VLF is 1 GB in size. If all
VLFs within the log file contain some part of the active log then the log file will grow in
1 GB steps until some of the existing VLFs cease to contain any part of the active log, at
which point it can be truncated by the next log backup if using FULL recovery, or the next
CHECKPOINT operation in SIMPLE recovery. As such, it's important that the log is sized
appropriately initially, and grown in appropriately-sized steps, to minimize fragmentation
but also avoid tying up large portions of the log for long periods.

There is also a second reason why it is very important to size the log appropriately and
grow it in a very controlled fashion: for log files, each growth event is a relatively expensive
operation. It is natural that both data and log files will grow in size over time, but whereas
the process of adding new data files and expanding existing data files can be optimized to
some degree by enabling instant file initialization, the same is not true for log files. When a
data file is created or grows, the space allocated on disk has to be initialized, or zeroed out,
by SQL Server to remove the remnants of any previous data. SQL Server 2005 introduced
a new feature, instant file initialization, to allow the data files to allocate space on disk
without having to fill the space with zeros. This feature however, does not apply to log
files, which still require initialization and zeroing whenever space is allocated.

http://www.sqlskills.com/BLOGS/KIMBERLY/post/Transaction-Log-VLFs-too-many-or-too-few.aspx
http://www.sqlskills.com/BLOGS/KIMBERLY/post/Transaction-Log-VLFs-too-many-or-too-few.aspx
http://www.sqlskills.com/BLOGS/KIMBERLY/post/Transaction-Log-VLFs-too-many-or-too-few.aspx

280

Chapter 8: Large or Full Transaction Log

The transaction log, when properly managed, works in a circular fashion, and the starting
point of the transactions that must be processed as a part of crash recovery is maintained
in the database boot page. However, nothing tracks the position of the last log record
requiring processing during crash recovery, so the log records are stamped with a parity
bit that gets flipped when the transaction log reaches the end of the file and wraps back
around to the beginning of the file. To prevent the possibility of introducing corruption
by processing random data that existed previously on disk and matches the parity bit for
the existing log records, the space being allocated must be zeroed out whenever the log
file grows.

Why can't the transaction log use instant initialization?

For further information about transaction log zeroing, see Paul Randal's blog post, "Search Engine Q&A

#24: Why can't the transaction log use instant initialization?" (http://sqlskills.com/BLOGS/PAUL/

post/Search-Engine-QA-24-Why-cant-the-transaction-log-use-instant-initialization.

aspx).

Diagnosing a Runaway Transaction Log

If you are experiencing uncontrolled growth of the transaction log, it is due either to an
incredibly high rate of log activity, or to factors that are preventing space in the log file
from being reused, or both.

If the growth is due primarily to excessive log activity, you need to investigate whether
there might be log activity that could be avoided, for example, by adjusting how you carry
out bulk data and index maintenance operations, so that these operations are not fully
logged (i.e. the BULK LOGGED recovery model is used for these operations). However,
any bulk logged operation will immediately prevent point-in-time recovery to any point
within a log file that contains records relating to the minimally logged operations. If this
is not acceptable, you must simply accept a large log as a fact, and plan its growth and

http://sqlskills.com/BLOGS/PAUL/post/Search-Engine-QA-24-Why-cant-the-transaction-log-use-instant-initialization.aspx
http://sqlskills.com/BLOGS/PAUL/post/Search-Engine-QA-24-Why-cant-the-transaction-log-use-instant-initialization.aspx
http://sqlskills.com/BLOGS/PAUL/post/Search-Engine-QA-24-Why-cant-the-transaction-log-use-instant-initialization.aspx

281

Chapter 8: Large or Full Transaction Log

management (such as frequency of log backups) accordingly, as described in the Proper
Log Management section later in this chapter.

If the growth is due to a lack of log space reuse, you need to find out what is preventing
this reuse and take steps to correct the issue.

Excessive logging: index maintenance operations

Index maintenance operations are the second most common cause of transaction log
usage and growth, especially in databases using the FULL recovery model. The amount of
log space required to perform index maintenance depends on the following factors:

•	 rebuild or reorganize – index rebuilds generally use a lot more space in the log

•	 recovery model – if the risks to point-in-time recovery are understood and acceptable,
then index rebuilds can be minimally logged by temporarily switching the database
to run in BULK LOGGED recovery mode. Index reorganization, however, is always
fully logged.

Index rebuilds

Rebuilding an index offline, using ALTER INDEX REBUILD (or the deprecated
DBCC DBREINDEX in SQL Server 2000) drops the target index and rebuilds it from
scratch (online index rebuilds do not drop the existing index until the end of the
rebuild operation).

Logging and online index rebuilds

Online Index Rebuild is a fully-logged operation on SQL Server 2008 and later, whereas it is minimally

logged in SQL Server 2005. Therefore, performing such operations in later SQL Server versions will

require substantially more transaction log space. See: http://support.microsoft.com/kb/2407439.

http://support.microsoft.com/kb/2407439

282

Chapter 8: Large or Full Transaction Log

In the FULL recovery model, index rebuilds can be a very resource intensive operation,
requiring a lot of space in the transaction log. In the SIMPLE or BULK LOGGED recovery
model, rebuilding an index is a minimally logged operation, meaning that only the alloca-
tions are logged, and not the actual pages changed, therefore reducing the amount of log
space required by the operation.

If you switch to the SIMPLE model to perform an index rebuild, the LSN chain will
be automatically broken. You'll only be able to recover your database to a point of
time contained in the previous transaction log backup. To restart the chain, you'll
need to switch back to the FULL model and immediately take a full or differential
database backup.

If you switch to the BULK LOGGED model, the LSN chain is always maintained but there
are still implications for your ability to perform point-in-time restores, since a log backup
that contains a minimally logged operation can't be used to recover to a point in time. In
other words, you won't be able to use the STOPAT option when restoring a log file that
contains minimally logged operations. It is still possible to restore the entire transaction
log backup to roll the database forward, and it is still possible to restore to a point in
time in a subsequent log file, which doesn't contain any minimally logged operations.
However, in the event of an application bug, or a user change that causes data to be
deleted, around the same period as the minimally logged operation, it will not be possible
to stop at a specific point in time in the log in which these changes are recorded, in order
to recover the data that was deleted.

If the ability to perform a point-in-time recovery is paramount for a database, the BULK
LOGGED recovery model should not be used for index rebuilds or any other minimally
logged operation, unless it can be done at a time when there is no concurrent user activity
in the database.

If the BULK LOGGED model is used, steps should be taken to minimize the time period
where point-in-time restore is unavailable, and so minimize exposure to data loss. To do
this, take a log backup in FULL mode, switch to BULK LOGGED, perform the index rebuild,
then switch back to FULL and take another log backup.

283

Chapter 8: Large or Full Transaction Log

A final important point to note is that an ALTER INDEX REBUILD operation occurs in a
single transaction. If the index is large, this could represent a long-running transaction
that will prevent space reuse in the log for its duration. This means that, even if you
rebuild an index in SIMPLE mode, where you might think that the log should remain
small since it is auto-truncated during a checkpoint operation, the log file can expand
rapidly during the operation.

Index reorganization

In contrast to rebuilding an index, reorganizing (defragmenting) an index, using ALTER
INDEX REORGANIZE (or the deprecated DBCC INDEXDEFRAG in SQL Server 2000) is
always a fully-logged operation, regardless of the recovery model, and so the actual
page changes are always logged. However, index reorganizations generally require less
log space than an index rebuild, although this is a function of the amount of fragmen-
tation that exists in the index; a heavily fragmented index will require more log space to
reorganize than a minimally fragmented one.

Furthermore, the ALTER INDEX REORGANIZE operation is accomplished using multiple,
shorter transactions. Therefore, when performed in conjunction with frequent log
backups (or when working in SIMPLE mode), log space can be made available for reuse
during the operation, so minimizing the size requirements for the transaction log during
the operation.

For example, rebuilding a 20 GB index can require more than 20 GB of space for the
rebuild operation because it occurs in a single transaction. However, reorganizing a 20 GB
index requires much less log space because each page allocation change in the reorgani-
zation is a separate transaction, and so the log records can be truncated with frequent log
backups, allowing the log space to be reused.

284

Chapter 8: Large or Full Transaction Log

Strategies for controlling excessive logging

If your organization has zero tolerance to any potential data loss, then you'll have no
choice but to perform index rebuild operations in the FULL recovery model, and plan
your log size and growth appropriately. If your Service Level Agreements (SLAs) and
Operational Level Agreements (OLAs) allow some potential for data loss, then switching
to BULK LOGGED recovery at the start of index rebuild can minimize the amount of space
required to rebuild the index. However, do so in a way that minimizes exposure to data
loss, as discussed earlier.

If your database is in FULL recovery, and is subject to frequent index reorganization
operations, then you might need to consider increasing the frequency with which you
take log backups, especially during the time that the indexes are being rebuilt, in order to
control the size of the log. Regardless of the frequency of log backups, the log will be at
least as large as the largest index being rebuilt.

Regardless of the recovery model in use, one can minimize the impact of index mainte-
nance operations on the transaction log by reorganizing rather than rebuilding, if
possible, and by only maintaining those indexes that really need it.

Microsoft has provided guidelines that can be used for most, but not all, environments
for determining when to rebuild an index versus when to reorganize it to minimize the
impact of index maintenance operations. These guidelines can be found in the Books
Online Topic, Reorganizing and Rebuilding Indexes (http://technet.microsoft.com/
en-us/library/ms189858.aspx). They state that for fragmentation levels greater than 5
percent but less than or equal to 30 percent, you should reorganize the index, and for
fragmentation levels greater than 30 percent, you should rebuild it.

It's also worth noting that rebuilding small indexes is generally not worthwhile. The
commonly cited threshold is around 1,000 pages. These values are based on recommen-
dations made by Paul Randal while he managed the storage engine development team
at Microsoft, and which are documented in Books Online. Note, though, that this is
guideline advice only and may not be appropriate for all environments, as discussed by

http://technet.microsoft.com/en-us/library/ms189858.aspx
http://technet.microsoft.com/en-us/library/ms189858.aspx

285

Chapter 8: Large or Full Transaction Log

Paul in his blog post, Where do the Books Online index fragmentation thresholds come from?
(http://www.sqlskills.com/BLOGS/PAUL/post/Where-do-the-Books-Online-index-
fragmentation-thresholds-come-from.aspx).

If you use the SSMS Maintenance Plans Wizard for index maintenance, it is an all-or-
nothing process: you either rebuild or reorganize all indexes in your database (and all
databases in the maintenance plan) or you rebuild none of them. A better approach may
be to use the sys.dm_db_index_physical_stats DMV to investigate fragmentation
and so determine a rebuild/reorganize strategy based on need.

Ola Hallengren's free maintenance scripts

A comprehensive set of free maintenance scripts is made available online by Ola Hallengren. Ola's scripts

demonstrate how to use sys.dm_db_index_physical_stats to perform index analysis for intel-

ligent maintenance, and can be used as a replacement for Database Maintenance Plans created by the

wizards in SSMS (http://ola.hallengren.com).

Lack of log space reuse

If you suspect log growth is being caused by the log space not being reused, your first
job is to find out what's preventing reuse. Start by querying sys.databases, as shown
in Listing 8.1, and see what the value of the column log_reuse_wait_desc is for the
database mentioned in the error message.

DECLARE @DatabaseName VARCHAR(50) ;
 SET @DatabaseName = 'VeryImportant'

 SELECT name ,
 recovery_model_desc ,
 log_reuse_wait_desc
 FROM sys.databases
 WHERE name = @DatabaseName

Listing 8.1: Examining the value of the log_reuse_wait_desc column.

http://www.sqlskills.com/BLOGS/PAUL/post/Where-do-the-Books-Online-index-fragmentation-thresholds-come-from.aspx
http://www.sqlskills.com/BLOGS/PAUL/post/Where-do-the-Books-Online-index-fragmentation-thresholds-come-from.aspx
http://ola.hallengren.com

286

Chapter 8: Large or Full Transaction Log

The value of the log_reuse_wait_desc column will show the current reason why log
space cannot be reused. It is possible more than one thing is preventing log reuse. The
sys.databases view will only show one of the reasons. It is therefore possible to resolve
one problem, query sys.databases again and see a different log_reuse_wait reason.

The possible values for log_reuse_wait_desc are listed in Books Online (http://
msdn.microsoft.com/en-us/library/ms178534.aspx), but we'll cover the most common
causes here, and explain how to safely ensure that space can start to get reused.

FULL recovery model without log backups

If the value returned for log_reuse_wait_desc, from the previous sys.databases
query, is Log Backup, then you are suffering from one of the most common causes of
a full or large transaction log, namely operating a database in the FULL recovery model
(or less common, but still possible, the BULK_LOGGED recovery model), without taking
transaction log backups.

It varies, depending on the edition of SQL Server that is installed, but the model database
is configured in FULL recovery mode at installation, for many editions. Since the model
database is a template database that is used to create new databases in SQL Server, this
configuration is inherited from model, by the new database.

Using the FULL recovery model is a recommended practice for most production database
environments, since it allows for point-in-time recovery of the database, minimizing data
loss in the event of a disaster. However, a common mistake is then to adopt a backup
strategy consisting entirely of full (and possibly differential) database backups without
taking frequent transaction log backups. There are two big problems with this strategy:

1. Taking full database backups only protects the contents of the data file, not the log
file. The only way to properly protect the data that has changed since the last full or
differential backup, which will be required for point-in-time restores, is to perform a
log backup.

http://msdn.microsoft.com/en-us/library/ms178534.aspx
http://msdn.microsoft.com/en-us/library/ms178534.aspx

287

Chapter 8: Large or Full Transaction Log

2. Full database backups do not truncate the transaction log. Only a log backup will
cause the log file to be truncated. Without the latter, space in the log file will never be
marked for reuse, and the log file will constantly grow in size.

In order to perform a point-in-time recovery and control the size of the log, transaction
log backups must be taken in conjunction with full and/or differential database backups.

If you do discover that a lack of log backups is the cause of your log growth problems,
the first thing to do is to verify that the database in question really does need the ability
to recover to a point in time during a restore, and therefore needs to be operating in
FULL recovery. If it doesn't, then switch to using the SIMPLE recovery model, where the
inactive portion of the transaction log is automatically marked as reusable, at checkpoint.

If the database does need to operate in the FULL recovery model, then start taking
log backups. The frequency of the transaction log backups depends on a number of
factors such as the frequency of data changes, and on SLAs for acceptable data loss in the
event of a crash. Also, you should take steps to ensure that the log growth is controlled
and predictable in future, as described in the Proper Log Management section, later in
the chapter.

Active transactions

If the value returned for log_reuse_wait_desc is ACTIVE_TRANSACTION, then
you are suffering from the second most common cause of a full or large transaction
log in SQL Server: long-running or uncommitted transactions. As discussed in the
Understanding log truncation section of this chapter, a VLF inside the transaction log
can only be truncated when it contains no part of the active log, and if the database is
using the FULL or BULK LOGGED recovery models, this truncation only occurs when the
transactions contained in the VLF have been committed and backed up. Long-running
transactions in a database delay truncation of the VLFs that contain the log records
generated after the start of the transaction, including the log records generated by
changes to data in the database by other sessions, even when those changes have been

288

Chapter 8: Large or Full Transaction Log

committed. Additionally, the amount of space required by a long-running transaction
will be increased by space reservations for "compensation log records," which are the log
records that would be generated if the transaction were rolled back in the system. This
reservation is required to ensure that the transaction can be reverted successfully without
running out of log space during the rollback.

Another common cause of the Active Transaction value for log_reuse_wait_desc
is the presence of "orphaned" explicit transactions that somehow never got committed.
Applications that allow for user input inside a transaction are especially prone to this kind
of problem.

Long-running transactions

One of the most common operations that results in a long-running transaction, which
also generates large numbers of log records in a database is archiving or purging of
data from a database. Data retention tends to be an afterthought in database design,
usually being considered after the database has been active for a period of time and is
approaching the capacity limits of the available storage on a server.

Usually, when the need to archive data arises, the first reaction is to remove the unneeded
data from the database using a single DELETE statement, as shown in Listing 8.2.

DELETE ExampleTable
WHERE DateTimeCol < GETDATE() - 60

Listing 8.2: Bulk data deletion.

Depending on the number of rows that exist in the date range to be deleted, this can
easily become a long-running transaction that will cause transaction log growth issues,
even when the database is using the SIMPLE recovery model. The problem can be exacer-
bated by the presence of cascading FOREIGN KEY constraints or auditing triggers. If the
table from which data is being deleted is referenced by other tables, using FOREIGN KEY

289

Chapter 8: Large or Full Transaction Log

constraints that are designed to CASCADE ON DELETE, then details of the rows that are
deleted through the cascading constraint will also be logged. If the table has a DELETE
trigger on it, for auditing data changes, the operations being performed during the
triggers execution will also be logged.

To minimize the impact on the transaction log, the data purge operation should be
broken down into a number of shorter, individual transactions. There are a number
of ways to break a long-running transaction down into smaller batches. If cascading
constraints or a DELETE trigger exist for a table, we can perform the DELETE operation
inside of a loop, to delete one day of data at a time, as shown in Listing 8.3.

DECLARE @StopDate DATETIME ,
 @PurgeDate DATETIME
SELECT @PurgeDate = DATEADD(DAY, DATEDIFF(DAY, 0, MIN(DateTimeCol)), 0) ,
 @StopDate = DATEADD(DAY, DATEDIFF(DAY, 0, GETDATE()) - 60, 0)
FROM ExampleTable

WHILE @PurgeDate < @StopDate
 BEGIN
 DELETE ExampleTable
 WHERE DateTimeCol < @PurgeDate
 SELECT @PurgeDate = DATEADD(DAY, 1, @PurgeDate)
 END

Listing 8.3: Breaking down data purges into smaller transactions.

Using this model for purging data, the duration of each DELETE transaction is only the
time required to delete a single day's data from the table, plus the time required for any
triggers or cascading constraints to perform their operations. If the database uses the
SIMPLE recovery model, the log records generated by each daily purge will be truncated
the next time checkpoint occurs. If the database uses the FULL or BULK LOGGED recovery
model, the log records generated by each daily purge will be truncated after the next log
backup that occurs for the database, if no part of the active log exists inside the VLFs
affected by the purge.

290

Chapter 8: Large or Full Transaction Log

When cascading constraints or auditing triggers are not a factor in the process, a different
method can be used to purge the data from the table while minimizing the transaction
duration. Instead of performing a single day DELETE operation, which can affect more or
less data depending on the number of rows that exist for a specific date, the TOP operator
can be used inside the DELETE statement to limit the number of rows affected by each
loop of the operation. By capturing into a variable the number of rows affected by the
DELETE operation, using @@ROWCOUNT, the operation can continue to purge data from
the table in small batches, until the value of @@ROWCOUNT is less than the number of rows
specified in the TOP clause of the DELETE statement, as shown in Listing 8.4.

This method only works when triggers and cascading constraints aren't being used
because, when they are, the result of @@ROWCOUNT will not be the actual rows deleted
from the base table, but instead the number of rows that are affected by the trigger
execution or through enforcing the cascading constraint.

DECLARE @Criteria DATETIME ,
 @RowCount INT
SELECT @Criteria = GETDATE() - 60 ,
 @RowCount = 10000
WHILE @RowCount = 10000
 BEGIN
 DELETE TOP (10000)
 FROM ExampleTable
 WHERE DateTimeCol < @Criteria
 SELECT @RowCount = @@ROWCOUNT
 END

Listing 8.4: Using the TOP operator inside the DELETE statement for data purges.

These methods can be used in any edition of SQL Server 2000, 2005, and 2008 to
minimize transaction duration during data purge operations.

However, if the database is SQL Server 2005 or 2008 Enterprise Edition, and the data
purging process will be run regularly, then an even better way to purge the data is to
partition the table using a sliding window partition on the column being used to delete

291

Chapter 8: Large or Full Transaction Log

the data. This will have even less impact on the transaction log, since the partition
containing the data can be switched out of the table and truncated, which is a metadata-
only operation.

Managing archiving

It is well outside the scope of this chapter to delve into full, automated archiving scheme, but a possible

archiving process could involve partitioning, and duplicate schemas between tables, allowing a parti-

tion to be switched out of one table and into another one, minimizing the active portion of data in

the main OLTP table, but reducing the archiving process to being metadata changes only. Kimberley

Tripp has produced a detailed white paper called "Partitioned Tables and Indexes in SQL Server 2005,"

which also covers the sliding window technique, (see http://msdn.microsoft.com/en-us/library/

ms345146(v=sql.90).aspx).

Uncommitted transactions

By default, SQL Server wraps any data modification statement in an implicit transaction
to ensure that, in the event of a failure, the changes already made at the point of failure
can all be rolled back, returning the data to a consistent state. If the changes succeed, the
implicit transaction is committed to the database. In contrast to implicit transactions,
which occur automatically, explicit transactions are created in code to wrap multiple
changes into a single transaction, ensuring that all the changes can be undone by issuing
a ROLLBACK command, or persisted by issuing a COMMIT for the transaction.

When used properly, explicit transactions can ensure that data modifications that span
multiple tables complete successfully as a unit, or not at all. When used incorrectly,
however, orphaned transactions can be left active in the database, preventing truncation
of the transaction log, and so resulting in the transaction log growing or filling up. There
are a number of cases that can result in an orphaned transaction in SQL Server, and it's
beyond the scope of this chapter to investigate them in full detail.

http://msdn.microsoft.com/en-us/library/ms345146(v=sql.90).aspx
http://msdn.microsoft.com/en-us/library/ms345146(v=sql.90).aspx

292

Chapter 8: Large or Full Transaction Log

However, some of the most common causes are:

•	 application timeouts caused by a long-running transaction

•	 incorrect error handling in TSQL or application code

•	 failure during trigger execution

•	 linked server failures resulting in orphaned distributed transactions

•	 no corresponding COMMIT/ROLLBACK statement to a BEGIN TRANSACTION command.

Once a transaction is created it will continue to remain active until a COMMIT or
ROLLBACK statement is issued on the connection that created the transaction, or the
connection disconnects from the SQL Server. It is critical that you understand this last
point when troubleshooting orphaned transactions, since modern applications generally
utilize connection pooling, keeping connections to the SQL Server in a pool for reuse
by the application, even when the application code calls the Close() method on the
connection. Even though the connection is reset before being added or returned to the
application's connection pool, open transactions continue to exist in the database if they
have not been properly terminated.

Identifying the active transaction

The fastest way to identify whether transaction log growth is being caused by
an orphaned (or just long-running) transaction is to use DBCC OPENTRAN. This
command can accept the database name as an input parameter in the format DBCC
OPENTRAN(DatabaseName) where DatabaseName is the name of the database to check
for open transactions.

293

Chapter 8: Large or Full Transaction Log

If an active transaction exists in the database, this command will output information
similar to the following:

Transaction information for database 'TestDatabase'.

Oldest active transaction:
 SPID (server process ID): 105
 UID (user ID) : -1
 Name : user_transaction
 LSN : (4212:44992:2)
 Start time : Mar 26 2010 2:37:31:907AM
 SID : 0x010500000000000515000000c5dc918918d95a068b7acf204f730000
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

Only the oldest active transaction is reported by DBCC OPENTRAN, and the primary
indicator of whether or not the active transaction is problematic is the Start Time.
Generally, uncommitted transactions that become problematic with regard to transaction
log growth have been open for a long period of time.

The other important piece of information is the SPID (server process ID), which is the
session that created the open transaction. We can use the SPID to determine whether the
transaction is actually an orphaned transaction or just a long-running one, by querying
the sysprocesses view (in SQL Server 2000) or the sys.dm_exec_sessions and
sys.dm_exec_connections DMVs in SQL Server 2005 and 2008, as shown in Listing
8.5. Note that the sysprocesses view is still available in SQL Server 2005 and 2008 for
backwards compatibility.

-- SQL 2000 sysprocess query
SELECT spid ,
 status ,
 hostname ,
 program_name ,
 loginame ,
 login_time ,
 last_batch ,
 (SELECT text

294

Chapter 8: Large or Full Transaction Log

 FROM ::
 fn_get_sql(sql_handle)
) AS [sql_text]
FROM sysprocesses
WHERE spid = <SPID>

-- SQL 2005/2008 DMV query
SELECT s.session_id ,
 s.status ,
 s.host_name ,
 s.program_name ,
 s.login_name ,
 s.login_time ,
 s.last_request_start_time ,
 s.last_request_end_time ,
 t.text
FROM sys.dm_exec_sessions s
 JOIN sys.dm_exec_connections c ON s.session_id = c.session_id
 CROSS APPLY sys.dm_exec_sql_text(c.most_recent_sql_handle) t
WHERE s.session_id = <SPID>

Listing 8.5: Identifying orphaned or long-running transactions using the DMVs.

If the SPID is in a runnable, running, or suspended status, then it is likely that the source
of the problem is a long-running, rather than orphaned, transaction. However, further
investigation of the command text will be needed to make the final determination. It is
possible that an earlier transaction failed and the connection was reset, for use under
connection pooling, and that the currently executing statement is not associated with the
open transaction.

In SQL Server 2005 and 2008, the sys.dm_tran_session_transactions and sys.
dm_tran_database_transactions DMVs can be used to gather information specific
to the open transaction including the transaction start time, number of log records used
by the open transaction, as well as the bytes of log space used, as shown in Listing 8.6.

295

Chapter 8: Large or Full Transaction Log

SELECT st.session_id ,
 st.is_user_transaction ,
 dt.database_transaction_begin_time ,
 dt.database_transaction_log_record_count ,
 dt.database_transaction_log_bytes_used
FROM sys.dm_tran_session_transactions st
 JOIN sys.dm_tran_database_transactions dt
 ON st.transaction_id = dt.transaction_id
 AND dt.database_id = DB_ID('master')
WHERE st.session_id = <SPID>

Listing 8.6: Gathering information about the open transaction.

If the open transaction was created before the last request start time, it is likely to be an
orphaned transaction.

Unless the application was specifically designed to check for, and handle, orphaned
transactions, the only way to clear the transaction is to KILL the session which will cause
the transaction to roll back as the connection terminates, allowing the space in the log
be made available for reuse, during the next log backup. However, the ramifications of
performing the rollback must be understood.

Other possible causes of log growth

In addition to those previously identified, there are a few other problems that may
prevent reuse of space in the log, and so lead to excessive log growth.

Why is my transaction log full?

For further discussion on these issues, please see Gail Shaw's article, "Why is my transaction log full?" at

http://www.sqlservercentral.com/articles/Transaction+Log/72488/.

http://www.sqlservercentral.com/articles/Transaction+Log/72488/

296

Chapter 8: Large or Full Transaction Log

Replication

During transactional replication, it is the job of the log reader agent to read the trans-
action log, looking for log records that are associated with changes that need to be repli-
cated to subscribers (i.e. are "pending replication"). Once the changes are replicated, it
marks the log entry as "replicated." Slow or delayed log reader activity can lead to records
being left as "pending replication" for long periods, during which time they will remain
part of the active log, and so the parent VLF cannot be truncated. A similar problem exists
for log records required by the Change Data Capture (CDC) feature.

In either case, the log_reuse_wait_desc column of sys.databases will show
REPLICATION as the root cause of the problem. The problem will also reveal itself in
the form of bottlenecks in the throughput performance of the transaction log disk
array, specifically, delayed read operations under concurrent write loads. As explained in
Chapter 2, writes to the log file occur sequentially, but read operations associated with
the log reader agent and log backups read the file sequentially as well. Having sequential
reads and writes occurring at the same time can, depending on the level of activity in the
system and the size of the active portion of the log, result in random I/O activity as the
disk heads have to change position to read from the beginning of the active log and then
write to the end of the active log. The disk latency counters, explained in Chapter 2, can
be used to troubleshoot this type of problem.

The first step in troubleshooting these REPLICATION wait issues is to verify that the log
reader SQL Agent jobs are actually running. If they are not, attempt to start them. If this
fails, you'll need to find out why.

If the jobs are running but the REPLICATION waits persist, and the transaction log is
growing rapidly, you need to find some way to get the relevant log entries marked as
"replicated" so that space in their parent VLFs can be reused. Unfortunately, there is no
perfect solution that will avoid side effects to replication or CDC in the environment, but
you could try one of the solutions below.

297

Chapter 8: Large or Full Transaction Log

•	 In the case of transactional replication, the sp_repldone command can be used
to mark all of the log records currently waiting on the log reader to process them as
processed, but this will require re-initialization of the subscribers, using a snapshot, to
resynchronize the replication topology. With CDC, this command will not resolve the
problem with transaction log growth.

•	 Disabling CDC or replication and performing a manual resynchronization of the data.
Once CDC or replication has been removed, the pending replication log records in the
transaction log will no longer be pending and can be cleared by the next log backup
in FULL or BULK LOGGED recovery or CHECKPOINT operation in SIMPLE recovery.
However, the trade-off is that the environment will require manual synchronization of
the data for CDC, or it will require re-initialization of the subscribers for replication, if
these features are added back to the database.

Remember that simply switching to the SIMPLE recovery model, in the hope of
truncating the log, will not work since replication and CDC are both supported using
SIMPLE recovery, and the log records will continue to be required until the log reader
SQL Agent process harvests them.

Snapshot Replication schema change issue

There is a known issue with Snapshot Replication in SQL Server 2005 that causes log entries that are

marked for replication of schema changes not to be unmarked when the changes are replicated. This

problem is explained in the following blog post that also explains how to work around the issue by using

sp_repldone: "Size of the Transaction Log Increasing and cannot be truncated or Shrinked due to

Snapshot Replication" (http://blogs.msdn.com/b/sqlserverfaq/archive/2009/06/01/size-of-the-

transaction-log-increasing-and-cannot-be-truncated-or-shrinked-due-to-snapshot-

replication.aspx).

http://blogs.msdn.com/b/sqlserverfaq/archive/2009/06/01/size-of-the-transaction-log-increasing-and-cannot-be-truncated-or-shrinked-due-to-snapshot-replication.aspx
http://blogs.msdn.com/b/sqlserverfaq/archive/2009/06/01/size-of-the-transaction-log-increasing-and-cannot-be-truncated-or-shrinked-due-to-snapshot-replication.aspx
http://blogs.msdn.com/b/sqlserverfaq/archive/2009/06/01/size-of-the-transaction-log-increasing-and-cannot-be-truncated-or-shrinked-due-to-snapshot-replication.aspx

298

Chapter 8: Large or Full Transaction Log

ACTIVE_BACKUP_OR_RESTORE

When the log_reuse_wait_desc column shows ACTIVE_BACKUP_OR_RESTORE as
the current wait description, a long-running full or differential backup of the database
is the most likely cause of the log reuse problems. During a full or differential backup of
the database, the backup process delays log truncation so that the active portion of the
transaction log can be included as a part of the full backup. This allows changes made to
database pages during the backup operation to be undone when the backup is restored
WITH RECOVERY, to bring the database to a consistent state. If such waits are causing
persistent problems, you'll need to investigate ways to optimize the backup process, such
as by improving the performance of the backups (via backup compression) or improving
the performance of the underlying disk I/O system.

DATABASE_MIRRORING

When the log_reuse_wait_desc column shows DATABASE_MIRRORING, as the
current wait description, synchronous database mirroring operations may be the cause of
the log reuse issues.

In synchronous mirroring, transactions on the principal are only committed once their
related log records have been transferred to the mirror database. If the connection to the
mirror is slow or broken, or the mirroring session is suspended, then a large number of
log records on the principal will remain part of the active log, preventing log space reuse,
until they are copied over to the mirror.

In such cases, I would first check the status of the mirroring session for the affected
database(s). If they are not synchronizing correctly, then you will need to troubleshoot
the cause of the failed connection between the principal and the mirror. One of the
most common problems with database mirroring, when certificates are used to secure
the endpoints, is the expiration of the certificates, requiring that they be recreated. A full
discussion of troubleshooting mirroring connectivity problems is outside of the scope of
this chapter but, unless the databases are properly synchronizing so that the log records

299

Chapter 8: Large or Full Transaction Log

are being sent to the mirror, the active portion of the transaction log on the principal will
continue to grow and not be able to be truncated without breaking the mirroring setup.

If the transaction rate on the principal greatly exceeds the rate at which log records
can be transferred to the mirror, then the log on the principal can grow rapidly. If the
mirror server is being used for reporting, by creating snapshots, verify that the disk I/O
configuration for the mirror is not saturated, by using the latency counters as explained
in Chapter 2. If this is where the problem is, eliminating use of the mirror server for
reporting may provide temporary relief of the problem. If the problem is strictly the
sheer volume of transactions and the database is not running on SQL Server 2008 or
higher, then upgrading may be able to resolve the problem due to the use of log stream
compression in SQL Server 2008 and beyond.

The best approach is to determine the cause of the mirroring issue and resolve it. For
example, tuning operations that produce a significant number of log records, such as bulk
loading data, or reorganizing indexes, may reduce the impact to the system overall during
the operation.

Handling a "Transaction Log Full" Error

In the worst case, transaction log mismanagement or sudden, rapid, log growth can cause
a transaction log to grow and grow and eventually eat up all available space on its drive.
At this point it can grow no more, you'll encounter Error 9002, the transaction log full
error, and the database will become read-only.

Despite the urgency of this problem, it's important to react calmly, and avoid the sort
of "spontaneous" solutions that are covered in the following section, Mismanagement
or What Not To Do. Obviously the pressing concern is to allow SQL Server to continue
to write to the log, by making more space available. The first port of call is to establish
if the cause is a lack of log backups. Run the query in Listing 8.1 and if the value for the
log_reuse_wait_desc column is Log Backup then this is the likely cause of the issue.

300

Chapter 8: Large or Full Transaction Log

A query to the backupset table (http://msdn.microsoft.com/en-us/library/ms186299.
aspx) in the MSDB database, as shown in Listing 8.7, will confirm whether or not log
backups are being taken on the database, and when the last one was taken.

USE msdb ;
SELECT backup_set_id ,
 backup_start_date ,
 backup_finish_date ,
 backup_size ,
 recovery_model ,
 [type]
FROM dbo.backupset
WHERE database_name = 'DatabaseName'

Listing 8.7: Determine when the last log backup was taken.

In the type column, a D represents a database backup, L a log backup and I a differential
backup. If log backups aren't being taken, or are being taken very infrequently, then your
best course of action is to take a log backup (assuming the database is operating in FULL
or BULK LOGGED recovery model). Hopefully, this will free up substantial space within the
log and you can then implement an appropriate log backup scheme, and log file growth
management strategy.

If, for some reason, it is not possible to perform a log backup due to a lack of disk space,
or the time it would take to perform a log backup exceeds the acceptable time to resolve
the problem, then it might, depending on the disaster recovery policy for the database
in question, be acceptable to force a truncation of the log by temporarily switching the
database to the SIMPLE recovery model in order that inactive VLFs in the log can be
truncated on CHECKPOINT. You can then switch the recovery model back to FULL and
perform a new full database backup (or a differential backup, assuming a full backup
was taken at some previous time) to restart the log chain for point-in-time recovery. Of
course, you'll still need to investigate the problem fully, in order to make sure that the
space isn't simply eaten up again.

http://msdn.microsoft.com/en-us/library/ms186299.aspx
http://msdn.microsoft.com/en-us/library/ms186299.aspx

301

Chapter 8: Large or Full Transaction Log

Bear in mind also that, as discussed previously, if the problem preventing space reuse is
anything other than Log Backup, then this technique won't work, since those records
will simply remain part of the active log, preventing truncation.

If a lack of log backups isn't the problem, or taking a log backup doesn't solve the
problem, then investigating the cause will require a little more time. If you can easily and
quickly make extra space on the log drive, by shifting off other files, or adding capacity to
the current log drive, or adding an addition log file on a different disk array, then this will
buy you the bit of breathing space you need to get the database out of read-only mode,
and perform a log backup.

If a log backup fails to free up space, you need to find out what is preventing space reuse
in the log. Interrogate sys.databases (Listing 8.1) to find out if anything is preventing
reuse of space in the log, and take appropriate action, as described throughout the
previous Lack of log space reuse section.

If this reveals nothing, you'll need to investigate further and find out which operations
are causing the excessive logging that led to the log growth, as described in the Diagnosing
a Runaway Transaction Log section.

Ultimately, having resolved any space reuse issue, you may still be left with a log file
that is consuming the vast majority of the space on the drive. As a one-off measure,
i.e. assuming steps will be taken to ensure proper management of log growth in the
future (see the Proper Log Management section, shortly), it is acceptable to use DBCC
SHRINKFILE (see http://msdn.microsoft.com/en-us/library/ms189493.aspx) to
reclaim the space used by a bloated transaction log file.

You can either specify a target_size to which to shrink the log file, or you can specify
0 (zero) as the target size and shrink the log to its smallest possible size, and then immedi-
ately resize it to a sensible size using ALTER DATABASE. The latter is the recommended
way, as it minimizes fragmentation of the log file. This fragmentation issue is the main
reason why you should never schedule regular DBCC SHRINKFILE tasks as a means of
controlling the size of the log; this is discussed in more detail in the next section.

http://msdn.microsoft.com/en-us/library/ms189493.aspx

302

Chapter 8: Large or Full Transaction Log

Mismanagement or What Not To Do

Unfortunately, a quick search of the Internet for "Transaction Log Full" will return a
number of forums threads, blog posts, and even articles published on seemingly reputable
SQL Server sites, which recommend remedial action that is, frankly, dangerous. We'll
cover a few of the more popular suggestions here.

Detach database, delete log file

The idea here is that you clear all users off the database, detach the database (or shut it
down), delete the log file (or rename it) and then re-attach the database, causing a new log
file to be created at whatever size is dictated by the model database. This is arguably the
most appalling of all the terrible ways to handle a full transaction log. It can result in the
database failing to start, leaving it in the RECOVERY_PENDING state.

Depending on whether or not the database had been cleanly shut down at the time of the
log deletion, the database may not be able to perform the UNDO and REDO operations that
are a normal part of the database recovery process, because the transaction log is missing,
and so can't return the database to a consistent state. When the log file is missing, and
the database requires the transaction log to perform crash recovery, the database will fail
to start up properly and the only recourse will be to restore the database from the most
recent backup available, which will most likely result in data loss.

303

Chapter 8: Large or Full Transaction Log

Creating, detaching, re-attaching, and fixing a suspect database

Under specific circumstances, it may be possible to hack the existing database into a configuration that

allows the transaction log to be rebuilt, although it may compromise the integrity of the data contained

in the database. This type of operation is, at best, a last-ditch effort that may be used when there is

absolutely no other way of recovering the database data, and it is not a recommended practice of the

authors, technical editors, or anyone else involved in the authoring of this book. For an explanation of

how to attempt hacking a database back into SQL Server where the transaction log file has been deleted,

see Paul Randal's blog post, "Creating, detaching, re-attaching, and fixing a suspect database"

(http://www.sqlskills.com/blogs/paul/post/TechEd-Demo-Creating-detaching-re-attach-

ing-and-fixing-a-suspect-database.aspx).

Forcing log file truncation

In SQL Server 2000, BACKUP LOG WITH TRUNCATE_ONLY was a supported way of forcing
SQL Server to truncate the transaction log, while the database was operating in the FULL
or BULK LOGGED model, without actually making a backup copy of the contents of the
log; the records in the truncated VLFs are simply discarded. So, unlike with a normal log
backup, you're destroying your LSN chain and will only be able to restore to a point in
time in any previous log backup files. Also, even though the database is set to FULL (or
BULK LOGGED) recovery, it will actually, from that point on, operate in an auto-truncate
mode, continuing to truncate inactive VLFs on checkpoint. In order to get the database
operating in FULL recovery again, and restart the LSN chain, you'd need to perform a full
(or differential) backup.

This command was often used without people realizing the implications it had for
disaster recovery, and it was deprecated in SQL Server 2005 and removed from SQL
Server 2008. Unfortunately, an even more insidious variation of this technique, which
continues to be supported, has crept up to take its place, and that is BACKUP LOG
TO DISK='NUL', where NUL is a "virtual file" that discards any data that is written
to it. The really nasty twist to this technique is that, unlike with BACKUP LOG WITH

http://www.sqlskills.com/blogs/paul/post/TechEd-Demo-Creating-detaching-re-attaching-and-fixing-a-suspect-database.aspx
http://www.sqlskills.com/blogs/paul/post/TechEd-Demo-Creating-detaching-re-attaching-and-fixing-a-suspect-database.aspx

304

Chapter 8: Large or Full Transaction Log

TRUNCATE_ONLY, SQL Server is unaware that the log records have simply been discarded.
As far as SQL Server is concerned, a log backup has been performed, the log records are
safely stored in a backup file so the LSN chain is intact, and any inactive VLFs in the live
log can safely be truncated. Any subsequent, conventional log backups will succeed but
will be entirely useless from the point of view of disaster recovery since a log backup file
is "missing" and so the database can only be restored to some point in time covered by the
last standard log backup that was taken before BACKUP LOG TO DISK='NUL' was issued.

Do not use either of these techniques. The right way to "force" log truncation is to
temporarily switch the database into the SIMPLE recovery model, as discussed earlier.

Scheduled shrinking of the transaction log

As discussed in the Handling a "Transaction Log Full" error section, in rare circumstances
where transaction log growth has occurred due to a lack of management, and where the
log growth is currently being actively managed, using DBCC SHRINKFILE to reclaim the
space used by the transaction log file is an acceptable operation.

However, the transaction log should never be shrunk using DBCC SHRINKFILE, or a
database maintenance plan step to shrink the database, as part of normal, scheduled
maintenance operations. The reason for this is that every time you shrink the log, it will
need to immediately grow again to store log records for subsequent transactions and
every log. If auto-growth is being relied upon solely for transaction log growth (see the
next section for a fuller discussion), excessive VLFs can accumulate in the log file and this
log fragmentation will impact the performance of any process that needs to read the
log file and, if fragmentation gets really bad, possibly even the performance of data
modifications. Also, as discussed previously in the Sizing and growing the log section, the
transaction log cannot take advantage of instant file initialization, so all log growths incur
the cost to zero-byte the storage space being allocated.

305

Chapter 8: Large or Full Transaction Log

The best practice for the transaction log file continues to be to size it appropriately up
front so it does not have to grow under normal operations, and then to monitor its
usage periodically to determine if the need to grow it manually occurs, allowing you to
determine the appropriate growth size and determine the number and size of VLFs that
will be added to the log file.

Proper Log Management

In the absence of any unexpected operations or problems that have resulted in unusual
log growth (replication problems, uncommitted transactions, and so on, as discussed
earlier), if the transaction log associated with a FULL recovery model database fills up,
and is forced to grow, there are really only two causes:

•	 the size of the log file was too small to support the volume of data changes that were
occurring in the database

•	 the frequency of log backups was insufficient to allow rapid reuse of space within the
log file.

The best thing to do, if you can't increase the frequency of the log backups by decreasing
the amount of time between log backups, is to manually grow the log file to a size that
prevents it from having to grow using auto-growth when under load, and then leave
the log file that size. Having a large transaction log file that has been properly grown
to minimize the number of VLFs is not a bad thing, even if the log file has free space a
majority of the time.

When configuring the initial size of the transaction log for a database, it is important to
take into account the size of the largest table in the database, and whether or not index
maintenance operations will be performed. As a rule of thumb, the transaction log should
be sized to 1.5 times the size of the largest index or table in the database, to allow for
logging requirements to rebuild the index under FULL recovery.

306

Chapter 8: Large or Full Transaction Log

In addition to the initial sizing requirements, it is important to monitor and adjust the
size of the transaction log periodically to fit the size of the database as it grows. There
are a couple of problems with the auto-growth settings that a database will inherit from
model, which is currently to grow in steps of 10% of the current transaction log size:

•	 initially, when the log file is small, the incremental growth will be small, resulting in
the creation of a large number of small VLFs in the log, causing the fragmentation
issues discussed earlier

•	 when the log file is very large, the growth increments will be correspondingly large;
since the transaction log has to be zeroed out during initialization, large growth
events can take time, and if the log can't be grown fast enough this can result in
9002 (transaction log full) errors and even in the auto-growth timing out and
being rolled back.

The auto-growth settings should be configured explicitly to a fixed size that allows the log
file to grow quickly, if necessary, while also minimizing the number of VLFs being added
to the log file for each growth event.

To minimize the chances of a timeout occurring during normal transaction log growth,
you should measure how long it takes to grow the transaction log by a variety of set sizes
while the database is operating under normal workload, and based on the current I/O
subsystem configuration. In cases where the necessary zero-initialization performance
characteristics are not known for a database, I recommend, as a general rule, a fixed auto-
growth size of 512 MB.

Ultimately, though, remember that auto-growth should be configured as a security net
only, allowing the system to automatically grow the log file when you are unable to
respond manually. Auto-growth is not a replacement for appropriate monitoring and
management of the transaction log file size.

307

Chapter 8: Large or Full Transaction Log

Summary

The transaction log for a SQL Server database is critical to the operation of the database
and the ability to minimize data loss in the event of a disaster. Proper management of log
backups and sizing of the transaction log is crucial to managing a database in SQL Server.
This chapter covered the most common causes for log growth in SQL Server, and how to
properly handle those scenarios to minimize log usage, or troubleshoot the problem to
prevent further issues with the transaction log.

308

Chapter 9: Truncated Tables, Dropped
Objects and Other Accidents Waiting
to Happen

The sudden disappearance of an important object in a database, or of all the data in a
table, can test the nerves of even the most imperturbable DBA. In the best case, the data
or object can be recovered in a matter of minutes. Sometimes it can take several days.
In the worst case, it can never be recovered and might even mean the end of business for
a company.

Regardless of how strictly you control write access to your databases, such accidents,
whether user initiated or due to a bug in application code or to hardware problems, can
and will happen, and will bring with them a real risk of data loss. The primary responsi-
bility of any database administrator is to ensure the ability to recover a database and its
data quickly, and with no, or minimum acceptable, loss. Without a complete, secure set of
database and log backups, the chances of achieving this are slim.

This chapter covers the following strategies, tools, and tweaks for ensuring an adequate
response to accidental data loss, and minimizing the risk of it happening in the first place.

•	 Recovering the database from backup, to a marked transaction, or particular point
in time.

•	 Last ditch attempts to save your data, in the absence of backups – including use of log
recovery tools, source control, or High Availability solutions, such as replication or
log shipping.

•	 Using the default trace to obtain details of what happened and who did it.

309

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

•	 Minimizing risk of data loss through:

•	 a well-planned and tested backup and recovery strategy

•	 a strict change control process

•	 a well-designed permissions architecture based on "minimum required rights."

•	 Using DML and DDL triggers to prevent or log changes. These access control tweaks
are especially useful in cases where you can't implement as tight a security model as
you would like.

Example Case: The Missing Sales Order Data

A manager is running the usual series of "end of business day" reports, when he or she
notices that the numbers seems a lot lower than usual. The manager decides to run the
same reports for the current month and finds that the month-to-date totals exactly match
today's daily totals. You, as the DBA, hear your phone ring just as you are walking out the
office. The manager demands, angrily, to know why the numbers are all wrong.

Some quick research reveals that the SalesOrderDetail table contains data only for
the last three hours of the business day! You know that the Sales application was imple-
mented almost a year ago, and so the SalesOrderDetail table should have entries
dating back to the day that the application was implemented. It is now up to you to
determine what happened, and recover the data that is missing from the database.

310

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

Recovering Lost Data

All too often, in the face of such a problem, people's first instinct is to focus on who
caused the problem, and how to prove it. Of course, this will need to be established,
but it's a secondary objective. The paramount concern is that a critical object or data is
missing from a database, and the very first step is to recover the object or data in the most
efficient manner possible.

In truth, there is only one sure way to recover all, or very nearly all, of the lost data,
and that's to perform a RESTORE operation, using the last full database backup, and
the sequence of log backups that succeeded it. In this way, it should be possible to
recover the database to a point immediately before the data was lost. This will only be
possible if the database has been operating in FULL recovery model, and if you have
been taking, and retaining in a safe location, regular full database backups and trans-
action log backups. We'll examine, first, the case where full and log backups are available,
and then the "damage limitation" strategies that you might consider in the absence of
such backup files.

Recovering from backup

As discussed, the extent of your exposure to data loss as a result of events such as this will
be determined to a large degree by the recovery model selected for the database, and by
your backup strategy.

In this section, we'll assume the database in question in using the FULL recovery model
and that full and transaction log backups, representing an unbroken LSN chain (see
Chapter 8) are available; then we'll demonstrate how to restore a database to a specific
point within a log file.

311

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

The RESTORE LOG command supports three different options for restoring a database to
a particular point within a log file, each of which is described in Books Online.

•	 Recovering to a marked transaction (http://msdn.microsoft.com/en-us/library/
ms188623.aspx).

•	 Recovering to a specific point in time (http://msdn.microsoft.com/en-us/library/
ms178143.aspx).

•	 Recovering to a Log Sequence Number (http://msdn.microsoft.com/en-us/library/
ms191459.aspx).

In the first instance, we'll demonstrate restoring to a point represented by a marked
transaction. We'll then discuss general issues regarding restores to a specific point in time
within a log file.

Restore to a marked transaction

Marked transactions can be used to create a known recovery point for significant changes
to a database, or multiple databases when the same transaction mark is used in multiple
databases, to establish a common recovery point for all of the affected databases. It is
rare that a user who mistakenly drops, truncates, or deletes a table will have been kind
enough to use a marked transaction. However, a wise DBA can use them to create an easy
recovery point, prior to deploying a large set of changes to a database, in cases where the
potential for problems exists.

To simulate this type of restore, we'll use the AdventureWorks database. The first step is
to put the database into FULL recovery and take a full backup of the database to begin the
LSN chain, as shown in Listing 9.1.

http://msdn.microsoft.com/en-us/library/ms188623.aspx
http://msdn.microsoft.com/en-us/library/ms188623.aspx
http://msdn.microsoft.com/en-us/library/ms178143.aspx
http://msdn.microsoft.com/en-us/library/ms178143.aspx
http://msdn.microsoft.com/en-us/library/ms191459.aspx
http://msdn.microsoft.com/en-us/library/ms191459.aspx

312

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

USE [master]
GO
ALTER DATABASE [AdventureWorks] SET RECOVERY FULL
 GO
BACKUP DATABASE [AdventureWorks]
TO DISK = N'D:\SQLBackups\AdventureWorks.bak'
WITH NOFORMAT,
 INIT,
 NAME = N'AdventureWorks-Full Database Backup',
 SKIP,
 STATS = 10,
 CHECKSUM
GO

Listing 9.1: Setting AdventureWorks to use FULL recovery model.

With a full backup taken, we have a known point in time where the database is in a
known, good state. Next, we simulate transactional work on the database by modifying
rows in the ErrorLog table of the database. After that, we take a log backup to capture
those changes.

USE [AdventureWorks]
GO
SELECT ErrorTime ,UserName ,ErrorNumber ,
 ErrorSeverity ,ErrorState ,ErrorProcedure ,
 ErrorMessage
FROM dbo.ErrorLog
GO
INSERT INTO dbo.ErrorLog
 (ErrorTime ,UserName ,ErrorNumber ,
 ErrorSeverity ,ErrorState ,ErrorProcedure ,
 ErrorMessage
)
 SELECT GETDATE() ,
 SYSTEM_USER ,
 100 ,
 12 ,
 1 ,
 'SomeProcedure' ,
 'Failed'
GO

313

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

SELECT ErrorTime ,UserName ,ErrorNumber ,
 ErrorSeverity ,ErrorState ,ErrorProcedure ,
 ErrorMessage
FROM dbo.ErrorLog
GO
BACKUP LOG [AdventureWorks]
TO DISK = N'D:\SQLBackups\AdventureWorks_Log1.bak'
WITH NOFORMAT,
 INIT,
 NAME = N'AdventureWorks-Transaction Log Backup',
 SKIP,
 STATS = 10
GO

Listing 9.2: Insert data into ErrorLog; back up the AdventureWorks log.

Now, we simulate our lost data issue, by issuing a DELETE against the Sales.SalesOr-
derDetail table, without a WHERE clause filter. The subsequent SELECT operation will
return zero rows.

BEGIN TRANSACTION Delete_Bad_SalesOrderDetail WITH MARK
DELETE Sales.SalesOrderDetail
-- Forgotten WHERE clause = Oops
COMMIT TRANSACTION
GO
SELECT SalesOrderID ,
 SalesOrderDetailID ,
 CarrierTrackingNumber ,
 OrderQty ,
 ProductID ,
 SpecialOfferID ,
 UnitPrice ,
 UnitPriceDiscount ,
 rowguid ,
 ModifiedDate
FROM Sales.SalesOrderDetail
GO

Listing 9.3: An erroneous (marked) transaction deletes the SaleOrderDetail table.

314

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

Even though the data in the table has been deleted, the database is still online. It isn't
until 5 p.m., when the end-of-day report is run that the boss discovers the problem. Now
our focus shifts immediately to recovering the data, if possible. Since the database is in
FULL recovery model, it is generally safe to assume that, as long as the entire LSN chain
(see Chapter 8) is intact, the data can be recovered without data loss.

It is important to first know the extent of the data loss, and its impact on the overall
operational environment for your server (hopefully, via your auditing tool, as we'll discuss
later in the chapter). In this case, the SalesOrderDetail information has been lost,
which affects the ability to view the details of past orders, but doesn't stop new orders
from being entered, or stop application changes to other data inside the database, for
example, updating a customer's contact information.

We can't afford to lose any changes or additions to the sales order data made after the
data loss occurred so, in such cases, the quickest method of recovery may be to restore a
copy of the database to a point in time before the data loss occurred, and then transfer the
missing data back into the table in the live database. Preferably, we'll restore this copy to a
different server but if only one SQL Server exists in the environment, the database can be
restored with a different name side-by-side with the existing database.

The first step, shown in Listing 9.4, is to back up the existing database transaction log
using BACKUP LOG.

USE [master]
GO
BACKUP LOG [AdventureWorks]
TO DISK = N'D:\SQLBackups\AdventureWorks_Log2.bak'
WITH NOFORMAT,
 INIT,
 NAME = N'AdventureWorks-Transaction Log Backup',
 SKIP,
 STATS = 10
GO

Listing 9.4: Final log backup of the live transaction log.

315

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

At this stage, i.e. before we actually begin restoring and recovering the copy database,
and then copying the lost data back to the live database, it is generally a recommended
practice to take a separate full backup of the "damaged" database, as shown in Listing 9.5.
This will secure the existing state before making any changes, protecting against further
loss from another mistake during the data recovery process. It is extremely important that
this backup be made to a different location than the existing full database backup, since
this would overwrite the backup set, making recovery impossible.

BACKUP DATABASE [AdventureWorks]
TO DISK = N'D:\SQLBackups\AdventureWorks_Damaged.bak'
WITH NOFORMAT,
 INIT,
 NAME = N'AdventureWorks-Damaged Full DB Backup',
 SKIP,
 STATS = 10,
 CHECKSUM
GO

Listing 9.5: Full backup of the damaged database.

We now begin the RESTORE operations, starting by restoring our good full backup,
from Listing 9.1. Note that, because we're restoring to a copy of the database rather
than restoring to the live database, we specify the MOVE option to create new database
files for the database, as shown in Listing 9.6. We also specify the NORECOVERY option,
which puts the copy database into a restoring state and allows us to continue the restore
operation by applying additional backups.

--Begin Recovery Process
RESTORE DATABASE [AdventureWorks_Copy]
FROM DISK = N'D:\SQLBackups\AdventureWorks.bak'
WITH FILE = 1,
 MOVE N'AdventureWorks_Data' TO N'D:\SQLDATA\AdventureWorks_Copy.mdf',
 MOVE N'AdventureWorks_Log' TO N'D:\SQLDATA\AdventureWorks_Copy_1.ldf',
 NORECOVERY,
 STATS = 10
GO

Listing 9.6: Restoring a copy of AdventureWorks from a full backup.

316

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

In our example, the rogue DELETE statement was a marked transaction, and so we can
recover the database to the point that this marked transaction began. To do this, all of
the transaction log backups up to the one containing the marked transaction are restored
using the RESTORE LOG command, specifying the STOPBEFOREMARK option with the
marked transaction name, as well as the NORECOVERY option to allow subsequent log
backups to be applied to the database, as shown in Listing 9.7.

RESTORE LOG [AdventureWorks_Copy]
FROM DISK = N'D:\SQLBackups\AdventureWorks_Log1.bak'
WITH FILE = 1,
 NORECOVERY,
 STATS = 10,
 STOPBEFOREMARK = N'Delete_Bad_SalesOrderDetail'
GO

Listing 9.7: Restoring the first log backup.

When applying log backups, the output information will contain the following statement
until the log backup containing the marked transaction is restored.

This log file contains records logged before the designated mark. The database is
being left in the Restoring state so you can apply another log file.

When this message appears, subsequent log backups must continue to be applied, to
roll the database forward in time to the marked transaction. The first log backup to be
restored that does not contain this message is the log backup that contains the marked
transaction, and no further log backups need to be applied to the database to recover the
lost data. In this example, the second log backup contains the marked transaction, and so
needs to be restored.

RESTORE LOG [AdventureWorks_Copy]
FROM DISK = N'D:\SQLBackups\AdventureWorks_Log2bak'
WITH FILE = 1,
 NORECOVERY,
 STATS = 10,
 STOPBEFOREMARK = N'Delete_Bad_SalesOrderDetail'
GO

Listing 9.8: Restoring the second log backup, containing the marked transaction.

317

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

Restoring this log file will not output the message, meaning that the database can be
recovered using the RESTORE DATABASE command and the WITH RECOVERY option. The
database will enter the recovery process, which will roll back the marked transaction, as
well as any changes that occurred after, or were uncommitted when the marked trans-
action began.

RESTORE DATABASE [AdventureWorks_Copy]
WITH RECOVERY
GO

Listing 9.9: Recovering the AdventureWorks_Copy database.

A simple query will validate that the copy database has the missing data, and this data
can now be copied back into the production database using an INSERT statement, or the
Import/Export wizard, or a SSIS Package.

When inserting the data back into the original Sales.SalesOrderDetail table, it
is necessary to turn on IDENTITY_INSERT for the table, in order to preserve the
SalesOrderDetaiID values as they exist in the restored copy, and prevent new
identity values from being generated as the rows are reinserted into the live database,
as shown in Listing 9.10.

USE [AdventureWorks]
GO
SET IDENTITY_INSERT Sales.SalesOrderDetail ON
INSERT INTO Sales.SalesOrderDetail
 (SalesOrderID , SalesOrderDetailID ,
 CarrierTrackingNumber , OrderQty ,
 ProductID , SpecialOfferID ,
 UnitPrice ,UnitPriceDiscount ,
 rowguid , ModifiedDate
)
 SELECT SalesOrderID , SalesOrderDetailID ,
 CarrierTrackingNumber , OrderQty ,
 ProductID , SpecialOfferID ,
 UnitPrice , UnitPriceDiscount ,
 rowguid , ModifiedDate

318

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

 FROM AdventureWorks_Copy.Sales.SalesOrderDetail
 WHERE NOT EXISTS (SELECT SalesOrderDetailID
 FROM Sales.SalesOrderDetail)
SET IDENTITY_INSERT Sales.SalesOrderDetail OFF
GO

Listing 9.10: Inserting the lost data back into AdventureWorks.

As a sanity check, it makes sense to validate that the data was "restored" to the live
database in the same state as it existed in the copy database, either by manually reviewing
the two datasets or, if the data sets are very large, using the EXCEPT operator to examine
any data that is different between the two tables, as shown in Listing 9.11.

-- comparing both data sets
SELECT *
FROM Sales.SalesOrderDetail
GO
SELECT *
FROM AdventureWorks_Copy.Sales.SalesOrderDetail
GO

-- data differences
SELECT *
FROM Sales.SalesOrderDetail
EXCEPT
SELECT *
FROM AdventureWorks_Copy.Sales.SalesOrderDetail
GO

Listing 9.11: Checking the state of the reinserted data.

Restore to a point in time

This previous example used a marked transaction to establish the point of recovery but,
in most cases, a point-in-time recovery will be used to apply the transaction logs up to a
known point in time before the data loss occurred. Once the point in time is reached in
the RESTORE LOG process, the database can be recovered.

319

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

If the exact time when the data loss occurred is unknown, one option is to restore a
backup of the database in STANDBY mode. This allows further log backups to be
restored but, unlike when using NORECOVERY, the database is still readable. So the
scheme might be:

1. Restore a full backup of the database, in STANDBY mode, alongside the live database.

2. Gradually roll the database forward, by applying each log file to the standby database,
till you reach the point when the bad transaction occurred, and data was lost.

3. Copy the lost data across to the live database and drop the restored copy.

Listing 9.12 restores a copy of AdventureWorks in STANDBY mode.

--Begin Recovery Process
RESTORE DATABASE [AdventureWorks_Copy]
FROM DISK = N'D:\SQLBackups\AdventureWorks.bak'
WITH FILE = 1,
 MOVE N'AdventureWorks_Data' TO
 N'D:\SQLDATA\AdventureWorks_Copy.mdf',
 MOVE N'AdventureWorks_Log' TO
 N'D:\SQLDATA\AdventureWorks_Copy_1.ldf',
 STANDBY =
 N'D:\SQLBackups\AdventureWorks_Copy_UNDO.bak',
 STATS = 10
GO

Listing 9.12: Restoring a full backup of AdventureWorks in STANDBY.

The WITH STANDBY option specifies an undo file to allow read-only access to the
restoring database and allow continued RESTORE LOG operations to occur.

RESTORE LOG [AdventureWorks_Copy]
FROM DISK = N'D:\SQLBackups\AdventureWorks_Log2.bak'
WITH FILE = 1,
 STANDBY =
 N'D:\SQLBackups\AdventureWorks_Copy_UNDO.bak',

320

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

 STATS = 10,
 STOPAT = 'Jan 05, 2011 11:00 AM'
GO

Listing 9.13: Restoring log backups to the standby database.

This process is not necessarily straightforward, and can be quite time-consuming.
Unless you've purchased a specialized log reading tool, and can interrogate the log
backup directly, rolling the logs forward can mean a series of painstaking steps involving
restoring a log, checking the data, restoring a bit further, and so on, to identify the point
in the log chain where the data was lost.

Recovering without a backup

The depth of trouble in which you might find yourself, and the extent of potential data
loss, will depend on which backups you do, and don't, have.

A valid full backup is the starting point for every recovery situation; without one there is
little hope of recovering data lost due to a mistake. In short, if absolutely no full backup of
the database exists, nothing anyone can do will help recover a missing object or data.

The first thing to do, in the event of a data loss incident, is to check the current recovery
model of the database, as shown in Listing 9.14.

-- SQL Server 2000
SELECT name ,
 DATABASEPROPERTYEX(name, 'Recovery')
FROM sysdatabases

-- SQL Server 2005/2008
SELECT name ,
 recovery_model_desc
FROM sys.databases

Listing 9.14: Checking the recovery model.

321

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

If the database is in SIMPLE recovery, there is no real hope of recovering with zero data
loss, since the only recovery point is the latest full or differential backup. It's not possible
to take a log backup in this recovery model, and the transaction log records are truncated
automatically at CHECKPOINT allowing the space to be reused (log truncation is discussed
in full detail in Chapter 8). At this point, the only option is to confess the mistake to
management and pray for clemency, which may not be forthcoming.

If the database is in FULL recovery but there has never been a full database backup,
then the database is actually functioning as if it were in SIMPLE recovery and, again,
it won't be possible to recover the lost data. When a database is changed from the
SIMPLE recovery model to the FULL recovery model, the transaction log continues to
be truncated at CHECKPOINT as it would under SIMPLE recovery until a full backup of
the database is taken, which restarts the log chain. As of SQL Server 2005, the BACKUP
LOG command will fail for a database using the FULL recovery model if an initial full
backup has not been performed. This was a change from SQL Server 2000, which would
allow the log backups to be taken even though they were useless, without a full backup to
establish the start of the LSN chain.

If the database is in FULL recovery, and it has had a full backup since the database was
switched to FULL recovery, but no log backups, then there may be some small hope. If
you're fairly certain that the LSN chain is intact (e.g. no one ever took a log backup and
deleted it), then it may be that you can simply take a log backup and proceed as described
in the previous section.

However, if the LSN chain has been broken, by manual log truncation, a corrupt log
backup, or a missing log backup (see Chapter 8), then this route will be closed. However,
it may still be possible that the specific actions that resulted in data loss exist inside
the transaction log and that a third-party tool may be able to read the log records and
generate the INSERT, UPDATE or DELETE statements to reverse the operation. It's worth
a try, but if the log records describing the change have been lost, then not even third-
party tools will be able to help.

322

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

Log recovery tools

There are a couple of tools on the market that can attempt to recover the lost information
or object from the transaction log. If you are on SQL Server 2000, Red Gate offers a free
tool, SQL Log Rescue (http://www.red-gate.com/products/SQL_Log_Rescue/index.
htm), which can be used to attempt recovery. For SQL Server 2005 and 2008, ApexSQL
offers the ApexSQL Log tool (http://www.apexsql.com/sql_tools_log.asp) which can
potentially recover the information from the transaction log. It should be noted that,
while these tools offer the potential for recovery, they do not guarantee it, and should
not be relied upon. The only guaranteed method of recovery is a solid backup plan for
the database.

Recovering objects from source control

If the loss is a database object and not data, for example, a stored procedure, trigger,
function or view, the object should be recoverable without restoring a backup of the
database. Any database code should be stored inside of a source control management
system like Team Foundation Server, Visual Source Safe, Subversion, CVS, PVCS or one
of the numerous other products available for source control. Recovery of an object from
source control is generally as simple as checking the latest production revision out and
redeploying the object back to the database.

If no source control management system is being used, the same steps used to recover
lost data can be used to recover the missing database object. The only difference in the
process is that the object can be scripted from the restored copy and then created on the
production database from the script.

http://www.red-gate.com/products/SQL_Log_Rescue/index.htm
http://www.red-gate.com/products/SQL_Log_Rescue/index.htm
http://www.apexsql.com/sql_tools_log.asp

323

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

Recovering data from a secondary/replica database

When planning for disaster recovery it is imperative that you thoroughly understand
the details of what specific configurations do or don't provide. SQL Server offers a lot of
out-of-the-box high availability options, including database mirroring, log shipping, repli-
cation, and clustering. In addition to these, most hardware vendors offer high availability
options, such as RAID, disk mirroring, and SAN mirroring and replication.

It is common to use a combination of hardware and SQL Server high availability options
to protect against the impacts of hardware failures, but none of these options offers
protection against changes to the database that occur inside of SQL Server. Most of
these technologies, with the exception of clustering, which maintains a single copy of
the database files on a shared SAN disk, are used to keep duplicate copies of the database,
but the problem is that as changes occur in the principal database, they are made to the
duplicated databases as well.

It is technically possible to recover from a loss when using log shipping or replication
if the change is caught fast enough, but this can be complicated, and could require
rebuilding the configuration after the recovery was performed.

In log shipping configurations, it may be possible to put the log-shipped copy database
into read-only, standby mode, and then query out the deleted data, before the transaction
log containing the change is applied to the log-shipped copy. However, if a point-in-time
restore is required including the most recent log backup file, the log shipping configu-
ration would have to be reinitialized after the data recovery was completed, since the
point-in-time restore of the log would break the log shipping.

With replication configurations, depending on the topology, the process of inserting
rows back into a publisher by querying a subscriber can cause conflicts to occur when the
INSERT operations are replicated back down to the subscriber(s). In such cases, it may be
necessary to split the replication, with the subscriber being used to reconstitute the data
and then reinitialize the subscriber after the data recovery operation has been completed.

324

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

Finding the Culprit

After recovering the missing objects or data, your focus can turn towards finding out
who made the fateful modification. This can be very hard, unless some form of auditing
mechanism is already in place.

In SQL Server 2000, no auditing mechanisms are enabled by default. However, in SQL
Server 2005 and 2008, the default trace is, as its name might suggest, active by default. It
captures a number of important trace events that can be used to identify changes made to
the database schema, and who made them. However, the default trace does not contain
any information about data modification statements (INSERT, UPDATE, DELETE).

The default trace is configured to write its trace files to the ErrorLog path for the SQL
Server instance. It uses file rollover when the current trace file reaches 20 MB in size,
and it maintains a maximum of five trace files. Once the fifth file is full, the oldest file is
deleted, meaning that the trace data is only retained for a certain period.

Details of the default trace, including rollover characteristics, the file to which the trace is
writing, and so on, can be found through the sys.traces dynamic management view.

SELECT *
FROM sys.traces
WHERE is_default = 1 ;

Listing 9.15: Querying sys.traces for the default trace characteristics.

Unlike user-defined traces, the default trace cannot be changed, but it can be disabled
completely, using sp_configure. The full list of events that the default trace collects
can be found by running the query in Listing 9.16.

325

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

SELECT DISTINCT
 e.trace_event_id ,
 e.name
FROM sys.fn_trace_geteventinfo (1) t
 JOIN sys.trace_events e
 ON t.eventID = e.trace_event_id

Listing 9.16: Events collected by the default trace.

The Object:Deleted and Object:Altered trace events can be used to investigate
accidental changes to, or removal of, any table or other object in the database.

The contents of a trace file can be read using the sys.fn_trace_gettable system
function. If the trace is configured to use file rollover, as is the default trace, then the
function will read the trace file provided, plus any subsequent rollover files. If you use the
filename, Log.trc, then any file in that path with "Log" as its base name, will be read.

DECLARE @FileName NVARCHAR(260)

SELECT @FileName = SUBSTRING(path, 0,
 LEN(path) - CHARINDEX('\',
 REVERSE(path)) + 1)
 + '\Log.trc'
FROM sys.traces
WHERE is_default = 1 ;

SELECT loginname ,
 hostname ,
 applicationname ,
 databasename ,
 objectName ,
 starttime ,
 e.name AS EventName ,
 databaseid
FROM sys.fn_trace_gettable(@FileName, DEFAULT) AS gt
 INNER JOIN sys.trace_events e
 ON gt.EventClass = e.trace_event_id
WHERE (gt.EventClass = 47 -- Object:Deleted Event
 -- from sys.trace_events
 OR gt.EventClass = 164

326

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

) -- Object:Altered Event from sys.trace_events
 AND gt.EventSubClass = 0
 AND gt.DatabaseID = DB_ID('AdventureWorks')

Listing 9.17: Reading a trace file using sys.fn_trace_gettable.

As noted earlier, if the default trace has rolled over five times, or the SQL Service has been
restarted five times, since the object was changed or dropped, the information about who
made the change, and when, may not exist.

However, if the database is in the FULL recovery model then the information may still
exist in the transaction log or transaction log backups. One of the third-party tools
mentioned in the Recovering without a backup section of this chapter may be able to read
the backups or log file to identify who made the change.

Prevention is Better than Cure

Benjamin Franklin once said, "An ounce of prevention is worth a pound of cure." This
now-famous quote was made in reference to fire-fighting, in a time when people who
suffered fire damage to their homes also suffered irreversible economic loss. In 1752, he
helped establish the Philadelphia Contribution for Insurance Against Loss by Fire to help
ensure that people with insurance policies were not financially drained by the damage
caused by a house fire.

These days, the loss of data can be equally damaging economically, resulting in the loss
of business, as well as fees, penalties, or even fines. Fortunately, a little bit of up-front
work and planning will, in most cases, prevent the problem from occurring, or at least
minimize the impact that a loss causes.

First, it's important to accept that, regardless of how strictly you control write-access to
your databases, accidents can, and will, happen. At some point, a user or application with
permission to modify objects and data in the database for perfectly legitimate reasons,

327

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

will make a mistake, and cause data loss. As such, it's vitally important to have in place
a recovery plan that will enable you to recover from such losses, as well as from other
disasters, such as hardware failure.

Having said this, it's also important to realize that the cause of most data losses can be
traced to inadequate change control, and to developers, analysts, or other employees
who had "too many rights" inside of a production database. As such, steps must also
be taken to tighten up the change control process, and to implement a strict security
model for production environments, which should also be replicated in development
and testing environments.

Plan for recovery from all data losses

Planning for recovery is not just about planning to recover from a crashed or corrupt
database; it's planning to recover from any type of problem, including the accidental
deletion or truncation of a table. The only way to protect against accidental data loss in
every case that it could occur, including hardware failures, is to have a solid backup plan
for the database. It is out of scope for this chapter to offer full coverage of configuring
database backups in SQL Server. However, we will cover a couple of basics that must be
understood, in the context of preventing data loss from user- or application-initiated
changes to the database.

In most cases, it is a relatively easy task to restore an accidentally-dropped or truncated
object, or to undo an unwanted data change, as long as the database is operating in the
FULL recovery model, and regular full (and differential) database backups are being taken,
along with transaction log backups.

While use of the FULL recovery model allows for point-in-time restoration of a
database, its use also requires significantly more planning and resources. For example,
when running in FULL, a database will require frequent backups of the transaction
log throughout the day, in order to minimize log file growth and to support the agreed

328

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

maximum data loss limits. For example, if the maximum acceptable data loss is 2 hours,
then a viable backup plan might be to take weekly full backups, nightly differential
backups, and transaction log backups every two hours. This scheme would restrict the
number of restore operations required for a point-in-time recovery to a maximum of 13;
the last full backup, the last differential backup, and a maximum of 11 transaction log
backups in a given day. Of course, if the maximum acceptable data loss is 10 minutes
instead of 2 hours, then you'll need to adapt the scheme appropriately.

If it isn't possible to run certain databases in FULL recovery, for example due to lack
of resources, then the extent of data loss that is possible must be made clear to all
concerned. In SIMPLE recovery, the transaction log is auto-truncated and so it is likely
that you will only be able to restore an object to the time of the last full or differential
backup. The exposure to risk of data loss can be minimized by taking more frequent full
backups, and/or interspersing full backups with differential backups but, ultimately, some
degree of data loss, equating to the time between the loss occurring and the time the last
backup was taken, is inevitable. If data loss is unacceptable under any circumstance, the
SIMPLE recovery model won't be sufficient to meet your business needs.

Even if measures are put in place to minimize the time it takes to discover the problem
(e.g. change logging), it's likely that the problem will not be discovered and addressed
before the log is truncated, rendering useless any log reading tools (assuming one is
available in the first place).

Recovery of dropped or erroneously-modified database objects, such as stored proce-
dures, is generally possible without losing any changes, even in SIMPLE model, unless the
code changes occur more frequently than you have differential backups from which to
recover. Unfortunately, it's still true that many developers have direct production access
to the systems and change/deploy code all the time without any release process.

Regardless of the recovery model in use, it is important that the actual backup files be
stored in a secure location that is separate from the actual disks that hold the database
files. This protects the backups from corruption in the event of a critical disk failure that

329

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

causes database corruption. The backup files would generally be stored on some form of
tape media, or backup appliance using RAID storage.

It's also important, though often overlooked, that the backup files are retained for an
adequate period of time. I've seen cases where backups were being taken, but point-in-
time recovery of a dropped object wasn't possible because the retention period of the log
backups was too low.

Implement a change control process

One of the biggest causes of accidentally-dropped objects or erroneously-deleted data
in a production database is the lack of any established and documented change control
process. Any change to a production database should be developed in a development
environment, and then tested in a testing or staging environment that mimics the actual
production environment. This includes mimicking, in the development and test systems,
the minimal access rights that a user will (or at least should, as discussed shortly) have in
the production database.

A common argument against this kind of configuration is that the hardware and
management costs associated with maintaining three separate environments are too
high. There are several counter-arguments to this. Firstly, the cost of setting up separate
development and test systems isn't as high as you might think, especially with virtu-
alization. Also, bear in mind that the development server doesn't need to match the
configuration of the production server, since it won't see normal production load, and
unless full regression tests using production loads are run against the testing or staging
environment, it also doesn't require a matching configuration to production.

The most powerful counterargument, however, takes the form of a question: "How much,
per minute, does a database outage cost the company?" If you allow development in
production you greatly increase the risk of untested changes causing data loss or server

330

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

outages. In most cases, a single outage caused by a deleted table or dropped object will
exceed the cost of having a dedicated development and testing environments.

Implement an appropriate security model

In smaller IT environments, where a dedicated database administrator doesn't exist,
security is an often overlooked aspect of database design and configuration. Generally,
security lock-downs only occur as a knee-jerk reaction to a data loss incident.

In my first year as a database developer, I worked in an environment where every
developer had sysadmin rights in SQL Server, just because it was easier to create a
login and check the box for the sysadmin role, providing access to anything, than it was
to define the specific objects to which each person required rights. I worked in Query
Analyzer or Management Studio, where it is very easy to fire off a query to any connected
server, occasionally the wrong server. This ability, coupled with the rights necessary to
drop a table from a production database, make for a potentially lethal combination. I
know, because I made this mistake and brought the operations of a multi-million dollar
a year business to a halt for a number of hours while a table was recovered from backup.
Years later, as a Senior DBA, I was connected to the wrong server at the wrong time, and
dropped an 80 GB table from a production database.

The first instance was caused by human error coupled with database privileges that I
simply should not have been granted. The second instance was just a really bad day at
the office.

There are two lessons here: the first one is that we should do everything we can to
control, tightly, access rights in our production databases, and so minimize the risk of
accidental data loss. Such concerns should override any objections on the grounds of
reduced developer productivity. We'll discuss ways to implement this access control in the
very next section.

331

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

The second lesson is that accidents can, and will, still happen, even to the most experi-
enced developer or DBA. Such mistakes can cost you your job, regardless of whether
there are significant security problems in the environment. What might save you is the
ability to recover the data very quickly, so make sure your recovery plan gives you the best
possible chance of doing that.

Access control measures

A full discussion of access control mechanisms is out of scope for this book, but we'll
cover a few of the key points to consider when devising your access control mechanisms.
Some of the things I look out for, in particular, are:

•	 Use of Windows logins – modern application design should favor the use of Windows
rather than SQL logins, with write permissions being granted only to those Windows
logins that really need them. Individual users that are not members of the DBA team
should not have write access to production databases.

•	 Database changes through stored procedures – changes to the database should be
made through stored procedures, which offer far greater control over the level of
damage a user can cause than is possible with direct, ad hoc access to the database.
Under no circumstances should a non-DBA login have the ability to create, alter, or
drop an object from a production database.

•	 Strict regulation of membership of all database roles – this includes not only the
obvious, high-privilege users and roles such as dbo or sysadmin, but also any role
that proffers database modification privileges on its members, such as the db_owner,
db_datawriter, or db_ddladmin database roles.

•	 A particular problem is the application login that runs as the dbo user, or is a
member of the db_owner role in SQL Server. The combination of a high-privilege
role and application login details that are widely known by many users is a recipe for
potential problems.

332

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

Permissions through stored procedures

One of the easiest ways to control what a user can or cannot do in a production database
is to perform database modifications through stored procedures, and then restrict users
to EXECUTE rights on those stored procedures.

This effectively reduces the risks associated with the user having production access, since
the only code they can execute is code that has already been written. However, if a stored
procedure has the ability to DELETE every row in a database table, even minimizing user
permissions to EXECUTE only won't prevent a problem.

Using triggers to prevent or log changes

It is possible that, due to the architecture of an application, it is not possible to
implement a tight security model that prevents database access to all non-DBA or
application service account users. In cases where it is impossible to lock down database
access sufficiently, or where this will require long-term redesign of the application as well
as the database, database triggers are a useful option. They can be used to prevent, or even
log, changes that occur to the database, for auditing purposes. Two types of trigger exist
in SQL Server:

•	 DML triggers which fire when a change is made to the data in a table

•	 DDL triggers which fire when a change is made to one of the database schema objects.

DML triggers

DML triggers can be created on a table or view and execute code in response to any data
manipulation language event (INSERT, UPDATE, or DELETE) on the parent object. DML
triggers can be used to provide audit tracking of all changes in a table, by writing infor-
mation about the changes to a secondary table.

333

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

Listing 9.18 shows how to create an audit table and auditing trigger to track changes to
the Sales.SalesOrderDetail table in AdventureWorks.

USE AdventureWorks
GO
CREATE TABLE Sales.SalesOrderDetailAudit
 (
 AuditID INT IDENTITY ,
 SalesOrderID INT ,
 SalesOrderDetailID INT ,
 CarrierTrackingNumber NVARCHAR(25) ,
 OrderQty SMALLINT ,
 ProductID INT ,
 SpecialOfferID INT ,
 UnitPrice MONEY ,
 UnitPriceDiscount MONEY ,
 LineTotal MONEY ,
 rowguid UNIQUEIDENTIFIER ,
 ModifiedDate DATETIME ,
 AuditAction VARCHAR(30) ,
 ChangeDate DATETIME ,
 ChangedBy SYSNAME ,
 CONSTRAINT PK_Audit_SalesOrderDetail_AuditID
 PRIMARY KEY CLUSTERED
 (AuditID ASC)
)
GO

CREATE TRIGGER SalesOrderDetail_AUDIT_TRIGGER ON Sales.SalesOrderDetail
 AFTER INSERT, UPDATE, DELETE
AS
 DECLARE @i_action VARCHAR(30) ,
 @d_action VARCHAR(30)
 SELECT @i_action = 'INSERTED' ,
 @d_action = 'DELETED'

 IF EXISTS (SELECT 1
 FROM inserted)
 AND EXISTS (SELECT 1
 FROM deleted)
--RECORD WAS UPDATED
 BEGIN

334

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

 SELECT @i_action = 'UPDATED_TO' ,
 @d_action = 'UPDATED_FROM'
 END

 INSERT INTO Sales.SalesOrderDetailAudit
 (SalesOrderID , SalesOrderDetailID ,
 CarrierTrackingNumber , OrderQty ,
 ProductID , SpecialOfferID ,
 UnitPrice , UnitPriceDiscount ,
 LineTotal , rowguid ,
 ModifiedDate , AuditAction ,
 ChangeDate , ChangedBy
)
 SELECT SalesOrderID , SalesOrderDetailID ,
 CarrierTrackingNumber , OrderQty ,
 ProductID , SpecialOfferID ,
 UnitPrice , UnitPriceDiscount ,
 LineTotal , rowguid ,
 ModifiedDate , @i_action ,
 GETDATE() , ORIGINAL_LOGIN
 FROM INSERTED
 UNION ALL
 SELECT SalesOrderID , SalesOrderDetailID ,
 CarrierTrackingNumber , OrderQty ,
 ProductID , SpecialOfferID ,
 UnitPrice , UnitPriceDiscount ,
 LineTotal , rowguid ,
 ModifiedDate , @d_action ,
 GETDATE() , SYSTEM_USER
 FROM DELETED
GO

Listing 9.18: A DML trigger to log data changes to an audit table.

Any DML operation performed against the Sales.SalesOrderDetail table will be
logged to the audit table, with the type of action performed, when it occurred, and who
made the change. Auditing in this manner requires more space inside the database, since
every operation is duplicated in the audit table. To demonstrate how this auditing works,
we'll UPDATE the OrderQty for one of the rows (WHERE SalesOrderDetailID =1) and
then SELECT the rows from the audit table, as shown in Listing 9.19.

335

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

UPDATE Sales.SalesOrderDetail
SET OrderQty = 10
WHERE SalesOrderDetailID = 1
GO
SELECT *
FROM Sales.SalesOrderDetailAudit
GO

Listing 9.19: An audited UPDATE on the SalesOrderDetail table.

The UPDATE statement wrote to the audit table the original state of the data, as well
as the state of the data after the UPDATE. Using this information, the operation can be
undone by issuing another UPDATE with the original value, or by performing a JOIN to
the audit table to correct multiple rows in a set based operation.

UPDATE sod
SET sod.OrderQty = soda.OrderQty
FROM Sales.SalesOrderDetail sod
 JOIN Sales.SalesOrderDetailAudit soda
 ON sod.SalesOrderDetailID =
 soda.SalesOrderDetailID
WHERE soda.AuditAction = 'UPDATED_FROM'
 AND soda.SalesOrderDetailID = 1

Listing 9.20: Reverting the UPDATE using the audit table.

In a production environment it is likely that, over time, a row will have been updated
more than once, so you'll want to target the WHERE clause to changes from a specific date
range, by placing an additional predicate on the ChangeDate column of the audit table.

Along with writing the changes to an audit table, a DML trigger can also be used to
prevent changes, based on the number of rows being affected. This is accomplished by
checking the number of rows in the inserted and deleted tables in the trigger and
issuing a ROLLBACK if they exceed a set value, as shown in Listing 9.21.

336

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

CREATE TRIGGER SalesOrderDetail_Prevent ON Sales.SalesOrderDetail
 FOR UPDATE, DELETE
AS
 DECLARE @INS INTEGER ,
 @DEL INTEGER
 SELECT @INS = COUNT(*)
 FROM INSERTED
 SELECT @DEL = COUNT(*)
 FROM DELETED

 IF ((@INS > 1000
 AND @DEL > 1000
)
 OR @DEL > 1000
)
 BEGIN
 PRINT 'You must disable Trigger "Sales.SalesOrderDetail_Prevent" to
change more than 1000 rows.'
 ROLLBACK
 END
GO

Listing 9.21: Preventing any UPDATE that would affect more than 1,000 rows.

Attempting to UPDATE or DELETE more than 1,000 rows of data will cause the trans-
action to rollback and return the following error:

You must disable Trigger "Sales.SalesOrderDetail_Prevent" to change more than 1000
rows.
Msg 3609, Level 16, State 1, Line 1
The transaction ended in the trigger. The batch has been aborted.

If the operation is an intended operation, the trigger can be disabled using the DISABLE
TRIGGER statement allowing the operation to complete, and then using ENABLE
TRIGGER to turn the trigger back on once the operation completes.

337

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

DISABLE TRIGGER Sales.SalesOrderDetail_Prevent
ON Sales.SalesOrderDetail

-- Perform data changes

ENABLE TRIGGER Sales.SalesOrderDetail_Prevent
ON Sales.SalesOrderDetail

Listing 9.22: Disabling and enabling DML triggers.

DDL triggers

DDL triggers were added to SQL Server 2005 and are similar to DML triggers except that
they fire in response to Data Definition Language events.

DDL triggers can be used to log database changes as well as prevent the changes from
occurring at all. Unlike DML triggers, DDL triggers can be scoped to a specific database,
or at the server level, and they can be configured to fire in response to a much larger set
of events. DDL events are grouped into a hierarchy to allow a trigger to fire for multiple
events while simplifying the trigger's definition.

A full list of the DDL Events and Groups can be found in the Books Online topic, DDL
Event Groups (http://msdn.microsoft.com/en-us/library/bb510452.aspx).

The Books Online topic, Understanding DDL Triggers (http://msdn.microsoft.com/
en-us/library/ms175941.aspx) has an example DDL trigger, named "safety," which
prevents dropping or altering any table in a database. In a similar manner to the previous
DML trigger, it does so by issuing a ROLLBACK to prevent the change. New tables can
still be created with this trigger in place, or the trigger can be disabled to allow approved
changes to occur, and then the trigger can be enabled to prevent further changes.

http://msdn.microsoft.com/en-us/library/bb510452.aspx
http://msdn.microsoft.com/en-us/library/ms175941.aspx
http://msdn.microsoft.com/en-us/library/ms175941.aspx

338

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

The AdventureWorks database also contains a DDL trigger, named ddlDatabase-
TriggerLog, which logs DDL changes to the DatabaseLog table. The trigger is disabled
by default but can be used as a template for creating an auditing trigger for DDL Events.
DDL triggers do not have an inserted or deleted virtual table, as DML triggers do.
Instead the EVENTDATA() system function has to be called, which returns an XML
document containing the event information.

Summary

My philosophy with regard to recovering from data loss is that prevention is better than
cure. The two key pillars of this philosophy are strict change control processes and appro-
priate security permissions.

I know from hard, personal experience that human error is the most prevalent cause of
accidental data loss. I also know that the two biggest enabling factors for these accidents
are development activity directly on production databases, and users with more rights
than they need.

Of course, potential data loss due to hardware failure, power loss, or natural disaster,
is harder to predict or control. The use of disaster recovery solutions such as failover
clustering, database mirroring, log shipping, or transactional replication, will put you
in a stronger position to handle such situations, but generally won't protect you from
data loss due to changes directly to a SQL Server database. They are no substitute for a
comprehensive, and tested, backup and recovery plan.

For each SQL Server database, a DBA must implement a backup strategy, consisting of
full, differential and transaction log backups, as appropriate, that will allow data to be
recovered to within what the business deems to be an acceptable level of data loss for that
database. These backups must be stored securely, along with the documented recovery
plan, which must be tested regularly to ensure that data can be recovered, and systems
brought back online, within an acceptable time.

339

Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen

With this backup and recovery strategy in place, you can sleep sounder in the knowledge
that if disaster strikes, you'll at least be working through the techniques covered in the
Recovering from backup section of this chapter, rather than the ones in the Recovering
without a backup section, which could equally as well been called Last Ditch Efforts to Save
your Job.

Having safely recovered your data, attention can turn to the auditing techniques that
will help identify the cause and to the change and access control measures that can help
prevent it happening again.

340

Appendix: What to Do When All Else
Fails

While this book attempts to cover the most commonly encountered SQL Server
problems, others will, inevitably, arise which aren't covered. SQL Server is a complex
product, and with each release more and more components are added to the product
stack. It's simply impossible to cover in a single book every variety of problem that could
occur somewhere in this stack, and affect the performance of SQL Server.

This appendix offers some advice on where to go for help with these problems, as well as
for additional information on the problems that were covered.

While this appendix attempts to cover some of the most popular and useful SQL Server
resources, there are others out there that aren't covered. SQL Server is a complex product
and…you get the message.

Microsoft Customer Support Services

If you are faced with a production server that is down, your best chance of resolving the
problem in the least amount of time is to contact the Microsoft Customer Support Team
(CSS). The caveat here is that you will have to pay for this support on a case-by-case
basis, unless the problem is due to an actual bug in the product, or a known bug that has
an existing hot-fix or Service Pack available. Support cases are allocated based on their
assigned status level, with Level A, production down, being the most important.

If you try to escalate a less critical support case to Level A, in order to jump forward in
the queue, it will actually be de-escalated to at least a Level B during the early stages of

341

Appendix: What to Do When All Else Fails

support. Don't try to beat the system and escalate your case to a level that is not appro-
priate. This will only cause delay in the long run.

Before you call CSS, be aware of the following considerations. Firstly, if you are not using
SQL Server in a supported configuration, then your problem will not be a priority case for
Microsoft Support. For example, if you are running SQL Server on an unsupported Active
Directory Domain Controller, your case may not receive Level A status. Depending on
your existing support agreements with Microsoft, you may be required to reproduce the
problem in a supported configuration before a support engineer continues to work the
case, or before the case is escalated inside of Microsoft Support.

If your problem is partially covered by a chapter in this book, for example, you have a
deleted table/missing object, but the recommendations in the chapter don't meet your
needs or expectations, then you may decide to open a Microsoft Support case. However,
you may be heading for disappointment. As far as was possible, this book covers the
recommendations you're likely to get from Microsoft Support. If the information
provided here doesn't already recommend that you contact Microsoft for a specific
problem, then the chances are that you will be making an unnecessary support call that
will cost you or your company money, and result in no new information.

Unless you have a Level A case, i.e. a true production down case, in a supported configu-
ration, then you can expect the engineer to ask you to perform a process known as data
collection, where you run the PSSDiag or SQLDiag tool, using a provided configuration
file. This collects the necessary data for the support team to troubleshoot your specific
problem. At this point, it is common for the support representative to end the call and
wait for you to upload the results of the data collection to a private FTP or HTTPS web
interface, where they can gather the results and parse through them offline.

This does not end your support case; it simply allows the engineer to multi-task, working
on other customer cases, while you gather the necessary information they need to
continue the analysis of your problem. You can expect to receive continued support and
updates from your support engineer until they escalate your case internally at Microsoft,
or they reassign your case to another support engineer, to continue working it while

342

Appendix: What to Do When All Else Fails

they are away or have time off. Rest assured that your case is being well documented by
the support engineers, and the engineer receiving the case will continue where the last
engineer left off.

If the problem you have is a known bug that is fixed in an existing hot-fix to the
product, you may be required to apply that hot-fix and validate that the problem still
exists, to continue receiving support. You may also have a problem that has a work-
around available, and it may be recommended that you use the existing work-around
until the problem is actually resolved in the product, which could take weeks, months,
or years, depending on the specific problem, and the potential impact of the problem on
other customers.

While CSS is a great asset for troubleshooting critical situation (Crit-Sit) problems with
SQL Server, it may not be the best first stop for your specific problem. Keep in mind
that opening a CSS case for the problem doesn't preclude the use of the other available
methods covered in this chapter. It is still possible that you may receive assistance faster
through one of the other methods provided here.

Nevertheless, in a true production-down scenario, CSS is the fastest and most guaranteed
method of getting resolution to your problem.

Online Resources

The Internet has more information than any one person could ever hope to consume in
a lifetime, and these days it is easier and faster than ever to publish information online.
However, unlike books and magazine articles, information that can be found on the
Internet doesn't always go through a technical editing process, and it can't be trusted to
be accurate without additional validation. Determining the accuracy and applicability of
online information can be a difficult task at times. This section will help to point you to
major sites that have more credibility in the community at large due to their readership.

343

Appendix: What to Do When All Else Fails

Articles

A number of websites dedicated to SQL Server publish, on a daily or weekly basis, articles
that are written by members of the community and popular authors. These sites are
subject to intense community scrutiny, so incorrect information is quickly highlighted
and corrected. Furthermore, the articles are generally subject to technical review and
editing prior to publication, in order to reduce the likelihood of error. This book, for
example, would be fraught with mistakes if it wasn't for technical editing and the
combined knowledge and experience of the authors and editors, working together to
provide the most accurate information possible. Even then, you have to be careful what
you trust online because even the most experienced people make mistakes at times. Two
of my favorite sites are:

•	 http://www.sqlservercentral.com/Articles/

•	 http://www.simple-talk.com/sql/

Blogs

On the one hand, blogs are an excellent source of up-to-date troubleshooting knowledge,
often provided by highly knowledgeable experts. Many of the members of the SQL Server
development team maintain a blog, for example, as do many of the SQL Server MVPs. On
the other hand, despite all this, the quality of blogs can be highly variable, and it is not
uncommon for a MVP blog to contain technically incorrect information.

When reading a blog post, always validate the author's experience and the information
presented against the other information that is available on the subject online. Some of
the best blogs are found at:

•	 http://sqlskills.com

•	 http://www.sqlblog.com/

http://www.sqlservercentral.com/Articles/
http://www.simple-talk.com/sql/
http://sqlskills.com
http://www.sqlblog.com/

344

Appendix: What to Do When All Else Fails

•	 http://blogs.msdn.com/

•	 http://www.sqlblogcasts.com/

•	 http://www.sqlservercentral.com/blogs/

•	 http://weblogs.sqlteam.com/

Forums

The Internet has a multitude of "free" public access forums for SQL Server that can be
used to receive support for non-critical, non-production down-type problems (though
critical, server down-type problems do crop up as well!). While it may be possible to get
an answer to a critical production down problem on the forums, the Customer Support
Services route is the recommended path to resolve production down problems as there
are no guarantees of a response to a forums question within any period of time.

It is impossible to cover each specific SQL Server community forum, so this chapter will
only cover a few of the busiest: Microsoft MSDN, SQL Server Central, and StackOverflow.

The answers provided in the busy forums attract a high level of scrutiny, and active
members of these forums will generally quickly correct any misleading advice. Again,
however, do not be surprised if you receive conflicting or bad information from a
forum thread.

Microsoft MSDN forums

The Microsoft MSDN forums are categorized into product-specific groups of forums,
each covering a particular problem area for a product. One of the benefits of the MSDN
forums is the level of involvement by Microsoft product team members, who routinely
respond to complex questions in conjunction with a number of MVPs.

http://blogs.msdn.com/
http://www.sqlblogcasts.com/
http://www.sqlservercentral.com/blogs/
http://weblogs.sqlteam.com/

345

Appendix: What to Do When All Else Fails

However, with all the activity, this forum can also be very much like the Wild West,
with new members firing answers at anything that pops up, in an attempt to gain points
and medals on the site. In most cases, wayward answers are corrected by other forum
members or moderators, but the sheer volume of posts on certain forums can mean that
incorrect information is not spotted, and you need to use due diligence in testing and
verifying any information provided.

SQL Server Central forums

SQL Server Central is a site that was primarily created by three members of the SQL
Server Community, Brian Knight, Steve Jones, and Andy Warren, in March of 2001. The
site is currently owned and operated by RedGate Software, and Steve Jones continues to
be the site's editor at large. The site has a very busy set of forums that are categorized and
subcategorized in an attempt to drive specific types of questions into areas of interest,
where members of the community offer responses and advice.

The high level of community involvement on this site makes it a fairly credible resource
for information. The articles and tips provided on this site have discussion sections
associated with them that should be reviewed to determine the community response to
the information that was published. In some cases, a better solution, or corrections to
inaccuracies in the article, can be found in the discussion.

SQL Server Central also runs a separate site, Ask.SQLServerCentral.com, which operates
using the StackOverflow model, but is dedicated solely to SQL Server questions.

StackOverFlow

StackOverflow is an interesting newcomer in the forums space, offering a new model
for a community supported forum. The goal behind StackOverflow is to promote single-
response answers to questions and to reward "good" responses through "up-votes" by

346

members of the community, so building a solid platform of reliable responses to
common problems.

However, the up-vote mechanism is a double-edged sword, and it's entirely possible and
common for generally accepted, but wrong answers to get up-voted. An example of this
would be some of the common responses to the "Transaction Log Full" problem (covered
in Chapter 8), which promote solutions such as backing up the log using the TRUNCATE_
ONLY option and then use SHRINKFILE to shrink the physical file on disk. While this may
fix the temporary problem at hand, it doesn't actually address the problem that caused
the log file to grow significantly in the first place, and can also cause new issues such as
physical file fragmentation or broken SQL Server backup sets.

Hiring a Consultant

As part of the process of solving a critical SQL Server-related problem, it might be
advisable to hire a consultant to come in and fill a particular knowledge void within the
company. Hiring a consultant is a complicated task and your choice should be based on a
number of factors.

Often, budget is a key factor in the selection process. However, focusing only on
the hourly cost of a consulting agreement, rather than the level of experience of the
consultant, can lead to higher costs in the long term since it's possible that a cheaper, less-
experienced consultant will take two or three times longer to resolve the issue.

When dealing with consultants, make sure that you have a well-defined statement of
work that covers the specifics of the work to be performed, the maximum number of
hours, and cost per hour that will be covered for the work, and specific deliverables
associated with the work to be done.

SQL Server
and .NET Tools

from Red Gate Software

Pricing and information about Red Gate tools are correct at the time of

going to print. For the latest information and pricing on all Red Gate's

tools, visit www.red-gate.com

Visit www.red-gate.com for a 14-day, free trial

$595

$595

"Just purchased SQL Compare. With the
productivity I’ll get out of this tool, it’s like
buying time."
Robert Sondles Blueberry Island Media Ltd

SQL Compare® Pro
Compare and synchronize SQL Server database schemas

SQL Data Compare Pro
Compares and synchronizes SQL Server database contents

 Eliminate mistakes migrating database changes from dev, to test, to production

 Speed up the deployment of new databse schema updates

 Find and fix errors caused by differences between databases

 Compare and synchronize within SSMS

 Save time by automatically comparing and synchronizing your data

 Copy lookup data from development databases to staging or production

 Quickly fix problems by restoring damaged or missing data to a single row

 Compare and synchronize data within SSMS

"We use SQL Data Compare daily
and it has become an indispensable
part of delivering our service to our
customers. It has also streamlined
our daily update process and cut back
literally a good solid hour per day."
George Pantela GPAnalysis.com

$595

$595

Visit www.red-gate.com for a 14-day, free trial

SQL Prompt Pro
Write, edit, and explore SQL effortlessly

 Write SQL smoothly, with code-completion and SQL snippets

 Reformat SQL to a preferred style

 Keep databases tidy by finding invalid objects automatically

 Save time and effort with script summaries, smart object renaming and more

"SQL Prompt is hands-down one of the coolest
applications I’ve used. Makes querying/developing
so much easier and faster."
Jorge Segarra University Community Hospital

SQL Source Control
Connect your existing source control system to SQL Server

 Bring all the benefits of source control to your database

 Source control schemas and data within SSMS, not with offline scripts

 Connect your databases to TFS, SVN, SourceGear Vault, Vault Pro, Mercurial,

 Perforce, Git, Bazaar, and any source control system with a capable command line

 Work with shared development databases, or individual copies

 Track changes to follow who changed what, when, and why

 Keep teams in sync with easy access to the latest database version

 View database development history for easy retrieval

 of specific versions "After using SQL Source Control for several
months, I wondered how I got by before.
Highly recommended, it has paid for itself
several times over"
Ben Ashley Fast Floor

Visit www.red-gate.com for a 28-day, free trial

$295

$295

Visit www.red-gate.com for a 14-day, free trial

$795

 Compress SQL Server database backups by up to 95% for
 faster, smaller backups

 Protect your data with up to 256-bit AES encryption

 Strengthen your backups with network resilience to enable
 a fault-tolerant transfer of backups across flaky networks

 Control your backup activities through an intuitive interface,
 with powerful job management and an interactive timeline

"SQL Backup is an amazing tool that lets
us manage and monitor our backups in real
time. Red Gate's SQL tools have saved us
so much time and work that I am afraid my
director will decide that we don't need a
DBA anymore!"

Mike Poole Database Administrator, Human Kinetics

SQL Backup Pro

Compress, encrypt, and strengthen SQL Server backups

Visit www.red-gate.com for a 14-day, free trial

 Intuitive overviews at global, cluster, machine, SQL Server,
 and database levels for up-to-the-minute performance data

 Use SQL Monitor’s web UI to keep an eye on server performance
 in real time on desktop machines and mobile devices

 Intelligent SQL Server alerts via email and an alert inbox in the
 UI, so you know about problems first

 Comprehensive historical data, so you can go back in time to
 identify the source of a problem

 Generate reports via the UI or with Red Gate’s free SSRS Reporting Pack

 View the top 10 expensive queries for an instance or database
 based on CPU usage, duration and reads and writes

 PagerDuty integration for phone and SMS alerting

 Fast, simple installation and administration

"Being web based, SQL Monitor is readily
available to you, wherever you may be on your
network. You can check on your servers from
almost any location, via most mobile devices
that support a web browser."

Jonathan Allen Senior DBA, Careers South West Ltd

SQL Monitor

SQL Server performance monitoring and alerting

Visit www.red-gate.com for a 14-day, free trial

SQL Storage Compress
Silent data compression to optimize SQL Server storage

$1,595

 Reduce the storage footprint of live SQL Server databases by up to 90% to

 save on space and hardware costs

 Databases compressed with SQL Storage Compress are fully functional

 Prevent unauthorized access to your live databases with 256-bit AES encryption

 Integrates seamlessly with SQL Server and does not require any configuration changes

SQL Virtual Restore
Rapidly mount live, fully functional databases direct from backups

$495

 Virtually restoring a backup requires significantly less time and space than a regular physical restore

 Databases mounted with SQL Virtual Restore are fully functional and support

 both read/write operations

 SQL Virtual Restore is ACID compliant and gives you access to full, transactionally consistent data,

 with all objects visible and available

 Use SQL Virtual Restore to recover objects, verify your backups with DBCC CHECKDB, create a

 storage-efficient copy of your production database, and more.

"We find occasions where someone has deleted data
accidentally or dropped an index etc., and with SQL
Virtual Restore we can mount last night’s backup quickly
and easily to get access to the data or the original
schema. It even works with all our backups being
encrypted. This takes any extra load off our production
server. SQL Virtual Restore is a great product."
Brent McCraken Senior Database Administrator/Architect, Kiwibank Limited

Visit www.red-gate.com for a 14-day, free trial

SQL Toolbelt
The essential SQL Server tools for database professionals

$1,995

You can buy our acclaimed SQL Server tools individually or bundled. Our most popular deal is

the SQL Toolbelt: fourteen of our SQL Server tools in a single installer, with a combined value

of $5,930 but an actual price of $1,995, a saving of 66%.

Fully compatible with SQL Server 2000, 2005, and 2008.

SQL Toolbelt contains:

 SQL Compare Pro

 SQL Data Compare Pro

 SQL Source Control

 SQL Backup Pro

 SQL Monitor

 SQL Prompt Pro

 SQL Data Generator

 SQL Doc

 SQL Dependency Tracker

 SQL Packager

 SQL Multi Script Unlimited

 SQL Search

 SQL Comparison SDK

 SQL Object Level Recovery Native

"The SQL Toolbelt provides tools that database

developers, as well as DBAs, should not live without."
William Van Orden Senior Database Developer, Lockheed Martin

ANTS Memory Profiler
Find memory leaks and optimize memory usage

$495

 Identify performance bottlenecks within minutes

 Drill down to slow lines of code thanks to line-level code timings

 Boost the performance of your .NET code

 Get the most complete picture of your application’s performance

with integrated SQL and File I/O profiling

 Find memory leaks within minutes

 Jump straight to the heart of the problem with intelligent summary information,

filtering options and visualizations

 Optimize the memory usage of your C# and VB.NET code

Visit www.red-gate.com for a 14-day, free trial

"Freaking sweet! We have a known memory
leak that took me about four hours to find using
our current tool, so I fired up ANTS Memory
Profiler and went at it like I didn't know the leak
existed. Not only did I come to the conclusion
much faster, but I found another one!"
Aaron Smith IT Manager, R.C. Systems Inc.

ANTS Performance Profiler
Profile your .NET code and boost the performance of your application

from $395

"ANTS Performance Profiler
took us straight to the specific
areas of our code which were
the cause of our performance
issues."
Terry Phillips Sr Developer,
Harley-Davidson Dealer Systems

"Thanks to ANTS Performance
Profiler, we were able to
discover a performance hit in our
serialization of XML that was fixed
for a 10x performance increase."
Garret Spargo Product Manager, AFHCAN

Visit www.red-gate.com for a 14-day, free trial

SmartAssembly ®
.NET obfuscator and automated error reporting

 Obfuscate your .NET code and protect your IP

 Let your end-users report errors in your software with one click

 Receive a comprehensive report containing a stack trace and values of all the local variables

 Identify the most recurrent bugs and prioritize fixing those first

 Gather feature usage data to understand how your software is being used

and make better product development decisions

from $795

.NET Reflector ®
Browse, compile, analyze and decompile .NET code

 View, navigate and search through the class hierarchies of .NET assemblies,

even if you don’t have access to the source code for them

 Decompile and analyze .NET assemblies in C#, Visual Basic and IL

 Step into decompiled assemblies whilst debugging in Visual Studio,

with all the debugging techniques you would use on your own code

From $35

"One of the most useful, practical debugging
tools that I have ever worked with in .NET! It
provides complete browsing and debugging
features for .NET assemblies, and has clean
integration with Visual Studio."
Tom Baker Consultant Software Engineer, EMC Corporation

"I've deployed Automated Error Reporting
now for one release and I’m already seeing the
benefits. I can fix bugs which might never have
got my attention before. I really like it a lot!"
Stefal Koell MVP

Performance Tuning with SQL Server
Dynamic Management Views
Louis Davidson and Tim Ford

This is the book that will de-mystify the process of using

Dynamic Management Views to collect the information you

need to troubleshoot SQL Server problems. It will highlight the

core techniques and "patterns" that you need to master, and

will provide a core set of scripts that you can use and adapt for

your own requirements.

ISBN: 978-1-906434-47-2
Published: October 2010

Defensive Database Programming
Alex Kuznetsov

Inside this book, you will find dozens of practical, defensive

programming techniques that will improve the quality of

your T-SQL code and increase its resilience and robustness.

ISBN: 978-1-906434-49-6

Published: June 2010

Brad's Sure Guide to
SQL Server Maintenance Plans
Brad McGehee

Brad's Sure Guide to Maintenance Plans shows you how to

use the Maintenance Plan Wizard and Designer to configure

and schedule eleven core database maintenance tasks,

ranging from integrity checks, to database backups, to index

reorganizations and rebuilds.

ISBN: 78-1-906434-34-2

Published: December 2009

The Red Gate Guide to SQL Server
Team-based Development
Phil Factor, Grant Fritchey, Alex Kuznetsov,
and Mladen Prajdić

This book shows how to use of mixture of home-grown

scripts, native SQL Server tools, and tools from the Red Gate

SQL Toolbelt, to successfully develop database applications

in a team environment, and make database development as

similar as possible to "normal" development.

ISBN: 978-1-906434-59-5

Published: November 2010

	Introduction
	Who is this book for?
	Code Examples

	Chapter 1: A Performance Troubleshooting Methodology
	Defining a Troubleshooting Methodology
	Wait Statistics: the Basis for Troubleshooting
	Virtual File Statistics
	Performance Counters
	Plan Cache Usage
	Summary

	Chapter 2: Disk I/O Configuration
	Disk Configuration: Basic Considerations
	Disk size vs. disk throughput
	Random versus sequential I/O

	Choosing the Right RAID Level
	A brief overview of RAID configurations
	Disk size and throughput considerations
	Workload considerations

	Direct Attached Storage vs. Storage Area Networks
	Direct Attached Storage
	Storage Area Networks

	Diagnosing Disk I/O Issues
	Common Disk I/O Problems
	Sizing for capacity instead of I/O performance
	Incorrect workload isolation
	Incorrect partition alignment
	Incorrect bandwidth using SAN configurations

	Summary

	Chapter 3: High CPU Utilization
	Investigating CPU Pressure
	Performance Monitor
	SQL Trace
	Dynamic Management Views

	Common Causes of High CPU Usage
	Missing indexes
	Outdated statistics
	Non-SARGable predicates
	Implicit conversions
	Parameter sniffing
	Ad hoc non-parameterized queries
	Inappropriate parallelism
	TokenAndPermUserStore
	Windows Server and BIOS power saving options

	Summary
	Additional Resources

	Chapter 4: Memory Management
	The Self-Tuning Database Engine
	How SQL Server Allocates Memory
	32-bit Virtual Address Space limitations
	Using 64-bit SQL Server
	Memory configuration options with 64-bit SQL Server

	Diagnosing Memory Pressure
	Memory-related counters
	Memory-related DMVs

	Common Memory-Related Problems
	The SQL Server memory leak myth
	Paging problems
	OS instability due to Lock Pages in Memory plus unlimited max server memory
	App Domain is marked for unload due to memory pressure
	Error 701 and FAILED_VIRTUAL_RESERVE
	Over-provisioned virtual machines
	Memory settings for multiple instances

	Summary

	Chapter 5: Missing Indexes
	Index Selection and Design
	Index key column order
	Use of included columns
	Index width

	Identifying Missing Indexes
	Workload analysis with the Database Engine Tuning Advisor
	Missing index feature
	Missing indexes on foreign keys

	Identifying Unused Indexes
	Identifying Duplicate Indexes
	Summary

	Chapter 6: Blocking
	Locks and Concurrency (a Brief Review)
	Lock modes
	Lock types
	Lock escalation
	Concurrency and the transaction isolation levels
	Latches and latch contention

	Monitoring Blocking
	Using sysprocesses (SQL Server 2000 and later)
	Cumulative wait statistics with DBCC SQLPERF (waitstats)
	Dynamic Management Views
	Performance Monitor

	Automated Detection and Notification of Blocking
	The Sp_blocker_pss80 process
	SQL Trace
	Event notifications
	Extended Events

	Resolving Blocking
	Bad database design
	Inappropriate isolation level
	Poorly written queries
	Missing indexes
	Poor application design
	Outdated hardware

	Hints, Trace Flags and Other Last Resorts
	Locking hints

	Summary

	Chapter 7: Handling Deadlocks
	The Lock Monitor
	Capturing Deadlock Graphs
	Trace Flag 1204
	Trace Flag 1222
	SQL Profiler XML Deadlock Graph event
	Service Broker event notifications
	WMI Provider for server events
	Extended Events

	Reading Deadlock Graphs
	Interpreting Trace Flag 1204 deadlock graphs
	Interpreting Trace Flag 1222 deadlock graphs
	Interpreting XML deadlock graphs

	Common types of deadlock and how to eliminate them
	Bookmark lookup deadlock
	Range scans caused by SERIALIZABLE isolation
	Cascading constraint deadlocks
	Intra-query parallelism deadlocks
	Accessing objects in different orders

	Handling Deadlocks to Prevent Errors
	T-SQL TRY…CATCH blocks
	Handling ADO.NET SqlExceptions in .NET code

	Controlling Deadlock Behavior with Deadlock Priority
	Summary

	Chapter 8: Large or Full Transaction Log
	How the Transaction Log Works
	How SQL Server writes to the transaction log
	Understanding log truncation
	Sizing and growing the log

	Diagnosing a Runaway Transaction Log
	Excessive logging: index maintenance operations
	Lack of log space reuse
	Other possible causes of log growth

	Handling a "Transaction Log Full" Error
	Mismanagement or What Not To Do
	Detach database, delete log file
	Forcing log file truncation
	Scheduled shrinking of the transaction log

	Proper Log Management
	Summary

	Chapter 9: Truncated Tables, Dropped Objects and Other Accidents Waiting to Happen
	Example Case: The Missing Sales Order Data
	Recovering Lost Data
	Recovering from backup
	Recovering without a backup

	Finding the Culprit
	Prevention is Better than Cure
	Plan for recovery from all data losses
	Implement a change control process
	Implement an appropriate security model
	Access control measures

	Summary

	Appendix: What to Do When All Else Fails
	Microsoft Customer Support Services
	Online Resources
	Articles
	Blogs
	Forums

	Hiring a Consultant

	_GoBack
	OLE_LINK1
	OLE_LINK2
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack

